Updated Environmental Impact Assessment

India: Chennai Metro Rail Investment Project Corridor 4

Main Report

April 2024 Revision - 01

Prepared by the Chennai Metro Rail Limited (CMRL) for Project Lenders.

CURRENCY EQUIVALENTS

(as of 1st April 2024)

Currency unit – Indian Rupee (₹) ₹1.00 = \$0.012 \$1.00 = ₹83.39

ABBREVIATIONS

ADB	: Asian Development Bank
AIIB	: Asian Infrastructure Investment Bank
CBTC	: Communication based Train Control
CGWB	: Central Ground Water Board
C&D Waste	: construction and demolition Waste
CMA	: Chennai Metropolitan Area
CMDA	: Chennai Metropolitan Development Authority
CMRL	: Chennai Metro Rail Limited
CMWSSB	: Chennai Metro Water Supply and
	Sewerage Board
CPCB	: Central Pollution Control Board
CMP	: Comprehensive Mobility Plan
CMBT	: Chennai Mofussil Bus Terminus
CMFRI	: Central Institute of Mining and Fuel Research
CRZ	: Coastal Regulation Zone
DGC	: District Green Committee
EHS	: Environmental, Health, and Safety
EC	: Environment Clearance
EIA	: Environmental Impact Assessment
EMP	: Environmental Management Plan
EMoP	: Environmental Monitoring Plan
ESF	: Environment and Social Framework
ESP	: Environment and Social Policy
ESHS	: Environment, Social, Health and Safety
FTA	: Federal Transit Administration
Gol	: Government of India
GoTN	: Government of Tamil Nadu
GC	: General Consultants
GRM	: Grievance Redress Mechanism
IMD	: India Meteorological Department
JICA	: Japan International Cooperation Agency
KLD	:Kilo Litres Per Day
MoEF&CC	: Ministry of Environment, Forests and Climate
	Change
MDBs	: Multilateral Development Banks
MRTS	: Mass Rapid Transit System
NDB	: New Development Bank
NAAQS	: National Ambient Air Quality Standards
NBWL	: National Board of Wildlife

NGT	:	National Green Tribunal		
PAP	:	Project Affected Persons		
RDSO	:	Railway Design & Standards Organisation		
RAP	:	Resettlement Action Plan		
SIPCOT	:	State Industries Promotion Corporation of Tamil Nadu		
SPV	:	Special Purpose Vehicle		
SIA	:	Social Impact Assessment		
TNCZMA	:	Tamil Nadu Coastal Zone Management Authority		
TNFD	:	Tamil Nadu Forest Department		
ТВМ	:	Tunnel Boring Machine		
TNPCB	:	Tamil Nadu Pollution Control Board		
WHO	:	World Health Organization		

WEIGHTS AND MEASURES

Ο ⁰	-	degree Celsius
dB(A)	_	decibel acoustic
ha	-	hectare
km	-	kilometer
km/h	-	
kWe	-	kilometer per hour kilowatt-electric
	-	
kV	-	Kilo volt(s)
kVA	-	kilo Volt-Amps
kW	-	kilowatt
m	-	meter
mm	-	millimeter
MLD	-	million liter per day
MVA	-	Megavolt Ampere
MW	-	Megawatt
m³	-	cubic meter
m³/hr	-	cubic meters per hour
mg/L	-	milligrams per liter
m/s	-	meters per second
MTPA	-	metric tons per annum
MW	-	megawatt
ppm	-	parts per million
ppt	-	parts per thousand
rpm	-	revolutions per minute
µg/m³	-	microgram per cubic meter
r 3,		

NOTES

(i) The fiscal year (FY) of the Government of India ends on 31 March. FY before a calendar year denotes the year in which the fiscal year ends, e.g., FY2023 ends on 31 March 2023.

(ii) In this report, "\$" refers to US dollars.

This updated environmental impact assessment is a document of the borrower. The views expressed herein do not necessarily represent those of ADB's Board of Directors, Management, or staff, and may be preliminary in nature. Your attention is directed to the "terms of use" section on ADB's website.

In preparing any country program or strategy, financing any project, or by making any designation of or reference to a particular territory or geographic area in this document, the Asian Development Bank does not intend to make any judgments as to the legal or other status of any territory or area.

TABLE OF CONTENTS

EXECUTIVE SUMMARY	1
1 INTRODUCTION	6
1.1. Background	6
1.2. Environmental Impact Assessment	
2. POLICY, LEGAL AND ADMINISTRATIVE FRAMEWORK	15
2.1. The National (India) Environmental Laws, Policies and Regulations	15
2.2 International and Regional Agreements and Conventions	
2.3 MDBs' Requirements Applicable to the Project	
2.4 Applied Standards	
3. DESCRIPTION OF THE PROJECT	
3.1 Rationale	
3.2 Description of the Corridor 4	
3.3 Associated Facilities	
3.4 Implementation Plan, Schedule and Cost	
4. DESCRIPTION OF THE ENVIRONMENT (BASELINE DATA)	
4.1 Data Collection Methodology	
4.2 Physical Environment	
4.3 Ambient Environment	
4.4 Ecological Environment	
4.5 Socioeconomic Environment	
5. ANTICIPATED IMPACTS AND MITIGATION MEASURES	
5.1 Methodology	
5.2 Identification of environmental components	
5.3 Screening of impacts	
5.4 Air Quality	
5.5 Expected Benefits from Corridor 4	
6. ANALYSIS OF ALTERNATIVES	
6.1 Introduction	
6.2 Selection of Alignment, Stations and Depot Locations	
7. INFORMATION DISCLOSURE, CONSULTATION AND PARTICIPATION	
7.1 Consultations7.2 Identification of Stakeholders	
 7.2 Identification of Stakeholders 7.3 Public Consultations – EIA 	
7.3 Public Consultations – EIA	
8. GRIEVANCE REDRESS MECHANISM	
9. ENVIRONMENTAL MANAGEMENT PLAN	
9.1 Introduction	
9.2 Objectives of Environmental Management Plan	
9.3 Institutional Arrangement	
9.4 Development and implementation of Subplans	
9.5 Environmental Monitoring and Reporting Program	
9.6 Emergency Preparedness and Response System	
9.7 Training and Capacity Building Programs	
9.8 Environmental Management Budget and Resources	
10. CONCLUSION AND RECOMMENDATION	
	207

LIST OF TABLES

Table 2.1: Summary of All Relevant Environmental Legislation to Corridor 4	16
Table 2.2: Applicable Permissions and Clearances Required for Corridor 4	
Table 3.1: List of Stations –Corridor 4	
Table 3.2: Land use abutting the Alignment.	31
Table 3.3: Salient Features of Chennai Metro Corridor 4	
Table 3.4: Water Requirement	
Table 3.5: Implementation Schedule of Corridor 4	41
Table 4.1: Environmental Attributes and Data Source	
Table 4.2: Details of Sampling / Monitoring Locations*	
Table 4.3: Results of Laboratory Analysis of Soil Sample	
Table 4.4 Results of Laboratory Analysis of Soil Sample (2021 - 2022)	
Table 4.5: Soil Types along alignment	
Table 4.6: Geological Formation in the Project Area	
Table 4.7: Land Use in CMA	
Table 4.8: Seismic Faults	
Table 4.9: Monthly Highest Maximum Temperature (Deg C)	
Table 4.10: Monthly Lowest Minimum Temperature (Deg C)	
\cdot	
Table 4.11: Monthly Rainfall (mm) Table 4.12: Monthly Mean Relative Humidity at 08:30 hrs (%)	
Table 4.13: Monthly Mean Relative Humidity at 17:30 hrs (%)	
Table 4.14: Results of Laboratory Analysis of Water Sample Table 4.15: Describe of Laboratory Analysis of Water Sample	
Table 4.15 : Results of Laboratory Analysis of Water Sample	
Table 4.16: Ambient Air Quality (24hr Time weighted Average) Table 4.17: Ambient Air Quality (24hr Time weighted Average)	
Table 4.17: Ambient Air Quality (24hr Time weighted Average)	
Table 4.18: National Ambient Air Quality Standards	
Table 4.19: Ambient Noise Level Monitoring Results (by land use) – (2016 to 2019)	
Table 4.20: Ambient Noise Level Monitoring Results (by land use) - 2021 to 2022	
Table 4.21: Ambient Noise Level Monitoring Results (at sensitive receptors)	
Table 4.22: Ambient Noise Limits	
Table 4.23: Monitoring Schedule	
Table 4.24: Standards for Vibration	
Table 4.25: Baseline Vibration	
Table 4.26: Bird Watching Areas in Chennai	
Table 4.27: Guidelines for ESZ Activities	
Table 4.28: Predominant Tree Species along the Corridor (Local name- Botanical na	me)
	87
Table 4.29: Tree Cutting	88
Table 4.30: Heritage Assets near the Underground section of the Alignment	90
Table 4.31: Impact on Families	
Table 5.1: Sensitivity of VECs in the project area	
Table 5.2: Criteria for rating the significance of adverse impacts	
Table 5.3: Impacts Screening	
Table 5.4: Emissions due to truck movement	
Table 5.5: Reduction in Daily Vehicle kilometers	
Table 5.6: Reduction in Fuel Consumption (million litre per year)	
Table 5.7: Pollution Reduction (ton/year)	
Table 5.8: Water Demand	
Table 5.9: Ground water level in Chennai District	
Table 5.10: Organizations Responsible for Utilities and Services	
Table 5.11: Average Noise Levels Generated by Operation of Various Construct	
Equipment	
=daib	

Table 5.12: Maximum Exposure Periods Specified By OSHA	115
Table 5.13: Exterior Noise Levels in Metro Stations	116
Table 5.14: Interior Noise Levels in Metro Trains	116
Table 5.15: Summary of predicted Noise Levels during construction phase	117
Table 5.16: Summary of predicted Noise Levels during operational phase	120
Table 5.17: Noise Barrier for Noise Reduction	122
Table 5.18: Construction Vibration Damage Criteria as per FTA guidelines	124
Table 5.19: Vibration Annoyance Criteria as per FTA guidelines	124
Table 5.20: Predicted affected area for structural damage during construction per structural damage during constructural damage during constru	ture
type	
Table 5.21: Predicted affected area for annoyance during construction per structure t	ype
	126
Table 5.22: Predicted affected area for annoyance during operation in the undergro	und
section for design and scheduled speed	
Table 5.23: Predicted affected area for annoyance during operation in the elevated sec	
for design and scheduled speed	
Table 5.24: Heritage assets near the alignment	
Table 5.25: Power Demand	
Table 6.1: Qualitative criteria for impact screening	
Table 6.2: Evaluation of Alternate Modes on Qualitative criteria	
Table 6.3: Environmental impacts of alternate modes of transport	
Table 7.1: Public Consultations at Station Locations Onsite 2016 to 2018	
Table 7.2: Public Consultations at Station Locations Onsite 2018 and 2019	
Table 9.1: Contractors'subplans and approval	
Table 9.2: Monitoring and Reporting for EMP and EMoP	
Table 9.3: Environmental Management Plan Matrix	
Table 9.4: Environmental Monitoring Plan	
Table 9.5: Emergency Preparedness and Response System	
Table 9.6: Cost of EMP and EMoP Implementation*	233

LIST OF FIGURES

Figure 1-1 Existing Rail Transport Network in Chennai (Source: CMRL website)	7
Figure 1-2 Metro Network Phase 1 (Source: CMRL website)	8
Figure 1-3: Metro Network Phase 2	9
Figure 1-4: Corridor 4 (Source: DPR of Corridor 4, Oct 2018)	11
Figure 1-5: Methodology of Environmental Impact Assessment	13
Figure 3-1: Corridor 4 (Updated April 2021)	29
Figure 3-2: Typical Elevated Station	33
Figure 3-3: Typical Underground Station (2-level)	34
Figure 3-4: Layout Plan of Poonamalle Depot	35
Figure 3-5: Typical superstructure of viaduct	36
Figure 3-6: Typical Twin Tunnel Section	37
Figure 3-7 Location of the Proposed Integrated Separator	38
Figure 3-8 Typical Cross Section of Integrated Grade separator cum Via duct	38
Figure 4-1: Topographical setting of Project Area	45
Figure 4-2: Monitoring Locations	47
Figure 4-3: Soil Types in CMA	52
Figure 4-4: Land Use in Chennai Metropolitan Area 2006	54
Figure 4-5: Seismic Zone Map of India	55
Figure 4-6: Seismic micro zonation of Chennai	56
Figure 4-7: Wind Rose Diagram for Chennai	60

Figure 4-8: Locations of noise monitoring at sensitive receptors on Corridor 4	72
Figure 4-9: Locations of vibration measurement at sensitive receptors Part 1	77
Figure 4-10: Locations of vibration measurement at sensitive receptors Part 2	77
Figure 4-11: Ecologically Sensitive Areas in CMA	80
Figure 4-12: Alignment in CRZ II and IV-B Area	81
Figure 4-13: Porur Lake	83
Figure 4-14: Forest Cover Map of Chennai District	84
Figure 4-15: Ecologically Sensitive Areas of Chennai District	86
Figure 4-16: Topo sheet showing CMRL alignment, ESZ areas and Guindy National F	Park
	86
Figure 5-1: Spatial Variation of Construction Equipment Noise Levels dB(A)	115
Figure 5-2: Vibration Damping Devices in Track	129
Figure 5-3: Predicted MSL and HTL in Chennai Sector	135
Figure 5-4: Chennai Flood map 2015	136
Figure 6-1: Mobility corridors in Chennai	144
Figure 6-2: Proposed mass transit corridors in Chennai	146
Figure 8-1: Grievance Redress Mechanism Environmental Issues	159

ANNEXURES

- Annexure 1: Detailed Analysis Reports
- Annexure 2: Environmentally Sensitive Receptors on Corridor 4
- Annexure 3: Noise and Vibration
- Annexure 4: Utility Information
- Annexure 5: Environment, Social, Health and Safety Requirements
- Annexure 6: Terms of Reference of General Consultant in Implementation of EMP and EMOP
- Annexure 7: Terms of Reference for Engaging External Monitoring Agency/Expert
- Annexure 8: Guidance for Construction Workers/ Contractors in View of COVID-19
- Annexure 9: Public Consultations
- Annexure 10: Guidelines on Site selection, Waste Disposal & Muck Disposal
- Annexure 11: Vibration Forecasting Report
- Annexure 12: Noise Modeling Report

Annexure 13: CRZ Clearance Letter

EXECUTIVE SUMMARY

1. Chennai, the capital city of the state of Tamil Nadu, is part of the Chennai Metropolitan Area (CMA) that is home to over 8.65 million people and plays a vital role in the economy of South India.¹ Like other metropolitan areas in the country, CMA is currently facing the challenges of accelerated urbanization growth that have considerably strained the area's transportation system. The increase in economic activities has boosted the regional economy and job creation, which in turn necessitates improvement in ease of travel and connectivity.

2. Chennai Metro Rail Limited (CMRL), a joint venture of the Government of India (Gol) and the Government of Tamil Nadu (GoTN) with equal equity ownership, is responsible for implementing, operating, and maintaining the city's metro system. CMRL developed the Comprehensive Mobility Plan for CMA in 2015 and identified three corridors (corridors 3, 4, and 5) for the second phase of the Chennai Metro Rail to alleviate CMA's transportation capacity constraints.

3. Gol requested the Multilateral Development Banks² (MDBs) to assist the implementation of the 26.1 km of Chennai metro corridor 4 up to depot entry, which consists of 16.1 km of elevated section and 10.0 km of underground section. This line has 4 stations (namely Alwar Thirunagar, Valasaravakkam, Karambakkam and Alapakkam) in common with Corridor 5, offers interchange with Corridor 3, Phase I Metro and MRTS; it connects with suburban railway system. This alignment has been finalized after examining alternatives. The total capital cost of Corridor 4 is estimated to be USD 1,575 million for December 2018 including taxes and duties. It is estimated that the project will be commissioned 5 years from the award of civil contracts (i.e. 2021). CMRL will take full responsibility for the implementation of Corridor 4.

4. As per provisions of the Environmental Impact Assessment (EIA) Notification 2006 and its subsequent amendments by the Ministry of Environment, Forests and Climate Change (MoEF&CC), Railways and Metro Rail Projects are exempted from requirements of Environmental Clearance. However, part of the Light House to Kutchery Road section is I fall in Coastal Regulatory Zone (CRZ) II & IV B for which permission is required from NCZMA & TNCZMA Vide F.No 11- 13/2022-IA.III dated 22.04.2022. Subsequently Six monthly compliance report on the conditions stipulated in CRZ clearance has been submitted to Regional Office, MOEF&CC (copy enclosed in Annexure 13) as per CRZ Notification 2011.

5. This EIA comprising baseline data on existing conditions of physical, ambient and ecological environment, together with the identified and anticipated environmental impacts and proposed mitigation measures, has been prepared in accordance with Gol's legislative framework and MDBs' environmental safeguard policies³. In accordance with proposed packaging of Corridor 4, underground stretch, elevated stretch, systems and depot will be financed by different MDB and constitute Associated Facilities to each package. The environmental impacts and mitigation measures of all 4 packages are analyzed in this report. Corridor 4 overall is expected to generate environmental and socio-economic benefits in terms of decreasing air pollution from

¹Indian National Census, https://www.census2011 Based on the Second Master Plan, the current Metropolitan area is expected to have a population of 126 lakhs by 2026 (Source : Comprehensive Mobility Plan, 2019)

² Asian Development Bank (ADB), Asian Infrastructure Investment Bank (AIIB) and New Development Bank (NDB).

³ ADB's Safeguard Policy Statement (SPS) 2009, AIIB's Environmental and Social Framework (ESF), and NDB's Environmental and Social Framework (ESF).

traffic congestion and serving the growing travel demand. As per the MDB's Environment and Social policies, the Corridor 4 has been categorized as "Category A" due to the significant impacts anticipated during construction. The EIA report comprising baseline data on existing conditions of physical and ecological environment including , the identified and anticipated environmental impacts and proposed mitigation measures, has been prepared in accordance with the Gol's legislative framework and MDBs' Environmental Safeguard requirements. This EIA report has been updated covering environmental impacts and mitigation measures associated with the changes in design of the Corridor - 4

Corridor 4 consists of 8 underground stations (Excluding common station of C3-6. Thirumavilai metro)from Lighthouse to Kodambakkam Flyover, 18 elevated stations from Kodambakkam Power House to Poonamalle Bypass and one depot at Poonamalle Bypass. The depot will have capacity for 31 trains of 6 cars for maintenance and repairs of the operational rolling stock. Standard Gauge (1435mm) will be adopted with a minimum track center distance of 4000 mm, 16-ton maximum axle load capacity and a design speed of 80 kmph. The elevated station is generally located on the road median 140 m long and 24 m wide and is a three level structure, with a minimum vertical clearance of 5.50 m under the concourse. To reduce physical and visual impact of the elevated station, stations have been made transparent with minimum walls on the sides. The underground station is two- or three-level station with entrances and ventilation shafts at the ground level, a concourse with ticketing and automatic fare collection system (AFCs) at the mezzanine level and finally 140 m long and 12 m wide island platforms at the lowest level. 25 kV AC traction system and Communication Based Train Control (CBTC) Signaling system shall be adopted for Corridor 4. Rolling stock is of light weight stainless steel/aluminum body for energy efficiency. Universal accessibility has been reflected in the design following international best practices. Green building features like rainwater harvesting, solar energy panels at elevated stations' roofs, parking areas (wherever technically feasible), energy efficient air conditioning and lightning will be considered in station design.

7. The terrain along Corridor 4 alignment is primarily flat, no more than 3 m above mean sea-level. The Geotechnical Investigation is ongoing with the results showing that the soils are slightly alkaline with dominant types of sandy and clay. The section of alignment from Light House to Kutchery Road is located in CRZ II (length – 1.53 Km) and the tunnels (Length - 0.03 Km) between Kutchery Road to Thirumayilai station will be laid under 20m below the Buckingham canal falls under CRZ II & IVB. The total length of the CRZ area 1.56 Km and requires CRZ clearance from MOEF&CC. MoEF&CC issued CRZ clearance vide letter F.No 11-13/2022-IA.III dated 22nd April 2022 (**Copy enclosed in Annexure 13**). Further, the requisite 707 trees were felled and 361 trees are transplanted along the corridor up to Poonamalle Bypass(as of December 2023).187 trees were felled and 42 trees were transplanted along the Poonamalle depot (as of December 2023). Two assets, namely, Rosary Church and Our Lady of Light Shrine are located on the underground section at distance within 100m from Corridor 4.

8. Despite the seemingly abundant sources of water, Chennai suffers continuously from water stress since the entire basin is dependent on rainfall. Water quality was sampled at 9 locations. Most of the parameters are well within the prescribed permissible limits as per the Bureau of Indian Standards IS 10500:2012except some parameters viz Turbidity, Total Dissolved Solids, Calcium, Total Hardness, and Chloride. Bacteriological contamination was found at 5 locations. Total Dissolved Solids (TDS) and Total Hardness at Santhome Church sampling location are higher than limits, this could be due to higher mineral content in the groundwater especially Calcium and Magnesium. The surface water in Porur Lake would be classified as 'D', propagation of wildlife and fisheries, because of high amounts of Zinc and a large Biological Oxygen Demand.

Results of the air monitoring show that air quality was moderate, while the parameters of 9. Sulphur Dioxide (SO₂) and Nitrogen Dioxide (NO₂) were within the permissible level of National Ambient Air Quality Standards (NAAQS) and World Health Organization (WHO) guideline. Particulate Matter (PM10 and PM2.5) was within NAAQS but exceeded WHO guideline. The concentration of Carbon Monoxide (CO) exceeded the permissible level of NAAQS in all the monitoring locations but was generally within WHO guidelines. The noise levels monitored at 8 locations along the alignment were above the national and international permissible limits. Noise levels were also monitored at 30 sensitive locations belonging to the silence zone, with 60% slightly exceeding Ambient Noise Standard of 50dB the daytime limit (23.3% per WHO guideline of 55dB), and 1 out of 30 exceeding 40 dB the night-time limit. The peak particle velocity baseline values to demonstrate the vibration level at 11 out of 13 monitored locations are found to exceed acceptable criteria for ground borne vibration prescribed by Federal Transit Administration (FTA) USA and Railway Design & Standards Organization (RDSO) India which are more valid for operation of this project. However, the observed levels at all 13 locations are well below the construction vibration damage criteria for blasting which are relevant only if blasting is undertaken during construction as per Central Institute of Mining and Fuel Research (CMFRI) India.

10. Based on analysis of project and environmental settings, a detailed assessment of potential impacts due project location and design, construction and operation has been carried out. For each of these adverse impacts, mitigation measures have been proposed. The key positive environmental impacts of Corridor 4 include reduced use of private vehicle leading to reduction in pollutants; road safety improvements; increased accessibility and mobility, and a modest reduction in greenhouse gas emissions. The main residual negative impacts of Corridor 4 include fugitive and point source dust emission, surface noise and vibration from excavation and demolition, disturbance to road traffic, disposal of large quantities of construction and demolition wastes, and occupation and community health and safety, which are mainly temporary and localized. Initial noise and vibration modeling has been carried out under this EIA, during detailed design additional modeling will be conducted for each of the identified sensitive receptors.

The main mitigation measures proposed are as follows: (i) to plant twelve saplings for 11. each tree to be cut as against ten saplings ordered for infrastructure projects by the Honorable Madras High Court, with estimated compensatory afforestation cost in place accordingly; (ii) noise reduction measures (i.e. noise barriers at sensitive receptor locations and residential locations); and (iii) reuse of excavated material where feasible and disposal of construction waste in a regulated manner. Corridor 4 will take into consideration the climate change effects of an anticipated continuous increase in ambient temperature, intensity of cyclones and storm surge, heavy precipitation events, and sea level rise in the future. Several climate change considerations to be integrated into Corridor 4 design include: (i) installation of floodgates at stations with flooding risks; (ii) improving adaptability to seasonal thermal variations in the stations through the use of large open spaces for unrestricted air movement, cross-ventilation and ensuring that enclosed areas are well ventilated; (iii) designing for better adaptability to rising sea level/high tide/heavy flooding through the use of higher plinth levels and check valves for sewer lines in flood-prone areas and the use of resilient materials that can get wet and then dry out with minimal damage; (iv) using solar panels on station buildings parking areas and station and roofs to reduce the extensive use of grid-generated electricity supplied to the station for its operation and maintenance; and (v) through better station roof design, providing for rainwater harvesting by channeling rainwater through gutters and pipes to either harvesting pits in the ground or to recharge groundwater and (iii) using head-hardened rails of 1080 grade steel rails will result in better mechanical properties in terms of stiffness, higher lateral resistance, and better

transmission of thermal stresses, and higher durability; and reduced maintenance resulting from practically unchanged track geometry over time and at almost any operating speed.

12. Various alternatives such as modes of transport, alignment, proposed design etc. have been considered and analyzed for its likely impacts on various environmental parameters. Additionally, an evaluation of potential environmental impacts in terms of 'with' and 'without' project situation has been considered for the justification of Corridor 4.

13. Meaningful consultations were carried out with various stakeholders during EIA preparation and will continue throughout Corridor 4 implementation. Women felt that Corridor 4 will provide (i) better access to higher levels of education, health services (especially in emergencies), and social interactions; (ii) better transport option; and (iii) increase in leisure time. Concerns voiced by Project Affected Persons (PAPs) and stakeholders have been incorporated in Corridor 4 design. Individual consultation of PAPs will also be carried out during implementation. Information disclosure will follow the procedure for MDBs' Category A projects.

14. Grievance Redress Mechanism (GRM) has been proposed constituted for Corridor 4 which comprises the procedures to address grievances i) first at the Project Implementation Unit (PIU) level, ii) second at Grievance Redress Committee for Environment (GRC-E), to ensure grievances from PAPs and workers are addressed to facilitate timely project implementation. A GRC-E has been formed which have representatives from Contractor, General Consultant (GC), CMRL, assisting NGO and PAPs and representatives. Unsatisfied PAPs will have the option to escalate the grievances from PIU level to GRC at any point of time and the GRC will not bar them from approaching a Court of Law.

15. An Environmental Management Plan (EMP) with institutional arrangements, budgetary provisions, schedule for EMP implementation and its monitoring has been prepared, including appropriate mitigation measures, provisions related to occupational health and safety, labour camp and construction site management, and traffic and public utility management etc. to address all impacts during Project pre-construction, construction and operation phases. The EMP has been developed in conjunction with general safety, health and environment provisions (which are included in the standard bidding document) and it forms part of the contract document of the contractors. Semi-annual Environment Monitoring reports (EMR) will be prepared by GC and submitted to MDBs through CMRL. A third-party monitor will also supervise work independently and submit External Monitoring Report I (EMR) to CMRL and MDBs (ADB,AIIB,NDB). The preliminary estimated cost of the EMP including implementation and monitoring is USD 3.34 million (INR 243.62 million). This cost estimate is exclusive of land acquisition and resettlement & rehabilitation cost.

16. Benefits far outweigh negative impacts. Overall, the major social and environmental impacts associated with Corridor 4 are limited to the construction period and can be mitigated to an acceptable level by implementation of recommended measures and by best engineering and environmental practices. In addition, stringent monitoring requirements and actions on noise and vibration levels that will be generated during construction have been included in the Environmental Monitoring Plan (EMoP).. CMRL shall ensure that the EMP and EMoP are included in Bill of Quantity and forms part of bid document and civil works contract. The same shall be revised if necessary, during project implementation or if there is any change in the project design and with approval of MDBs.

17. This EIA report is structured as following: (i) Introduction of background, methodology of preparation of the report; (ii) Policy and legal framework within which environmental safeguards for Corridor 4 shall be recommended and implemented; (iii) Project description with enumeration of salient features of Corridor 4 which have bearing upon its environmental impacts; (iv) Environmental baseline of Corridor 4 in terms of physical, ambient, and ecological baseline (socioeconomic baseline will be presented in Social Impact Assessment Report); (v) Identification of negative and positive impacts arising from pre-construction, construction and operation of Corridor 4 and respective measures to mitigate negative impacts and where feasible enhance generate positive impacts; (vi) Analysis of alternatives including its need and alternatives of technology and alignment; (vii) Consultations with stakeholders and plan for disclosure of project information; (viii) Mechanism for stakeholders to communicate grievances and suggestions and for their Redressal; (ix) EMP and institutional arrangement for implementation of environmental impact mitigation measures; and (x) Conclusion.

1 INTRODUCTION

1.1. Background

1. Chennai Metropolitan Area (CMA) comprises the Greater Chennai Corporation, Avadi Corporation, Tambaram Corporation, Kancheepuram Corporation, 12 Municipalities, 13Town Panchayats, 1 Special Grade Town Panchayat and 1321 Village and 22 Panchayat Unions. The extent of CMA is 5,904 sq. km. The CMA falls in five Districts of Tamil Nadu, viz. Chennai District, part of Tiruvallur District, Kancheepuram District, Chengelpet District, and part of Arakkonam Taluk of Ranipet District. (The Present extent of CMA is 5904 sq. km). In 2011, the resident population of CMA was 8.65 million, which is estimated to increase to 12.6 million in 2026. The last census was conducted in 2011, and the scheduled census for CMA in 2021 was postponed due to COVID-19.

2. Chennai, the capital city of the state of Tamil Nadu, plays a vital role in the economy of South India.⁴ The Chennai Metropolitan Development Authority (CMDA) devised the Chennai Second Master Plan 2026 and estimated that the population would grow to 12.6 million people with an estimate of daily passenger traffic of 20.8 million in 2026.⁵ CMA has emerged as a leading national automotive hub with major manufacturers including Hyundai, Renault, Nissan, Daimler (Mercedes) operating their plants in the area. CMA also houses a growing number of software firms (including Infosys, TCS, Wipro etc.), financial services (KPMG, Deloitte, Price water house Coopers etc.) and call centers. Like other metropolitan areas in the country, CMA is currently facing the challenges of accelerated urbanization growth that have considerably strained the area's transportation system. The increase in economic activities has boosted the regional economy and job creation, which in turn necessitates improvement in ease of travel and connectivity.

3. The existing transportation system in CMA is marked by high traffic density, carbon emissions, and frequent road incidents. In addition to the high volume of vehicles and already congested roads, inadequate parking space and the encroachment of street space by vendors on major road have exacerbated the traffic congestion. Major roads along the proposed project alignments are forecast to function beyond respective design service volume in year 2035 in absence of the project lines. The accelerating use of private vehicles has put Chennai in the fifth rank in carbon emission from the transport sector among 54 South Asian cities.⁶

4. Inadequate transportation infrastructure and poor service have resulted in an unfavorable decrease in the share of public transport from 54 percent in 1970 to 28 percent in 2014.⁷ The Chennai Second Master Plan 2026 proposes to increase the public and private mode split to 70:30. The mass transit transportation, especially an integrated metro system will be essential to achieve this intended split.

5. The city has two mainline railway terminals. Urban Mass Rapid Transit System (MRTS) of 19.35 km from Chennai Beach to Velachery is in operation construction of for balance MRTS section from Velachery to St Thomas Mount is in process. Chennai Metro Phase 1 and Phase 1 Extension of 45 kms and 9 kms is in operation. Chennai suburban railway network supplements MRTS. A schematic diagram of urban mass rapid transit network is in Figure 1.1.

⁴ Indian National Census, https://www.census2011.co.in/census/metropolitan/435-chennai.html The Census Organization of India, 2011.

⁵ Second Master Plan for Chennai Metropolitan Area 2026, Chennai Metropolitan Development Authority, 2008.

⁶ International Council for Local Environmental Initiative Study, 2012.

⁷ Comprehensive Detailed Project Report for Chennai Metro Phase-II, Chennai Metro Rail Limited, 2018.

Figure 1-1 Existing Rail Transport Network in Chennai (Source: CMRL website)

1.1.1. Chennai Metro Network

6. **Phase 1** of Chennai metro as shown in Figure 1.2 covers 54.05 km in two corridors - Corridor 1 (Blue line) from Washermanpet to Airport (23.09 Km), Corridor 2 (Green Line) starts

from Chennai Central to St. Thomas Mount (21.96 Km) via Koyambedu and extension from Washermanpet to Wimco Nagar (9.00 km) in Thiruvottiyur. As on August 2023, Phase 1 and Phase 1 Extension is in commercial operation. Phase 1 has been financed under a loan from JICA and does not form part of the proposed ADB/AIIB/NDB is financing for phase II.

Figure 1-2 Metro Network Phase 1 (Source: CMRL website)

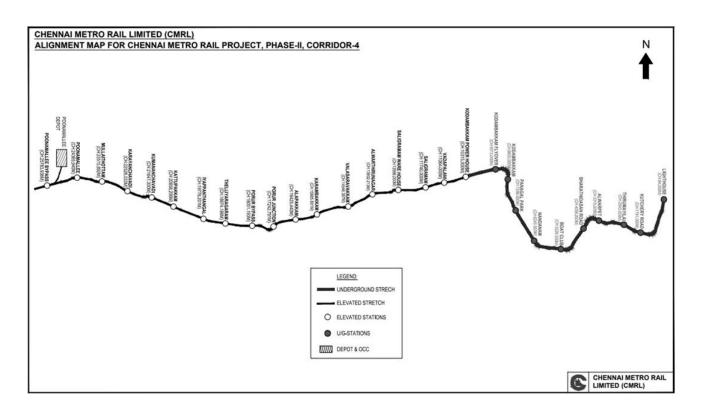
7. **Phase 2** includes Corridor 3, 4 and 5 as shown in Figure 1.3. The final alignments will be decided based on engineering designs.

Figure 1-3: Metro Network Phase 2

Source: ADB

8. The Government of Tamil Nadu (GoTN) has created a Special Purpose Vehicle (SPV) for implementing the Chennai Metro Rail Project. This SPV named as "Chennai Metro Rail Limited (CMRL)" was incorporated on 03.12.2007 under the Companies Act. It has now been converted into a Joint Venture of Government of India (GoI) and GoTN with equal equity holding. CMRL as the implementing agency, shall be responsible for implementing, operating, and maintaining the city's metro system. CMRL developed the Comprehensive Mobility Plan (CMP) for CMA in 2015 to identify the present and future mobility patterns of CMA. The detailed study identified three corridors (corridors 3, 4, and 5) for the second phase of the Chennai Metro Rail to alleviate CMA's transportation capacity constraints.

9. This EIA covers **Corridor 4** of phase II. Corridor 4 runs from Lighthouse to Poonamallee bypass, length of the corridor is 26.1 km comprising 8 underground stations (excluding common station of C3- Thirumayilai) (Lighthouse to Kodambakkam Flyover) and 18 elevated stations (Kodambakkam Powerhouse to Poonamallee bypass). Corridor 4 has 4 stations (the latest alignment of Corridor 5 shows the Porur Jn station will be avoided by Corridor 5) in common with Corridor 5, offers interchange with Corridor 3, Phase I Metro and MRTS; it connects with suburban railway system. Civil construction of the underground section from Lighthouse to Kodambakkam Flyover (formerly called as Meenakshi College) commenced in December 2021 and completed by December 2025.System works are scheduled to be completed and the entire Corridor 4 is commissioned by December 2026.


10. Corridor 4 is being funded by MDBs AIIB, ADB and NDB. The MDB funding arrangement is as follows:

- (i) Asian Development Bank (ADB): Alignment and formation/tunneling (10.0 km from Lighthouse to Kodambakkam Flyover), 8 underground stations structural civil cost.
- (ii) Asian Infrastructure Investment Bank (AIIB): Alignment and formation (16.1 km from Kodambakkam Power House to Poonamallee bypass), 18 Elevated stations structural civil cost, General Consultancy.
- (iii) New Development Bank (NDB): P. way, station building components VAC and TVS, E&M, Lifts and Escalators, Architectural finishes and MMI.

The government will finance the remaining components including Depot and Rolling Stock.

11. **Corridor 3 and corridor 5** of phase II are covered in separate EIAs, further details on those corridors can be found in the respective documents.

12. Figure 1.4 shows the alignment and station plan of Corridor 4.

Figure 1-4: Corridor 4 (Source: DPR of Corridor 4, Oct 2018)

1.2. Environmental Impact Assessment

1.2.1. Categorization

- 13. As per ADB's Safeguard Policy Statement (SPS) 2009, Category A is defined as if it is likely to have significant adverse environmental impacts that are irreversible, diverse, or unprecedented. These impacts may affect an area larger than the sites or facilities subject to physical works. An environmental impact assessment is required.
- 14. As per AIIB's Environmental and Social Framework (ESF) 2022, Category A is defined as if it is likely to have significant adverse environmental and social impacts that are irreversible, cumulative, diverse, or unprecedented. These impacts may affect an area larger than the sites or facilities subject to physical works and may be temporary or permanent in nature. The Bank (AIIB) requires the Client to conduct an environmental and social impact assessment (ESIA) or equivalent environmental and social assessment, for each Category A Project, and to prepare an environmental and social management plan (ESMP) or environmental and social management planning framework (ESMPF) (or other similar Bank-approved documentation), which is included in the ESIA report for the Project.
- 15. As per NDB's Environmental and Social Framework (ESF) 2016, A proposed project is classified as Category A if it is likely to have significant adverse environmental and social impacts that are irreversible, diverse, or unprecedented. These impacts may affect an area larger than the sites or facilities subjected to physical works.

16. Considering the above policies of ADB ,AIIB and NDB the project (Corridor 4) has been categorized as Category A and the EIA report has been prepared and updated.

1.2.2. Purpose of the EIA Report

17. The main objective of this updated EIA report is to address the alterations in the construction design, specifically the incorporation of intergrade grade separators of 1.527 Km from Kattupakkam to Karayanchavadi.and also to identify and evaluate the resultant environmental impacts and proposing effective mitigation measures along the project alignment. This updated EIA report documents the environmental assessment of Corridor 4 and identifies the environmental issues to be considered preconstruction, construction and operation phase of the project. In this report, the different activities that are likely to take place during construction and operation, have been analyzed and the potential impacts that may accompany them have been discussed. The EIA addresses the national environmental management requirements of Gol and the MDBs environmental safeguard requirements. In general, the updated EIA Report is outlined as below to address various aspects:

- Provide background of the project in terms of land use, existing Metrorail network and the proposed Metrorail corridors, methodology of preparation of the report and its content;
- Analysis of policy and legal framework within which environmental safeguards for the project shall be recommended and implemented;
- Provide information about the baseline environmental settings;
- Provide information on potential environmental impacts of Corridor 4 with its magnitude, distribution, and duration;
- Provide information on required mitigation measures with cost to minimize the impacts;
- Analysis of the alternatives considering alternative locations, designs, management approaches, for selection of most feasible and environmental acceptable options;
- Provide details of stakeholders' consultations;
- Plans for stakeholders to communicate grievances and suggestions and for their Redressal; and
- Formulate environmental management and monitoring plan with institutional measures for effective implementation of mitigation measures proposed.

18. Social Impact Assessment (SIA) with a Resettlement Action Plan (RAP) for implementation is presented as a separate Report.

1.2.3. Approach and Methodology

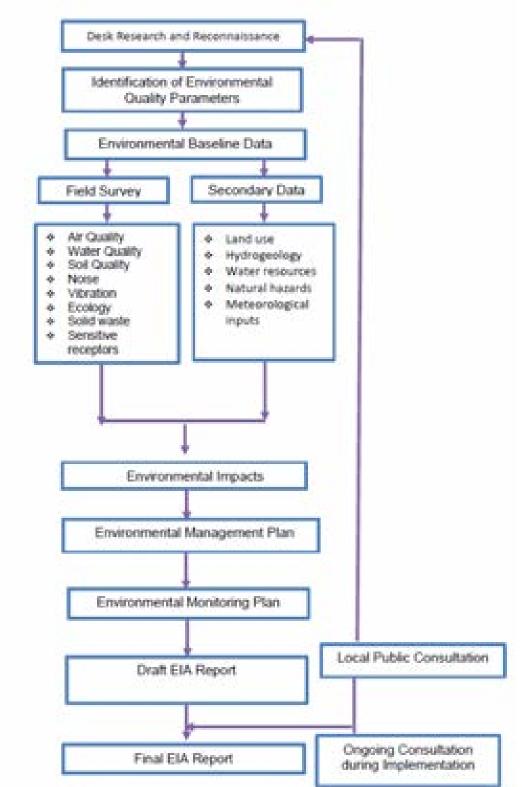


Figure 1-5: Methodology of Environmental Impact Assessment

- 19. As shown in Figure 1.5, the updated EIA followed a number of steps:
 - Review of available baseline reports, and technical reports/studies related to Corridor 4;
 - Conduct field visits to collect primary or secondary data relevant to Corridor 4 areas to establish the baseline⁸;
 - Assess the potential impacts on environmental attributes due to the location, design, installation and operation of Corridor 4 through field investigations and data analysis;
 - Explore opportunities for environmental enhancement and identify measures;
 - Updated the environment management plan (EMP) prepared earlier, covering the measures for mitigating the impacts identified including the institutional arrangements;
 - Identify critical environmental parameters required to be monitored subsequent to the implementation of Corridor 4 and prepare an environmental monitoring plan;
 - Carry out consultation with key stakeholders and administrative authorities to identify their perception on Corridor 4, introduce project components and anticipated impacts; and,
 - Disclosure of the updated EIA Report on CMRL and lenders' website along with the EIA Executive Summary in Tamil and English languages.
 - Disclose the draft EIA, including the Executive Summary in local language at CMRL and MDBs' websites to be made publicly available.

⁸ The Baseline data for air, water and soil quality was collected in width 75m on either side of proposed center line of alignment, and data for noise and vibration in width 200m on either side of alignment. Sensitive receptors located in width 100m on either side of center line of alignment were identified according to the silence zone defined by the Central Pollution Control Board.

2. POLICY, LEGAL AND ADMINISTRATIVE FRAMEWORK

20. India has well defined institutional and legislative framework. The legislation covers all components of the environment viz. air, water, soil, terrestrial and aquatic flora and fauna, natural resources, and sensitive habitats. India is also signatory to various international conventions and protocols. The environmental legislations in India are framed to protect the valued environmental components and comply with its commitment to international community under above conventions and protocols. MDBs have also defined their Environmental and Social Policies. This chapter will describe the applicability of the above laws and regulations, conventions, protocols, and safeguards.

21. The laws, regulations, policies and guidelines applicable to this project based on the location, design, construction and operation are summarized in the subsequent sections in following order.

- National (India) Environmental Legislation and Legal Administrative Framework,
- ADB's, AIIB's and NDB environmental and social policies and standards, and
- Summary of international treaties and applicability to the project.

2.1. The National (India) Environmental Laws, Policies and Regulations

22. Gol's environmental legal framework comprises a set of comprehensive acts and regulations aimed at conserving various components of the biological and physical environment including environmental assessment procedures and requirements for public consultation. As per the EIA notification 2006, railway projects are not covered under the notification and hence environmental clearances related requirements do not envisage, this is applicable for metro rail projects as well. However, Corridor 4 will require Coastal Regulation Zone (CRZ) Clearance per the CRZ Notification 2011. Other relevant environmental legislations is mentioned in the Table 2.1.

2.1.1. Coastal Regulation Zone applicable to the Project

23. Alignment of the Corridor 4 passes through CRZ II and IV-B according to the CRZ Notification 2011. CRZ clearance needs has been obtained from Tamil Nadu Coastal Zone Management Authority (TNCZMA) and National Coastal Zone Management Authority (NCZMA). Under the regulation, Gol declared the coastal stretches of seas, bays, estuaries, creeks, rivers and backwaters which are influenced by tidal action (in the landward side) up to 500 metres from the High Tide Line (HTL) and the land between the Low Tide Line (LTL) and the HTL as CRZ with four categories.

24. As per CRZ Notification 2011, construction in CRZ IVB area, shall be permitted subject to a detailed marine or terrestrial or both environment impact assessment, to be recommended by TNCZMA and approved by the Ministry of Environment, Forest and Climate Change (MoEF&CC). Construction in CRZ II and IV B permission is required from TNCZMA and NCZMA. MoEF&CC issued CRZ clearance vide letter F.No 11-13/2022-IA.III dated 22nd April 2022. (Attached as Annexure 13)

2.1.2. Metro Rail Policy 2017

25. Gol's Union Cabinet approved a new Metro Rail Policy in 2017 that aims to enable the development and implementation of metro projects in a comprehensive and sustainable manner from the social, economic, and environmental perspectives. The Policy improves the integrated management of Metro development in three main aspects, (i) The new policy proposes that an Unified Metropolitan Transport Authority shall be set up for planning and developing multimodal transportation, which enable the overall planning and development of all modes of transport under the strong lead institutions; (ii) The need to carry out an alternative analysis is a welcome addition in the policy to help in better system selection; and (iii) The requirement to look at the 5-km catchment area for providing feeder services through walking, cycling and para-transit modes is (Community transport systems) promising.

2.1.3. Legislations Relevant to the Project

26. The policies and requirements which are most relevant in the context of this Corridor are provided in Table 2.1 below.

SI No.	Legislation	Objective	Responsible Institution
1.	Environment (Protection) Act (1986) and Rules (1986); National Conservation Strategy and Policy Statement on Environment and Development of 1992; National Environment Policy of 2006	To protect and improve the overall environment	MoEF&CC
2.	CRZ Notification, 2011	To ensure livelihood security to the fishing communities and other local communities living in the coastal areas; To conserve and protect coastal stretches and; To promote development in a sustainable manner based on scientific principles, taking into account the dangers of natural hazards in the coastal areas and sea level rise due to global warming	
3.	The Wildlife Protection Act (1972 and amended in 1993)	To protect wild animals and birds through the creation of National Parks and Sanctuaries	MoEF&CC
4.	The Noise Pollution (Regulation and Control) Rules, 2000 (Amended 2002)	To provide for the prevention and control of noise pollution and for the establishment of Boards to carry out these purposes	

Table 2.1: Summary of All Relevant Environmental Legislation to Corridor 4

SI No.	Legislation	Objective	Responsible Institution
5.	Metro Rail Transit System, Guidelines for Noise and Vibrations, RDSO, Ministry of Railways, September 2015	Suggested mitigation measures for the prevention and control of noise and vibration during operation phase.	-
6.	The Water (Prevention and Control of Pollution) Act 1972 (Amended 1988) and Rules 1974	To provide for the prevention and control of water pollution and the maintaining or restoring of	CPCB / TNPCB
7.	The Tamil Nadu Water (Prevention and Control of Pollution) Rules, 1983 amended May 2009	wholesomeness of water	Tamil Nadu Pollution Control Board (TNPCB)
8.	Model Groundwater (Control and Regulation) Bill 1970, amended in 1972, 1996 and 2005	To provide for the prevention, control and abatement of groundwater pollution	Central Ground Water Authority (CGWA)
9.	The Air (Prevention and Control of Pollution) Act, 1981(Amended 1987) and Rules 1982	To provide for the prevention, control and abatement of air pollution, and for the establishment of Boards to carry out these purposes	CPCB / TNPCB
10.	Solid Waste Management Rules, 2016	Provisions for collection, storage segregation, transportation, processing and disposal of municipal solid wastes	TNPCB / CPCB
11.	Hazardous and Other Wastes (Management and Transboundary Movement) Amendment Rules 2019	To protection the general public against improper handling, storage and disposal of hazardous wastes	TNPCB / CPCB
12.	The Forest (Conservation) Act 1980 (Amended 1988) and Rules 1981 (Amended 2003); National Forest Policy of 1998	To protect and manage forests	Tamil Nadu Forest Department (TNFD) and MoEF&CC
13.	Construction and Demolition Waste Management Rules, 2016	Large generators (who generate more than 20 tons or more in one day or 300 tons per project in a month) shall submit waste management plan and get appropriate approvals from the local authority before starting construction or demolition or remodeling work	TNPCB / CPCB
14	Guidelines on Environmental Management of Construction and Demolition (C&D) Waste, March 2017	Hazardous wastes / toxic wastes streams, including asbestos, should be kept separately from other wastes to avoid further contamination, their disposal to be done in consultation with SPCBs/PCCs under HW Management Rules 2016. The	TNPCB / CPCB

SI No.	Legislation	Objective	Responsible Institution
		concerned authorities shall examine the DEMOLITION PLAN submitted by the applicant to assess if there are any HW streams.	
15.	The Mines and Minerals (Development and Regulation) Act, 1957	To protect the environment from quarry operation	State Department of Geology and Mines
16.	Central Motor Vehicle Act (1988) and Rules (1988)	To control vehicular air and noise pollution. To regulate development of the transport sector, check and control vehicular air and noise pollution	Transport Commissionerate and State Transport Authority
17.	Indian Treasure Trove Act, 1878 (as modified up to September 1949); Ancient Monuments and Archaeological Sites and Remains Act (1958)	Conservation of Cultural and historical remains found in India Chance find during construction	Archaeological Survey of India (ASI)
18.	Annexure XXV, Special Rules for conservation of Heritage Buildings Vol II: Second Master Plan for Chennai Metropolitan Area 2026 amended May 2013	To protect heritage assets	Chennai Metropolitan Development Authority (CMDA)
19	National Policy on HIV/AIDS and the World of Work National Policy on Safety, Health and Environment at Workplace	To regulate the safety, health and environment at workplace	Department of Labour and Employment
20.	Building and Other construction workers (Regulation and the Employment and conditions of service) Act, 1996; Minimum Wages Act, 1948; Workmen's Compensation Act, 1923; The Contract Labour (Regulation & Abolition) Act, 1970 and Rules Employees State Insurance Act, 1948 (ESI); Minimum Wages Act, 1948, The Payment of Wages Act, 1936, amended in 2005; Maharashtra Labour Welfare Fund Act, 1953 (as amended) The Equal Remuneration Act 1976; Workmen's Compensation Act, 1923	To regulate the employment and conditions of service of building and other construction workers and to provide for their safety, health and welfare measures	Department of Labour and Employment
21.	Interstate Migrant Workers Act 1979	In case workers and labourers working at the project sites are migrants from other states during construction	Department of Labour and Employment

SI No.	Legislation	Objective	Responsible Institution
22.	Child Labour (Prohibition and Regulation) Act, 1986	To regulate the employment of children including age limits, type of employment, timing of work, information disclosure and health and safety	Labour and
23.	Schedule – XIV, (Model Factories Rules 120 (MFR 120) under Section 87)	Handling and processing of Asbestos, manufacture of any article of Asbestos and any other process of manufacture or otherwise in which Asbestos is used in any form.	Ministry of Labour & Employment, GOI, Directorate General Factory Advice Service & Labour Institute.

2.1.4. Required Clearances/Permissions

27. As per Gol EIA Notification 2006, all railways and metro rail projects in India are exempted from Environmental Clearance (EC), this is applicable for Corridor 4 as well. Chennai being a coastal city, Light House to Foreshore Road falls under the coastal areas CRZ II and IVB prescribed in the CRZ Notification 2019 and requires CRZ clearance from TNCZMA and NCZMA.

28. Before the start of civil works for any section of Corridor 4, CMRL has obtained necessary clearances/permissions from statutory authorities such as MOEF&CC, TNPCB, CMDA, DGC etc. For implementation of Corridor 4, required clearances/ permissions related to environment, social and forests have been summarized in Table 2.2.

SI.	Permissions/	Acts/Rules/Notifications/	_	Responsibility
No	Clearances	Guidelines	Agency	
A. P	Pre-construction Stage			
1.	Permission for felling of trees	Forest Conservation Act, 1980 Tamil Nadu Government Order No 39 date 02.07.2021 and G.O No 66 dated 07.04.2022	District Green Committee and State Green Committee (DGC & SGC)	CMRL (Obtained Permission for tree felling and translocation)
2.	CRZ clearance for CRZ II CRZ permission for CRZ IVB	CRZ Notification, 2011	TNCZMA & NCZMA, MoEF&CC	CMRL (Obtained)
3.	Permission of construction near the National Shrine of St. Thomas Basilica, Santhome High Road; Rosary Church, Rosary Church Road and Our Lady of Light	The Ancient Monuments and Archaeological Sites and Remains (Amendment) Bill, 2018 Annexure XXV, Special Rules for conservation of Heritage Buildings Vol II: Second Master Plan for	Member Secretary Heritage Committee CMDA	Contractor and CMRL (Obtained)

Table 2.2: Applicable Permissions and Clearances Required for Corridor 4

SI. No	o Clearances Guidelines		Concerned Agency	Responsibility	
	Shrine, Luz Church Road, which are located within 100m from the alignment of Corridor 4	Chennai Metropolitan Area 2026 amended May 2013			
4.	Building for Permissions and stations depots	Second Master Plan for Chennai Metropolitan Area 2026 amended May 2013	CMDA	Contractor and CMRL (Obtained)	
	nplementation Stage	-			
5.	Consent to Establish and Consent to Operate for Batching Plant and Grouting Plant,STPs,Diesel Generators	Control of Pollution) Act 1981 The Water (Prevention and Control of Pollution) Act 1972 (Amended 1988) and Rules 1974	TNPCB	Contractor engaged by CMRL. (CTOs are obtained for construction plants,Batching, grouting plants, STP sand DG sets being utilized under corridor 4)	
6.	Permission for dewatering of groundwater ⁹	Environment (Protection) Act, 1986 Chennai Metropolitan Area Groundwater (Regulation) Act, 1987 as amended till 2008 Guidelines/Criteria for evaluation of proposals/requests for ground water abstraction (With effect from 16.11.2015)	Head of Municipal Area (Greater Chennai Municipal Corporation) and CGWA	Contractor engaged by CMRL (Not applicable as of now)- If required the contractor will obtain permission for the CGWA.)	
7.	Consent to recharge groundwater with tunnel dewatering water	Water (Prevention and Control of Pollution) Act 1974 amended 1988, Environment (Protection) Amendment Rules, 2017 (Discharge Standard for Sewage Treatment Plants (STPs)), Model Groundwater (Control and Regulation) Bill 1970, amended in 1972, 1996 and 2005	CGWB/PWD	Contractor engaged by CMRL (Not applicable as of now)If required the contractor will obtain from the CGWA s)	

⁹ The Contractor will avoid extraction of groundwater as much as possible. If not avoidable, the permission will be obtained prior to the extraction.

SI. No	Permissions/ Clearances	Acts/Rules/Notifications/ Guidelines	Concerned Agency	Responsibility
8.	Authorization for storage (diesel) and disposal of Hazardous Waste	Hazardous and Other Wastes (Management& Transboundary Movement) Amendment Rules, 2019	TNPCB	Contractor engaged by CMRL(Obtained from TNPCB)
9.	Consent for disposal of sewage from labour camps.	Water (Prevention and Control of Pollution) Act 1974 amended 1988 Environment (Protection) Amendment Rules, 2017 (Discharge Standard for STPs)	TNPCB	Contractor engaged by CMRL (Obtained from TNPCB)
10.	Pollution Under Control Certificate for various vehicles use for construction	Central Motor and Vehicle Act, 1988	Transport Commissionerate and State Transport Authority , GoTN authorized testing centers	Contractor engaged by CMRL (Obtained)
11.	Employing Labour/ workers	The Building and Other Construction Workers (Regulation of Employment and Conditions of Service) Act, 1996	District Labour Commissioner, GoTN	Contractor engaged by CMRL (obtained)
12.	Roof Top Rainwater Harvesting (RWH)	Central Groundwater Authority (CGWA) Guidelines and Chennai Metropolitan Water Supply and Sewerage Board (CMWSSB) NBC – Rainwater harvesting guidelines	CGWA / CMWSSB ,TNPCB,PWD	Contractor engaged by CMRL (Implemented))
13.	Permission for use of fresh water for construction and drinking purpose.	Environment (Protection) Act, 1986	Chennai Metropolitan Water Supply & Sewerage Board and CMWSSB	Contractor engaged by CMRL (Agreement made between contractor and CMWSSB)

SI. No	Permissions/ Clearances	Acts/Rules/Notifications/ Guidelines	Concerned Agency	Responsibility
14.	Permission for Quarry Operation	The Mines and Minerals (Development and Regulation) Act, 1957	State Department of Mines and Geology	Contractor engaged by CMRL (Obtained)
15.	Authorization for Disposal of Construction and Demolition Waste	Construction and Demolition Waste Management Rules, 2016	TNPCB	Contractor engaged by CMRL (Obtained)
16.	Heritage Assets (St. Thomas Basilica, Rosary Church and Our Lady of Light Shrine)	Annexure XXV, Special Rules for conservation of Heritage Buildings Vol II: Second Master Plan for Chennai Metropolitan Area 2026 amended May 2013	CMDA	Contractor engaged by CMRL (Obtained)
17.	Consent to Establish labour camps, precasting and material yards, hot mix plant, grouting plant crushers, batching plant, stations, depots	Air, Water and Noise Regulations	TNPCB	Contractor engaged by CMRL To be obtained (Obtained)
18.	Consent to muck/waste disposal	Construction & Demolition Waste Management Rules 2016 Solid Waste Management Rules 2016	TNPCB	Contractor engaged by CMRL (Obtained from the District Collector)
19.	Consent to Operate Depot and Compliance with discharge norms of wastewater	Water (Prevention and Control of Pollution) Act 1974 amended 1988; The Tamil Nadu Water (Prevention and Control of Pollution) Rules, 1983 amended May 2009; Environment (Protection) Amendment Rules, 2017 (Discharge Standard for Sewage Treatment Plants(STPs))	TNPCB	CMRL (Obtained)

SI. No	Permissions/ Clearances	Acts/Rules/Notifications/ Guidelines	Concerned Agency	Responsibility
20.	Installation and operation of DG sets at stations and depots	Air (Prevention and Control of Pollution) Act, 1981 amended 1987; CPCB Notification April 1994 of National Ambient Air Quality Standards and DG Guidelines Environmental Protection (Amendment) Rules, Noise Pollution (Regulation and Control) Rules, 2000	TNPCB	CMRL (Obtained)
21.	Transportation and Storage of Diesel (HSD) – Class B (No need of license for transport or storage if total quantity in possession at any one place does not exceed 2500 liters and none of it is contained in a receptacle exceeding 1000 liters in capacity)	Petroleum Rules, 2002	Petroleum and Explosives Safety Organization (PESO)	Contractor engaged by CMRL.(Not applicable current storage is less than 2500 liters)

2.1.5. Institutional Administrative Framework

29. The administrative framework in India for implementation and monitoring of Metro Rail Projects involves following key agencies.

30. Ministry of Environment, Forests and Climate Change (MoEF&CC)

The MoEF&CC is apex body in India responsible for protection and enforcement of laws and regulations. In view of the growing importance of environmental affairs, the Government of India set up a Department in November 1980 under the portfolio of the Prime Minister. The department later renamed as the MoEF&CC plays a vital role in environmental management for sustained development and for all environmental matters in the country.

31. The major responsibilities of MoEF&CC includes, Environmental resource conservation and protection, Environmental Impact Assessment of developmental projects, Co-ordination with the other ministries and agencies, voluntary organizations and professional bodies on environmental action plans, Policy-planning, Promotion of research and development, manpower planning and training and creation of environmental awareness; Liaison and coordination with international agencies involved in environmental matters.

32. Developmental project proponents are also required to submit Environmental Impact Statements/Assessments to establish that preventive measures are planned by installing adequate pollution control and monitoring equipment, and that effluent discharged into the environment will not exceed permissible levels. The MoEF&CC appraises these statements/ assessments and approves the project from the environmental angle.

33. **Tamil Nadu Pollution Control Board (TNPCB): The** Tamil Nadu Pollution Control Board was formed under the provisions of section 4 of Water (Prevention & Control of Pollution) Act, 1974. The Board is also functioning as the State Board under section 5 of the Air (Prevention & Control of Pollution) Act, 1981. The prime objective of all these Acts is maintaining, restoring and preserving the wholesomeness of quality of environment and prevention of hazards to human beings and terrestrial flora and fauna.

34. **Central Ground Water Board (CGWB):** The CGWB is responsible for the development, dissemination of technologies, and monitoring of India's groundwater resources, including their exploration, assessment, conservation, augmentation, protection from pollution and distribution. The CGWB, under the Ministry of Water Resources, was established in 1970. Various activities related to regulation and control of groundwater development in the country is the responsibility of the Central Ground Water Authority (CGWA) specifically constituted under the Environmental (Protection) Act, 1986. The CGWA has identified over exploited-areas across India where groundwater withdrawal is regulated. To date, 43 critical/ overexploited notified areas have been identified in 10 states. Construction of new ground water structures is prohibited in the notified areas while permission of drilling tube wells is being granted only to the government agencies responsible for drinking water supply.

35. **The National Green Tribunal (NGT):** The NGT was established on 18.10.2010 under the National Green Tribunal Act 2010 for effective and expeditious disposal of cases relating to environmental protection and conservation of forests and other natural resources including enforcement of any legal right relating to environment and giving relief and compensation for damages to persons and property and for matters connected therewith or incidental thereto. It is a specialized body equipped with the necessary expertise to handle environmental disputes involving multi-disciplinary issues. The Tribunal shall not be bound by the procedure laid down under the Code of Civil Procedure, 1908, but shall be guided by principles of natural justice.

36. The Tribunal's dedicated jurisdiction in environmental matters shall provide speedy environmental justice and help reduce the burden of litigation in the higher courts. The Tribunal is mandated to make and endeavour for disposal of applications or appeals finally within 6 months of filing of the same. Initially, the NGT is proposed to be set up at five places of sittings and will follow circuit procedure for making itself more accessible. New Delhi is the Principal Place of Sitting of the Tribunal and Bhopal, Pune, Kolkata and Chennai shall be the other four place of sitting of the Tribunal.

2.2 International and Regional Agreements and Conventions

37. India is member of almost all major Multilateral Environmental Agreements (MEAs), under four clusters, namely the following:

- A. Nature conservation;
- B. Hazardous material;
- C. Atmospheric emissions; and
- D. Marine environment.

38. The Nature conservation and Climate change agreements will be applicable to this Corridor.

A. Nature conservation

No.	Nature Conservation		
1	Ramsar Convention on Wetlands		
2	CITES (Convention on International Trade in Endangered Species of Fauna and		
	Flora)		
3	TRAFFIC (The Wildlife Trade Monitoring Network)		
4	Bonn convention - CMS (Convention on the Conservation of Migratory Species)		
5	CAWT (Coalition Against Wildlife Trafficking)		
6	CBD (Convention on Biological Diversity)		
7	7 ITTC (International Tropical Timber Organisation)		
8	8 UNFF (United Nations Forum on Forests)		
9	IUCN (International Union for Conservation of Nature and Natural Resources)		
10	GTF (Global Tiger Forum)		
-	B. Hazardous material		

No.	Hazardous material
1	Cartagena Protocol on Biosafety
2	SAICM (Strategic Approach to International Chemicals Management)
3	Stockholm Convention on Persistent Organic Pollutants (POPs)
4	Basel Convention on the Control of Trans-boundary Movement of Hazardous Waste and Their Disposal
5	Rotterdam Convention on Prior Informed Consent (PIC) for certain Hazardous Chemicals and Pesticides in International Trade

~	A 4	1	
С.	Atmosp	oneric	emissions

No.	Atmospheric emissions		
1	UNFCCC (United Nations Framework Convention on Climate Change)		
2	Kyoto Protocol		
3	Vienna convention for Ozone Protection		
4	Paris Agreement		
5	UNCCD (United Nations Convention to Combat Desertification)		
6	Montreal Protocol (on Ozone Depleting Substances)		
	D. Marine environment		

No.	Marine environment
1	IWC (International Whaling Commission)

2.3 MDBs' Requirements Applicable to the Project

39. MDBs' project planning activities related to environmental and social safeguards generally comprise, a) screening and categorization by Bank; b) due diligence of the project by Bank; c) environmental and social assessment by Borrower and its review by Bank; d) information disclosure by Borrower and Bank and consultation by Borrower; e) monitoring and reporting by Borrower and Bank; and f) grievances. As a borrower, CMRL is entitled to ensure the implementation of the environmental and social framework and policies of the funding agencies.

2.3.1 Safeguard Policy Statement (SPS) July 2009 of ADB

40. The SPS 2009 is the policy set out by the ADB to address emerging environmental and social challenges of development in its developing member countries The objectives of ADB's safeguards are to: (i) avoid adverse impacts of projects on the environment and affected people, where possible; (ii) minimize, mitigate, and/or compensate for adverse project impacts on the

environment and affected people when avoidance is not possible; and (iii) help borrowers/clients to strengthen their safeguard systems and develop the capacity to manage environmental and social risks.

41. ADB's SPS 2009 sets out the policy objectives, scope and triggers, and principles for four key safeguard areas:

- i. Safeguard Requirement 1: Environmental
- ii. Safeguard Requirement 2: Involuntary Resettlement
- iii. Safeguard Requirement 3: Indigenous Peoples
- iv. Safeguard Requirement 4: Special Requirements for Different Finance Modalities.

42. Pursuant to ADB's Safeguard Policy Statement (2009), ADB funds may not be applied to the activities described on the ADB Prohibited Investment Activities List set forth at Appendix 5 of the Safeguard Policy Statement (2009). None of the activities included in the PIAL list will be financed under the project.

2.3.2 Environmental and Social Framework (ESF) 2019 of AllB

43. The AIIB's Environmental and Social Framework (ESF) is a system that supports the Bank and its clients in achieving environmentally and socially sustainable development outcomes. The objectives of this ESF are to:

- 40.1 Reflect institutional aims to address environmental and social risks and impacts in Projects (defined below in Section II, Definitions, of the ESP).
- 40.2 Provide a robust structure for managing operational and reputational risks of the Bank and its shareholders in relation to Projects' environmental and social risks and impacts.
- 40.3 Support the environmental and social soundness and sustainability of Projects.
- 40.4 Facilitate the integration of environmental and social aspects of Projects into the decision-making process by all parties.
- 40.5 Provide a mechanism for addressing environmental and social risks and impacts in Project identification, preparation,
- 40.6 and implementation.
- 40.7 Enable Clients (defined below in Section II, Definitions, of the ESP) to identify and manage environmental and social risks and impacts of Projects, including those of climate change.
- 40.8 Provide a framework for public consultation and disclosure of environmental and social information in relation to Projects.
- 40.9 Provide a grievance redress mechanism designed to enable Project-affected people to voice their concerns and grievances in connection with the environmental and social aspects of Projects.
- 40.10 Improve development effectiveness and impact to increase results on the ground, in both the short and long term.
- 40.11 Support Clients, through Bank financing of Projects, to strengthen their environmental and social management systems.
- 40.12 Support Clients, through Bank financing of Projects, to implement their obligations under national environmental and social legislation (including under international agreements adopted by the Member) governing these Projects, including commitments relating to climate change.
- 40.13 Support Clients, where feasible and appropriate, to mobilize resources for technical assistance for the preparation of environmental and social documents and capacity enhancement.

- 40.14 Facilitate cooperation on environmental and social matters with development partners.
- 44. ESF of AIIB comprises the following:

i. Environmental and Social Policy (ESP). This comprises mandatory environmental and social requirements for each Project

ii. Environmental and Social Standards (ESS). Three associated mandatory environmental and social standards (ESSs) set out more detailed environmental and social requirements relating to the following:

- ESS 1: Environmental and Social Assessment and Management;
- ESS 2: Involuntary Resettlement; and
- ESS 3: Indigenous Peoples.

2.3.3 Environment and Social Framework (ESF) 2016 of NDB

45. ESF of NDB comprises the Environmental and Social Policy and three Environment and Social Standards:

• ESS 1: Environment and Social Assessment: Screening, impact assessment, alternatives, management plan, consultations, grievance mechanism, information disclosure, monitoring.

- ESS 2:Land Acquisition and Involuntary Resettlement
- ESS 3: Indigenous Peoples.

2.4 Applied Standards

46. The project will follow national as well as international best practices and standards related to environment, health and safety including IFC/WB Environmental, Health, and Safety (EHS) General Guidelines (April 30, 2007) and Federal Transit Administration (FTA) USA vibration standards, whichever is more stringent.

3. DESCRIPTION OF THE PROJECT

3.1 Rationale

47. India has experienced rapid growth in urbanization over several decades, with the share of the urban population from 17.9 percent in 1960 to 34.0 percent in 2018.10 By 2030, Indian cities are projected to be home to another 250 million people. High technology and export-oriented manufacturing jobs are growing fastest in the outskirts of large metropolitan areas. The metropolitan areas are facing extremely high population densities and traffic congestion. Infrastructure development remains key to plan urban development taking into consideration economic activities, mobility, and environmental and social outcomes.

48. Gol has made efforts to reform the transport sector in recent years. To create safe, affordable, quick, comfortable, reliable, and sustainable urban transport systems for Indian cities, the Ministry of Housing and Urban Affairs (MoUHA) formulated the National Urban Transport Policy (NUTP) in 2006. The NUTP proposes the development of a metro rail system in every city of India with a population of more than two million people. Gol's Union Cabinet approved a new Metro Rail Policy in 2017 that aims to enable the development and implementation of metro projects in a comprehensive and sustainable manner from the social, economic, and environmental perspectives. As of November 2023, metro line services with a total length of 895 km are operational in India.¹¹

49. Chennai, the capital city of the state of Tamil Nadu, is part of the CMA playing a vital role in the economy of South India. The CMDA devised the Chennai Second Master Plan 2026 and estimated that the population and daily passenger traffic would grow to 12.6 million people and 20.8 million in 2026, respectively.¹² CMA has emerged as a leading national automotive hub with major manufacturers operating their plants in the area. CMA also houses a growing number of software firms, financial services, and call centres. Like other metropolitan areas in the country, CMA is currently facing the challenges of accelerated urbanization growth that have considerably strained the area's transportation system. The increase in economic activities has boosted the regional economy and job creation, which in turn necessitates improvement in ease of travel and connectivity.

50. The existing transportation system in CMA is marked by high traffic density, carbon emissions, and frequent road incidents. In addition to the high volume of vehicles and already congested roads, inadequate parking space and the encroachment of street space by vendors on major road have exacerbated the traffic congestion. The accelerating use of private vehicles has put Chennai in the fifth rank in carbon emission from the transport sector among 54 South Asian cities.¹³ Chennai also recorded the highest number of road incidents in India, with a staggering 7,846 cases in 2016.¹⁴

51. CMRL, a joint venture of the Gol and GoTN with equal equity ownership, is responsible for implementing, operating, and maintaining the city's metro system. CMRL developed The Comprehensive Mobility Plan (CMP) for CMA in 2015 to identify the present and future mobility patterns of CMA. The detailed study identified three corridors (corridors 3, 4, and 5) for the second phase of the Chennai Metro Rail to alleviate CMA's transportation capacity constraints.

¹⁰ <u>https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS?locations=IN</u> ¹¹

Urbanization Beyond Municipal Borders, The World Bank, 2013.

¹¹ Press Information Bureau, Ministry of Housing and Urban Affairs, Government of India,

¹² Second Master Plan for Chennai Metropolitan Area 2026, Chennai Metropolitan Development Authority, 2008.

¹³ International Council for Local Environmental Initiative Study, 2012.

¹⁴ Accidental Death and Suicides in India (ADSI), National Crime Records Bureau, 2016.

3.2 Description of the Corridor 4

52. The Phase I and Phase I Extension of the Chennai Metro Rail covers 54 km in two corridors, with 45 km in Phase I started its operations since 2015 and another 9 km of Phase I Extension commenced its operational from 2020. GoI, GoTN, and the Japan International Cooperation Agency (JICA) funded the first phase that provides direct connection between northern and southern parts of Chennai.

53. The Chennai Metro Corridor 4 from Lighthouse to Poonamalle Bypass has a length of 25.8 km, of which 15.8 km is elevated, and 10.0 km is underground, with 18 and 9 stations, respectively. Stations of Corridor 4 are depicted in Figure 3.1 and summarized in Table 3.1.

Figure 3-1: Corridor 4 (Updated April 2021)

Table 3.1:	List of	Stations -Cor	ridor 4
		010110110 001	

BLOWID FINION
 BLOWID FINION
 USATION
 SPATA DC

No	Station Name	Chainage (m)	Inter-station Distance(m)	Elevated/ Underground
1	Lighthouse	17	-	UG (190x21.80) 2L
2	Kutchery Road	1565	1548	UG (190x21.80) 2L
	Thirumayilai Metro (in Corriodor 3)	2271	706	UG (190x21.80) 2L
3	Alwarpet	3090	819	UG (190x21.80) 2L
4	Bharathidasan Road	3833	743	UG (190x21.80) 2L
5	Boat Club Metro (formerly Adyar Gate Junction)	5005	1172	UG (150x21.40) 3L

6	Nandanam	6029	1024	UG (150x21.40) ML
7	Panagal Park	7131	1102	UG (150x21.40) 2L with ext. concourse
8	Kodambakkam Metro	8529	1398	UG (150x21.40) ML
9	Kodambakkam Power House	10314	1785	Elevated (140x21.95)
10	Vadapalani	11065	751	Elevated (140x21.95)
11	Saligramam	11741	676	Elevated (140x21.95)
12	Saligramam Warehouse <i>(formerly</i> <i>Avichi School)</i>	12685	944	Elevated (140x21.95)
13	Alwarthiru Nagar	13592	907	Elevated (140x21.95)
14	Valasaravakkam	14559	967	Elevated (140x21.95)
15	Karabakkam	15731	1172	Elevated (140x21.95)
16	Alapakkam Junction	16426	695	Elevated (140x21.95)
17	Porur Junction	17243	817	Elevated (140x21.95)
18	Chennai Bypass Crossing	18050	807	Elevated (140x21.95)
19	Thielliyaragaram (formerly Ramchandra Hospital)	18976	926	Elevated (140x21.95)
20	lyappanthangal Metro	19741	765	Elevated (140x21.95)
21	Kattupakkam	20858	1117	Elevated (140x21.95)
22	Kumanan Chavadi	21654	796	Elevated (140x21.95)
23	Karyan Chavadi	22527	873	Elevated (140x21.95)
24	Mullaithottam	23516	989	Elevated (140x21.95)

25	Poonamallee Metro (formerly Poonamallee Bus Terminus)	24366	850	Elevated (140x21.95)
26	Poonamallee Bypass	25772	1406	Elevated (140x21.95)

Source: Detailed Design Consultant, CMRL

3.2.1 Land Use

Land use along the alignment is summarized in Table 3.2. 54.

Corridor Section / Station		Land Use			
Lighthouse to Poonamallee	Lighthouse	Institutional + Open Space Reservation along seafront on either side *			
bypass	Santhome Church	Institutional			
	Lighthouse to Santhome Church	CRZ II & IV-B			
	Nandanam to Panagal Park	Commercial + Residential * ^			
	Kodambakkam Flyover (formally Meenakshi college)	Institutional + Residential *			
	Kodambakkam Powerhouse to Vadapalani	Commercial + Residential on either side * ^			
	Porur lake	Water body *			
	Thellliyaragaram metro Ramachandra Hospital	Institutional + Residential on either side *			

 Ramachandra Hospital

 * Figure 4.4Landuse in CMA 2006, Master Plan 2026

 @ Ecologically Sensitive Areas in CMA, Master Plan 2026

[^] Land use away from alignment is residential

55. Topographical survey was carried out in detail using modern surveying instruments. The geotechnical investigations determined the required strength characteristics of the underlying soil/rock strata to design the foundation of the proposed structure. A total of 52 bore holes were drilled all along the proposed Corridor 4 alignment. Also, since the proposed site is located in Seismic Zone III (Modrate- Risk Zone) of India, suitable seismic measures will be adopted in the design of the structures.

3.2.2 Salient Design Features

56. The salient features of Corridor 4 Project are summarized in Table 3.3.

Table 3.3: Salient Features of Chennai Metro Corridor 4

Gauge(Nominal):	1435 MM
Route Length:	26.1 km (10.0 km Underground and 16.1 km Elevated)
Number of Stations:	26 (8 Underground and 18 Elevated)
Speed:	

- 1. Design Speed 80 kmph
- 2. Schedule(Booked)Speed 32 kmph

Train Operation Plan:

Particulars	2025	2035	2045	2055
Trains/hour (3 Car, 6 Car)	13	13	14	15
	(13,0)	(6,7)	(3,11)	(0,15)
Head Way (Second)	277	277	257	240
Capacity (6p/m²;8p/m²)	9,958;12,675	15,628;19,878	19,634;24,969	23,640;30,060
Max. PHPDT Demand	11,707	18,944	23,816	29,940
Total Coach Requirement	78	129	156	186

Traction Power Supply:

- 1. Traction System Voltage 25 kV AC
- 2. Current Collection Overhead Electric Traction
- 3. Receiving Substations Two RSSs at Avichi School and Panagal Park stations (RSSs)

Power Demand (MVA):

Load		2025		2035		2045		2055
	Normal	Emergency	Normal	Emergency	Normal	Emergency	Normal	Emergency
3	km from k	Kilpauk GSS-	Panagal	Park RSS (Chainage	e -255 to 743	6) 7.691	km
Traction	2.45	8.39	3.62	12.41	4.40	15.10	5.36	18.38
Auxiliary	11.67	19.95	14.58	24.40	16.32	27.46	17.49	29.62
Total	14.12	28.34	18.20	36.81	20.72	42.56	22.85	48.00
3	.5 km fror	n Koyambed	u GSS-A	vichi School	RSS (CI	hainage -743	6 to 258	29)
1	8.38km							
Traction	5.94	8.39	8.79	12.41	10.70	15.10	13.02	18.38
Auxiliary	8.28	19.95	9.82	24.40	11.14	27.46	12.13	29.62
Total	14.22	28.34	18.61	36.81	21.84	42.56	25.15	48.00

Rolling Stock:

- 1. Rolling Stock with light weight Stainless Steel/Aluminum Body
- 2. Max. Axle Load 16 T
- **3.** Dimensions L 22.6 x W 2.9m x H 3.9m

Maintenance Facilities:

Maintenance depot has been proposed near Poonamalle Bypass station for 31 rakes of 6 cars for washing, maintenance and repairs of the rolling stock operation.

Signaling, Telecommunication and Train Control:

 Type of Signaling
 Type of Signaling
 Communication based Train Control System (CBTC) with unattended train operation permitting an operational headway of 90 seconds.
 Telecommunication
 Integrated System with Optic Fiber cable, Supervisory Control and Data Acquisition (SCADA), Close Circuit Television (CCTV), Central Voice Recording System (CVRS) etc.

Fare Collection:

Automatic Fare Collection (AFC) System with smart card/token etc.

3.2.3 Station Design

57. Elevated stations located at the median of existing roads will be 140 m long and 24 m wide. These elevated stations will be constructed using the cantilever method. The typical elevated station consists of three levels: ground, concourse and platform. Passenger facilities, operational and commercial areas are provided at the concourse level. Platforms will be at a level of 13 m and concourse floor at about 7 m above the road, with a minimum of 5.5 m of vertical clearance under the concourse. To reduce physical and visual impact, stations will be transparent with minimum walls on the sides. Figure 3.2 shows the typical elevated station.

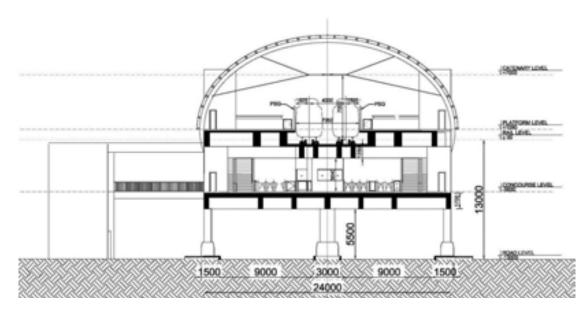


Figure 3-2: Typical Elevated Station

Source: Detailed Project Report for Chennai Metro Rail Phase II corridors, February 2017

58. The typical underground station is a two- or three-level station with entrances at ground level, a concourse with ticketing and passenger area, and platforms at the lowest level. Platforms will 140 m long and 12 m wide with easy accessibility features including escalators and elevators. Universal accessibility and green building features will be considered in the design. Two end concourses have been proposed, one at each end. The concourse is divided into paid and unpaid area. Since very limited space is available on the ground at station, all the over-ground structures are therefore, planned as and where space is available and are not necessarily grouped at ground level. The stations will be constructed using the cut and cover method. Figure 3.3 shows the typical underground station.

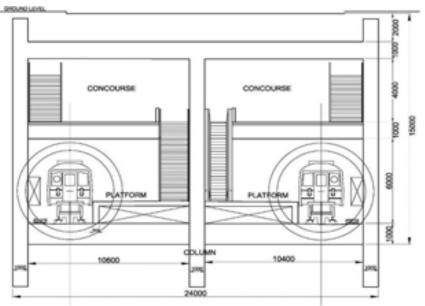


Figure 3-3: Typical Underground Station (2-level)

Source: Detailed Project Report for Chennai Metro Rail Phase II corridors, February 2017 **3.2.4 Ventilation and Air-Conditioning System**

59. The underground stations of the corridor are built in a confined space. A large number of passengers occupy concourse halls and the platforms, especially at the peak hours. The platform and concourse areas do not have adequate natural ventilation. It is therefore, essential to provide forced ventilation in the stations and inside the tunnel for the purpose of:

- Supplying fresh air for the physiological needs of passengers and the staff
- Removing body heat, obnoxious odors and harmful gases
- Removing large quantity of heat dissipated by the train equipment/fixtures
- Removing fumes and heat emitted by station equipment/fixtures

60. The tunnel ventilation shaft will be provided at each end of the station vertically from ground to concourse or platform level.

3.2.5 Depot

61. Major maintenance depot is proposed at Poonamalle Bypass. The depot comprises automatic coach washing plant, Operations Control Centre, maintenance infrastructure viz stabling lines, scheduled inspection lines, workshop for overhaul, unscheduled maintenance for the rolling stock and maintenance facilities for Civil – track, buildings, water supply; electrical – traction, E&M; signaling & telecommunication; automatic fare collection etc. Figure 3.4 shows the layout plan of Poonamalle Depot, which is proposed to have the following functions:

- Major overhauls of all the trains.
- All minor schedules and repairs.
- Lifting for replacement of heavy equipment and testing thereafter.
- Repair of heavy equipment.

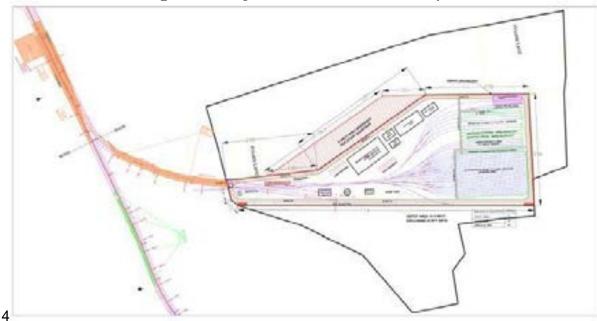


Figure 3-4: Layout Plan of Poonamalle Depot

3.2.6 Labour Camp

62. The Contractor during the progress of work, will provide, erect and maintain necessary (temporary) living accommodation and ancillary facilities for labour. Contractor has established labor camps as part of the project. Emphasis was be given to use existing facilities (established under ongoing lines). However, locations of the camps was finalized after consultation with CMRL. The Contractor engaged by CMRL will also coordinate with the CMDA for land use clearance, TNPCB and Greater Chennai Corporation to establish the labour camps before construction. Selection of sites for labour camps must follow the guidelines for site selection as included in Annexure 10.

3.2.7 Construction Activities and Methodology

63. Main construction activities include demolition of structures (see Resettlement Plan) and ground clearing; Excavation and fill; Tunneling; Transport of construction materials, muck and waste; Casting of concrete elements and preparation of concrete and their transportation; Pile driving where cast-in-situ is not feasible, blasting in rock etc.

64. Elevated Sections. Substructure - open foundation, pile, pile caps, columns; station structure; earth retaining structures shall are cast-in-situ. The structural elements for superstructure i.e. box segments, I-Girders, U-girders and sometimes pile caps are pre-cast. Pre-cast construction may be segmental or non-segmental type. In case of segmental method, structural segments are pre-casted in casting yards, pre-stressed and then transported to the location of use and launched by means of suitable launching arrangement. The construction yard has arrangement for casting beds, curing and stacking area, batching plant with storage facilities for aggregates and cement, site testing laboratories, reinforcement steel yard and fabrication yard etc. An area of about 3 ha (minimum) is required for setting up each construction yard.

65. Underground Sections. Usually sections between underground stations are constructed by tunneling using Tunnel Boring Machine (TBM) while underground stations are built by cut-and-cover method. In the latter method, sidewalls of excavation at stations are supported in various ways. Between two stations tunnel is constructed by TBM. It will be launched from launching shaft. It is dragged in station area and continues from other side of station. Ground settlement analysis and monitoring is required during tunneling by TBM. Two separate tunnels are constructed by two different TBM. The initial plan is to enter two TBM's at Lighthouse Station, exit at Boat Club and the other four TBM's to enter at Panagal Park and exit at Boat Club (two TBM's) and Kodambakkam Flyover (two TBM's). Depending upon the soil/rock strata, suitable type of TBM shall be used for tunneling. Locations where deployment of TBM is not possible (tunneling of short length, cross passages, underground stations which are not possible by cut and cover method etc.) are tackled by New Austrian Tunneling Method (NATM). Excavated soil will be used as backfill where possible; it is estimated a surplus of 940,000 m³ of soil needs to be disposed of (see paragraph 5.3.1).

66. The typical viaduct and tunnel are shown in Figure 3.5 and 3.6.

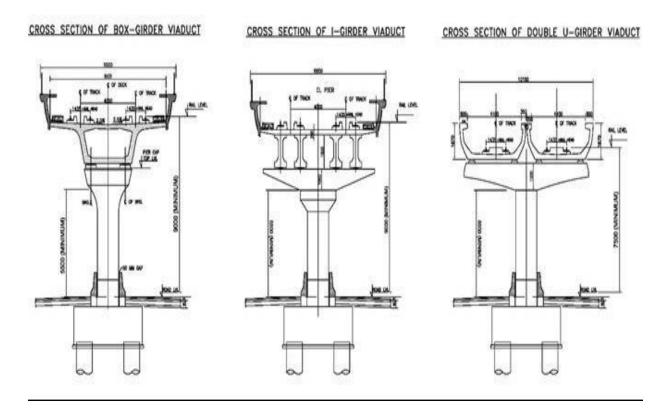
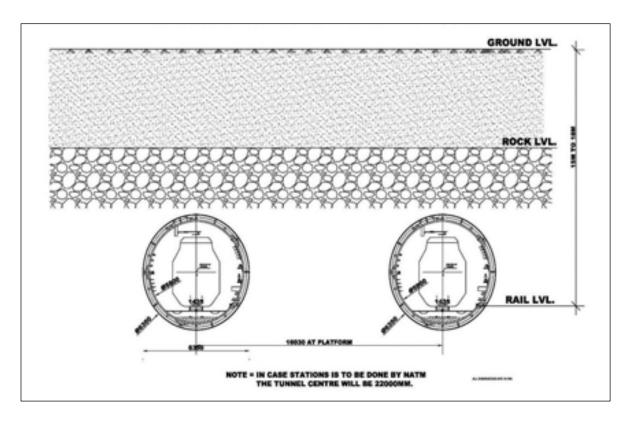



Figure 3-5: Typical superstructure of viaduct

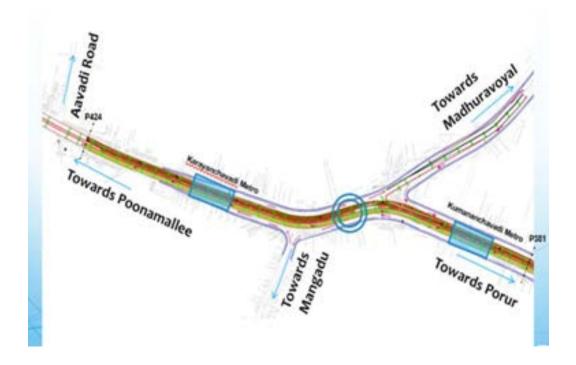
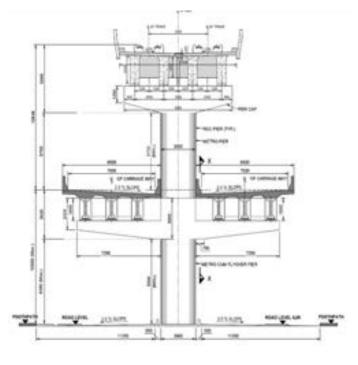
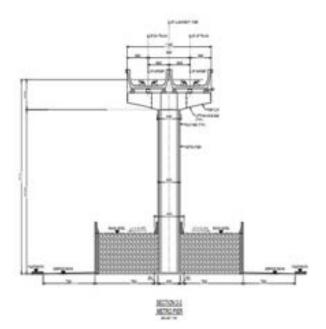
Source: Detailed Project Report for Chennai Metro Rail Phase II corridors, February 2017

Figure 3-6: Typical Twin Tunnel Section

Source: Detailed Project Report for Chennai Metro Rail Phase II corridors, February 2017

3.2.8 Integrated Grade Separator system at Kattupakkam

67. Tamil Nadu State Highways Department of GoTN proposed to construct a two-level Grade Separator comprising road at first level and Metro rail at Second level for a length of 2 kms at Kattupakkam. Kattupakkam Integrated Grade separator is located between P381 to P424 (48 piers), overall length of integrated grade separator has been reduced to 1.527 Kms, which included of two stations such as Kumananchavadi and Karayanchavadi.In the 4th Steering committee meeting of Highways and Minor ports department, it was discussed and agreed to construct integrated structure supporting highways and Metro structures. Further, it was agreed that the design & construction will be carried out by CMRL. CMRL has prepared the DPR based on General Arrangement Drawing (GADs) approved by Highways Department(HD). The geographical representation of the grade separator layout are shown in Fig.3.7, Fig 3.8

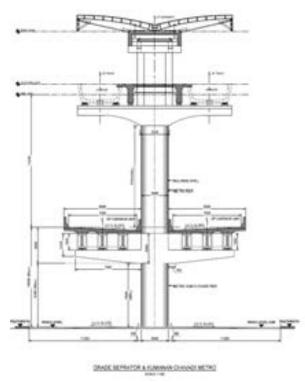
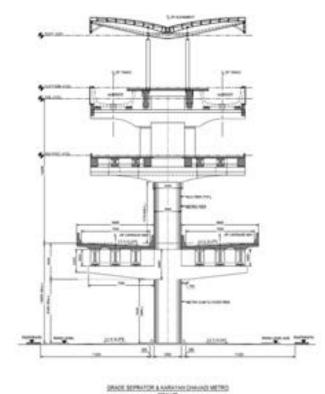

Figure 3-7 Location of the Proposed Integrated Separator

Figure 3-8 Typical Cross Section of Integrated Grade separator cum Via duct



GRADE SEPRATOR & METRO BINETINE

Grade Separator at Kumananchavadi Metro

Grade Separator at Karayanchavadi Metro

3.3 Associated Facilities

68. As per ADB's SPS 2009, the associated facilities are those that are not included or funded by the Project but are: (i) directly and materially related to the Project; (ii) carried out or planned to be carried out, contemporaneously with the Project; and (iii) necessary for the Project to be viable and would not be constructed or expanded if the Project did not exist.

Associated facilities for Corridor 4 are the power transmission/distribution system, existing 69. grid substations (GSS) and water supply network. The construction and operation of Corridor 4 will require power and water from existing electricity grid and water supply system. Electricity is required for operation Metro system for running trains, of of station services (e.g. lighting, lifts, escalators, signaling & telecom, firefighting etc. and workshops, depots & other maintenance infrastructure within premises of metro system). The power requirements of a metro system are determined by peak-hour demands of power for traction and auxiliary applications. These existing grid substations and water supply network are being operated and managed by respective agencies under full compliance with state and local policies and regulatory frameworks.

70. Chennai City has 230kV, 110kV, 33kV power transmission and distribution network to cater to various types of demand in the vicinity of proposed corridor. Keeping in view of reliability requirements of the corridor, two Receiving Substations (RSS) are proposed to avail power supply for traction as well as auxiliary services from Tamil Nadu Transmission Corporation Limited grid

sub-stations at 110kV voltage through transmission lines or cable feeders for Corridor 4. M/s TANGEDCO has confirmed the availability of supply.

71. Gas Insulated Substation (GIS) type substations, which offer the advantage of considerable saving in space requirement as well as reduced maintenance, are proposed for each Receiving cum Traction Substation and Auxiliary Substations of Corridor4. Each elevated station shall be provided with an Auxiliary Substation with two 33kV/415V, 3phase, 500 kVA dry type cast resin transformers and the associated HT & LT switchgear. In addition, provision shall be made for one DG set at each station for emergency loads. Two transformers (33kV/415V, 3-phase) of 3.2 MVA at each underground ASS for the underground stations are proposed to be installed (one transformer as standby). In addition, it is proposed to provide standby DG set of 250 kVA at all elevated stations and 2 x 910 KVA capacity at underground stations to cater to all emergency loads. Power Demand is estimated in Table 3.3.

72. During construction, water consumption will be of the order of 492 KLD for construction and 780 KLD for labour camps. During operation, the water demand at depot and stations comprising train washing, drinking, toilet, cleaning and air conditioning in Chennai will be of the order of magnitude indicated in Table 3.4. The water requirement for the stations will be met through the public water supply system. i.e. through CMWSSB. CMWSSB water supply will be supplemented by rainwater harvesting at elevated stations. Source : CMRL Phase II DPR

S. No.	Particular	Water Demand at Each Station (KLD)	Total Water Demand (KLD)
1	In Underground stations with water softening plant	85.0	765
2	In Elevated stations without air conditioner	16.6	298.80
3	Depot	286	286
Total			1,063.80

Table 3.4: Water Requirement

73. In accordance with proposed packaging of Corridor 4, underground stretch, elevated stretch and depot will be financed by different MDB and constitute Associated Facilities to each package. The environmental impacts and mitigation measures of all packages are analyzed in this report.

3.4 Implementation Plan, Schedule and Cost

74. Corridor 4 will be implemented under design consultant and civil work contracts. There will be several packages for different components such as civil works contracts, detailed design, system contracts, supply and installations, rolling stock etc. It is estimated that project will be commissioned 61 months from months from award of civil construction contracts. Table 3-5 shows the detailed schedule. The total capital cost of Corridor 4 is estimated to be USD 1,575 million for December 2018 including taxes and duties.

S.N	DESCRIPTION	START	FINISH	REMARKS
1	LAND ACQUISITION	Jan-19	Jun-21	WIP
2	GEO TECH INVESTIGATION			
а	UNDER GROUND SECTION			
	Inviting the Tender for Geo tech Investigation, Evaluation & Awarding work	Aug-18	Dec-18	COMPLETED
	Geo Tech. & Survey Works (U.G Section)	Dec-18	May-19	COMPLETED
b	ELEVATED SECTION			
	Inviting the Tender for Geo tech Investigation, Evaluation & Awarding work	Jan-19	Jun-19	COMPLETED
	Geo Tech. & Survey Works (Elevated Section)	Jun-19	Jan-20	COMPLETED
3	DETAILED DESIGN CONSULTANT			
а	UNDER GROUND SECTION			
	Invite & Awarding tender for Detail Design Consultant Works	Aug-18	Mar-19	COMPLETED
	DDC -Execution of wok	Mar-19	Mar-25	COMPLETEDWIP
b	ELEVATED SECTION			
	Invite & Awarding tender for Detail Design Consultant Works	Dec-18	Jun-19	COMPLETED
	Detail Design Consultant Works	Jun-19	Jun-25	COMPLETEDWIP
4	GENERAL CONSULTANCY			
	Invite & Awarding tender for General Consultancy	Jan-20	Mar-21	COMPLETED
	GC works	Apr-21	Dec-26	COMPLETED
5	CONSTRUCTION OF UNDERGROUND STATIONS AND ASSOCIATED TUNNEL (C4-UG- 01)- ADB			
	Inviting & Awarding Tender for Stations and associated Tunneling Works	Feb-21	Nov-21	COMPLETED
	Construction of Underground Stations and associated Tunneling Works	Dec-21	Dec-25	COMPLETED
6	CONSTRUCTION OF UNDERGROUND STATIONS AND ASSOCIATED TUNNEL (C4-UG- 02)- ADB			

Table 3.5: Implementation Schedule of Corridor 4

S.N	DESCRIPTION	START	FINISH	REMARKS
	Inviting & Awarding Tender for Stations and associated Tunneling Works	Feb-21	Nov-21	COMPLETED
	Construction of Underground Stations and associated Tunneling Works	Dec-21	Dec-25	COMPLETED
7	CONSTRUCTION ELEVATED STATIONS AND VIADUCT (C4-ECV-01)-aiibAIIB			
	Inviting & Awarding Tender for Stations and Viaduct Construction	Jul-20	Feb-21	COMPLETEDwip
	Construction of Elevated Stations and Viaduct	Mar-21	Dec-24	wip
8	CONSTRUCTION ELEVATED STATIONS AND VIADUCT (C4-ECV-02)- AIIB			
	Inviting & Awarding Tender for Stations and Viaduct Construction	Jul-20	Mar-21	COMPLETEDwip
	Construction of Elevated Station and Viaduct.	Apr-21	Dec-24	wip
9	CONTRUCTION OF DEPOT			
	Inviting & Awarding tender for Depot Construction	Jan-21	Aug-21	COMPLETED
	Construction of Depot	Sep-21	Sep-24	wip
d	Installation of Rails, turnout, fastening		Apr-26	
11	Systems works, testing, trial runs, commissioning		Dec-26	

wip: work in progress

Source CMRL Feb 2021

The project progress status shall be presented in the monthly progress report (MPR), and quarterly progress report (QPR) under the Project.

4. DESCRIPTION OF THE ENVIRONMENT (BASELINE DATA)

75. The collection of current baseline information on physical, ambient, ecological, and socioeconomic environment of the project area of influence, provides an important reference for conducting an EIA. The description of environmental settings includes the characteristic of the area in which the project activities would occur and likely to be affected by project related impacts. Compiled existing baseline conditions include primary data on air quality, water quality, noise, soil, ecology and biodiversity, and socioeconomic aspects. Secondary data were also collected from published sources and various government agencies.

4.1 Data Collection Methodology

76. The data on water, air, and noise were collected through field monitoring conducted in July 2016 and May 2017. The noise and vibration data were further elaborated in 2019 to include the sensitive receptors along the Corridor 4. Data on biodiversity was collected through field studies in May 2018. Meteorological data was collected from India Meteorological Department (IMD). Efforts have been made to compile the available data from literature, books, maps and reports. The methodology adopted for data collection is highlighted wherever necessary. Environmental attributes and samplings of baseline surveys are presented in Table 4.1 and monitoring locations are presented in Table 4.2 and Figure 4.2. The detailed analysis reports received from the monitoring laboratory are provided in **Annexure 1**, whereas summary from the reports are discussed in respective sections.

SI.	Attribute	Parameter	No. of Samples	Sour	20
SI. No	Allibule	Falametei	No. of Samples	30un	Le l
	iaal Environment				
	ical Environment				
1.	Geology	Geological Status		Literature revie	
2.	Seismology	Seismic Hazard		Literature revie	ew
3.	Climate	Climate Parameters		Literature revie	ew
4.	Soil Quality	Physico-chemical	17	Sampling/ N	Monitoring
		parameters		locations	-
Amb	ient Environment	·			
5.	Water Quality	Physical, Chemical and	17	Sampling/ N	Monitoring
		Biological	(Groundwater)	locations	-
		parameters	Ì 1 Í		
			(Surface)		
6.	Ambient Air	PM, SO ₂ , NO ₂ and CO	26	Sampling/ N	Monitoring
	Quality			locations	_
7.	Noise	Noise levels in dB (A)	26 by land use +	Sampling/ N	Monitoring
		Lmax, Lmin, Leq,	30 (Sample	locations	•
		L10, L50, L90	Sensitive		
			Receptors)		
8.	Vibration	Peak Particle	13 (Sample	Sampling/ N	Monitoring
		Velocity in mm/s	Sensitive	locations	_
			Receptors)		
Ecol	ogical Environment	t			
9.	Flora and Fauna	Number	Once	Field Studies/	

Table 4.1: Environmental Attributes and Data Source

SI. No	Attribute	Parameter	No. of Samples	Source
				Reconnaissance survey/ Literature review
Soc	io-Economic Enviro	onment		
10.	Socio-economic aspects	Socio-economic profile	Once	Field Studies by Social Team, Literature review.

Table 4.2: Details of Sampling / Monitoring Locations*

S. No	Distance from the Sampling Locations to the Alignment (A: Air, W: Water; S: Soil, N: Noise)	Land Use**
4A	At Crossing of NH 4 Bypass & Poonamallee Flyover, 23m (A, W, S, N)	Commercial
4B	Near Kumunan chavadi Bus Stop, MSS Nagar 15m (A, W, S, N)	Residential
4C	Near Porur Lake, Padmavati Nagar, 27m (A, W, S, N)	Residential
5C***	Alwarthiru Nagar junction (A, W, S, N)	Residential
4D	Permal Street, Shradha Nagar, 16m (A, W, S, N)	Residential
4E	Vadapalani Junction, 54m (A, W, S, N)	Commercial
4F	Kodambakkam Meenakshi College, 75m (A, W, S, N)	Silence Zone
4G	Santhome Church, 36m (A, W, S, N)	Silence Zone
4H	Porur Lake (<i>water & soil only</i>), 58m (W, S)	Water body

Location Code	Distance from the Sampling Locations to the Alignment (A: Air, W: Water; S: Soil, N: Noise)	Test conducted	Land Use **
	Baseline study	(2021 - 2022)	
5A	Lighthouse	A,W,S,N	Commercial
5B	Kutchery Road	A,W,S,N	Commercial
5C	Thirumayilai Metro (in Corridor 3)		
5D	Alwarpet	A,W,S,N	Commercial
5E	Bharathidasan Road	A,W,S,N	Commercial
5F	Boat Club Metro (formerly Adyar Gate Junction)	A,W,S,N	Commercial
5G	Nandanam	A,W,S,N	Commercial
5H	Panagal Park	A,W,S,N	Commercial
51	Kodambakkam Metro	A,W,S,N	Commercial
5J	Kodambakkam Flyover (formerly Meenakshi College)		
5K	Kodambakkam Power House	A,W,S,N	Commercial
5L	Vadapalani	A,W,S,N	Commercial
5M	Saligramam	A,W,S,N	Commercial
5N	Saligramam Warehouse (formerly Avichi School)	A,W,S,N	Commercial
50	Alwarthiru Nagar	A,W,S,N	Residential+ commercial
5P	Valasaravakkam	A,W,S,N	Commercial
5Q	Karabakkam	A,W,S,N	Commercial

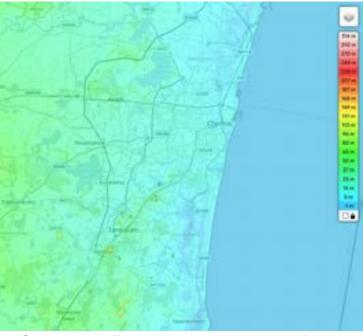
5R	Alapakkam Junction	A,W,S,N	Commercial
5S	Porur Junction	A,W,S,N	Commercial
5T	Porur Bypass crossing fromaly (Chennai Bypass Crossing)	A,,N,W	Commercial
5U	Thelliyaragram metro formaly Ramchandra Hospital	A,N	Commercial
5V	Iyappanthangal Bus Depot	A,N	Commercial
5W	Kattupakkam	A,N	Commercial
5X	Kumanan Chavadi	A,N	Commercial
5Y	Karyan Chavadi	A,N	Commercial
5Z	Mullaithottam	A,N	Commercial
6A	Poonamallee Metro (formerly Poonamallee Bus Terminus)	A,N	Commercial
6B	Poonamallee Bypass	A,N	Commercial

*Locations for noise and vibration at sensitive receptors are listed under Table 4.17 and Table 4.19 respectively.

**As per CPCB guideline which is presented under Noise Section.

***This sampling location is the shared alignment of Corridor 4 & 5.

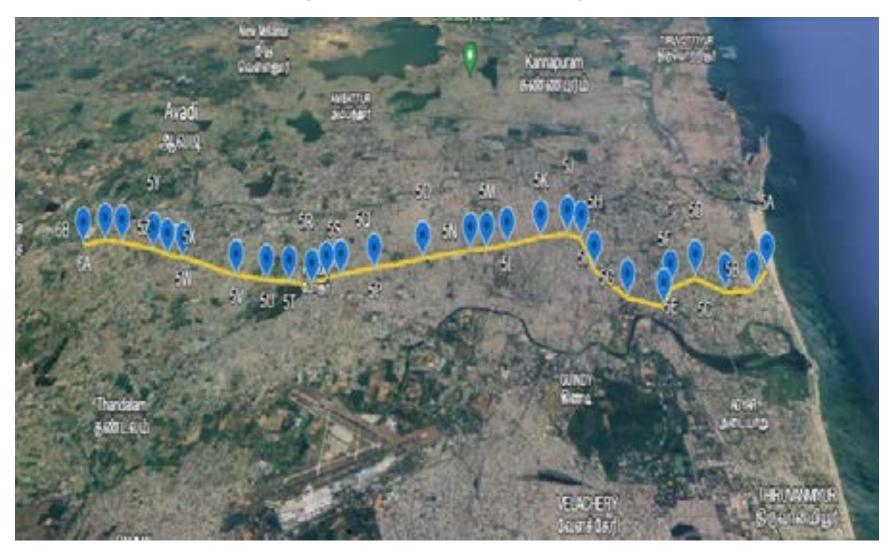
77. Sampling locations were selected to represent land uses along the alignment namely commercial, residential and silence zone (religious and educational uses). The baseline information is categorized as physical, ambient, ecological and socioeconomic environment with depiction in following sections.


78. A further 270 environmentally sensitive receptors located within 200m on either side of alignment as listed in **Annexure 2** have been identified from site reconnaissance, comprising educational center's, religious places, hospitals and courts of law. To elaborate the baseline, a full set of baseline of air, water (surface and ground), soil, noise and vibration will be collected prior to the construction commencement.

4.2 Physical Environment

4.2.1 Physiography





Source: <u>https://en-gb.topographic-map.com/map-gilf3/Chennai/?center=13.13766%2C79.9367&zoom=13</u>

Chennai is located on the South– Eastern coast of India in the North–Eastern part of Tamil Nadu. It is situated on a flat coastal plain that's why it is also known as the Eastern Coastal Plains. The study area is lies between Latitude of 13° 10' N to 12° 49' N and Longitude of 80° 10' E to 80° 14' E. Chennai is a low-lying area and the land surface is almost flat. It rises slightly as the distance from the sea-shore increases but the average elevation of the city is not more than 3 m above mean sea-level, while most of the localities are just at sea level and drainage in such areas remains a serious problem. The topographical setting of the project area is shown in Figure 4.1.

Figure 4-2: Monitoring Locations

Monitoring Locations - Soil, Air, Water & Noise by Land Use

Locations 5A to 6B; Field Survey: 2021- 2022

S.	Parameter	Unit	Table	e 4.3: Resu			orridor 4		Jampio			Soil
No.												Standards
			4A	4B	4C	5C	4D	4E	4F	4G	4H	
1	pH (at 25ºC)	-	8.24	8.2	8.05	7.11	7.98	7.23	7.10	7.02	8.14	6.0*
2	Conductivity (1:2 soil water sus.)	mS/cm	0.36	0.32	0.24	0.19	0.29	0.12	0.17	0.28	0.27	1*
3	Chloride	mg/kg	142.31	1223.09**	359.93	24.79	262.50	33.37	29.87	47.67	97.67	-
4	Total Zinc as Zn	mg/kg	72.13	68.36	69.14	12.35	70.54	14.32	13.28	14.22	57.49	-
5	Manganese as Mn	mg/kg	262.50	108.56	141.38	166.32	196.43	200.01	199.12	179.42	52.79	-
6	Total Lead as Pb	mg/kg	BDL	BDL	BDL	9.65	BDL	10.75	10.69	10.23	BDL	-
7	Total Copper as Cu	mg/kg	19.50	15.10	14.80	14.82	16.20	20.02	18.27	19.25	13.20	-
8	Organic Carbon	%	0.35	0.33	0.35	0.73	0.36	0.59	0.62	0.69	0.40	-
9	Water Soluble Sulphate	mg/kg	36.45	26.58	40.16	20.12	36.48	27.29	20.88	20.23	38.50	-
10	Boron	mg/kg	1.48	1.84	1.66	1.86	1.86	2.38	1.98	2.66	1.78	-
11	Iron	mg/kg	1343.34	1258.05	1299.51	420.37	1351.19	444.35	412.65	368.24	1210.29	-
12	Nickel	mg/kg	BDL	BDL	BDL	18.27	BDL	12.35	12.93	12.79	BDL	130
13	Bicarbonate	mg/kg	168.40	135.63	168.44	125.69	125.48	148.68	142.62	150.13	128.28	-
14	Calcium	mg/kg	665.33	625.25	480.96	140.09	384.77	108.16	145.06	136.29	436.87	-
15	Magnesium	mg/kg	34.05	102.14	41.34	27.28	89.98	28.12	20.36	28.13	38.91	-
16	Sand	%	22.41	32.53	32.97	34.93	38.86	34.09	34.45	33.45	36.54	-
17	Silt	%	59.37	59.19	59.34	38.88	56.04	39.67	38.88	40.05	59.56	-
18	Clay	%	18.22	8.28	7.69	28.19	5.10	24.27	26.67	26.50	3.90	-
19	Sodium	mg/kg	23.70	2.97	129.33	56.45	164.02	42.10	51.85	75.70	24.32	-
20	Potassium	kg/hec	176.98	372.97	271.60	70.18	249.50	97.16	88.38	98.92	200.49	-

Table 4.3: Results of Laboratory Analysis of Soil Sample

S. No.	Parameter	Unit		Corridor 4								
			4A	4B	4C	5C	4D	4E	4F	4G	4H	
21	Sulphur	mg/kg	38.19	36.98	42.55	29.18	48.55	22.87	30.23	29.56	36.22	-
22	Organic Matter	%	0.60	0.57	0.60	1.26	0.62	1.02	1.08	1.19	0.69	-
23	Orthophosphate	mg/kg	12.40	10.12	5.80	70.65	16.54	67.09	59.54	68.98	16.54	-
24	Carbonate	mg/kg	5.65	16.54	10.20	2.99	4.20	5.10	4.92	4.36	6.40	-
25	Arsenic	mg/kg	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	32
26	Mercury	mg/kg	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	1
27	Cadmium as Cd	mg/kg	BDL	BDL	BDL	1.24	BDL	1.72	1.32	1.68	BDL	10
28	Molybdenum	mg/kg	BDL	BDL	BDL	0.60	BDL	0.69	0.76	0.80	BDL	-
29	Available Nitrogen	Kg/hec	140.86	146.54	172.50	199.97	158.40	304.51	269.61	308.12	189.80	-

* As per Bureau of Indian Standards. The rest are as per UK Soil Guideline Values (SGV) for residential area (http://www.environmentagency. gov.uk/clea) ** As per the Geo-investigation report 2020, the Chloride as Cl ranges from 19.83 to 277.69 mg/kg.

In 2021 - 2022, before the initiation of the construction activity, Soil samples were collected in 17 locations and tested for 16 parameters, and the results are recorded as shown in Table. 4-4

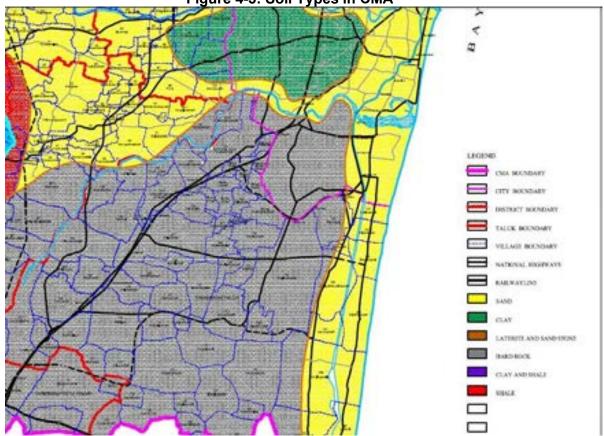

S. No.	Parameter	Unit		Corridor 4										Soil Standar ds						
			5A	5B	5D	5E	5F	5G	5H	51	5K	5L	5M	5N	50	5P	5Q	5R	5S	
1	pH value @ 25°C	-	6.14	6.91	6.82	7.28	6.08	6.03	6.71	7.12	8.05	7.56	8.16	8.10	7.99	7.45	7.86	7.65	7.76	6.0*
2	Water Soluble Salts Electrical Conductivity @	µS/cm	320	508	494	646	125	142	458	704	121	134	470	128	115	117	112	131	119	1*
3	Organic Matter	%	0.41	0.66	0.64	0.83	0.14	0.16	0.57	0.89	2.42	2.68	1.8	2.62	2.3	2.35	2.29	1.9	1.4	-
4	Moisture Content @105° C	%	3.94	6.25	6.07	7.96	1.51	1.72	5.61	8.75	6.52	7.22	10.2	6.90	6.2	6.30	6.03	5.85	5.1	-
5	Chloride (as CI-)	meq/L	0.83	1.31	1.27	1.67	0.32	0.37	1.20	1.86	1.16	1.28	1.5	1.21	1.1	1.11	1.06	1.017	1.51	-
6	Sulphates	mg/kg	0.11	0.17	0.16	0.21	0.04	0.04	0.13	0.19	4.82	4.86	18.3	4.64	6.2	4.24	4.06	3.93	2.71	-
7	Manganese (as Mn)*	mg/kg	2.97	4.69	4.41	5.98	1.18	1.36	4.22	6.63	13.4	14.8	52.4	14	12.7	12.9	12.3	10.8	8.1	-
8	Copper (as Cu)*	mg/kg	0.13	0.2	0.18	0.26	0.04	0.05	0.16	0.25	12.7	14.1	11.4	13.5	12.1	12.3	11.8	11.4	7.00	-
9	Cadmium (as Cd)*	mg/kg	0.08	0.13	0.11	0.16	0.03	0.02	0.10	0.14	0.21	0.23	0.6	0.21	0.2	0.2	0.19	0.18	0.12	
9	Lead (as Pb)*	mg/kg	0.16	0.24	0.21	0.32	0.04	0.05	0.18	0.26	1.96	2.16	2.93	2.1	1.86	1.89	1.81	1.78	1.22	-
10	Chromium (as Cr)*	mg/kg	1.10	1.65	1.41	2.20	0.35	0.42	1.59	2.32	3.38	3.74	6.25	3.56	3.21	3.26	3.12	3.02	1.76	-
11	Selenium (as Se)*	mg/kg	1.51	2.27	2.20	3.03	0.46	0.58	2.17	3.17	0.11	0.12	0.15	0.1	0.10	0.1	0.1	0.12	0.19	-
12	Arsenic (as As)*	mg/kg	0.62	0.93	0.9	1.24	0.19	0.24	0.88	1.31	0.22	0.24	0.36	0.23	0.21	0.21	0.2	0.19	0.13	130
13	Nickel (as Ni)*	mg/kg	0.39	0.58	0.56	0.78	0.11	0.15	0.53	0.78	2.48	2.74	4.1	2.31	2.36	2.39	2.29	1.96	1.34	-
15	Boron (as B)*	mg/kg	0.80	1.19	1.14	1.61	0.23	0.31	1.08	1.61	3.38	3.47	3.8	3.29	3.21	3.01	2.88	2.78	1.91	-
16	Zinc (as Zn)*	mg/kg	1.17	1.72	1.63	2.35	0.36	0.45	1.60	2.34	9.15	10.1	8.2	9.63	8.7	8.81	8.43	8.16	5.62	-

Table 4.4 Results of Laboratory Analysis of Soil Sample (2021 - 2022)

4.2.2 Soil

79. The sandy soil (Entisols) is immature soils and is predominant in the city and it occurs in small patches. The major soil in this region belongs to Alfisols and Entisols. Inceptisols and Vertisols are found in a very limited area only. These soils are generally poor in soil nutrients. They have medium to high permeability. They have low water holding capacity except in patches of clayey soils. The laboratory analysis results for soil are reported in Table 4.3. The soils are slightly alkaline in nature. Organic matter content in soils varies from 0.57% to 1.26%. The soil types found along the alignments, as recorded in the Master Plan 2026 for CMA are presented in Table 4.5 and Figure 4.3, subject to more specific findings from geotechnical investigations.

Table 4.5: Soil Types along alignment									
Corridor / Section	Type of soil								
Corridor 4									
Lighthouse to Nandanam	Sandy								
Nandanam to Porur	Clay								
Porur to Poonamallee bypass	Sandy								

Figure 4-3: Soil Types in CMA

Second Master Plan for Chennai Metropolitan Area 2026, CMDA

80. The pH of the soil samples across all the sampling locations are observed to be alkaline. The conductivity of the soil is observed less than 1 mS/cm. The concentration of Zinc, Manganese, lead, copper, Nickel, Sulphur, Arsenic, Mercury, Cadmium (Cd) and Molybdenum are observed to be well within the limits (IS as well as ISO Soil standards). The recorded available

Nitrogen has been observed within medium range (in comparison with soil rating chart¹⁵) for samples collected at 4E, 4F and 4G, for other locations it is less than the stipulated limit of < 240Kg/ha.

4.2.3 Geology and Minerals

81. The geological formations in the region are from the Archaeans to the recent Alluvium (Table 4.6). The geological formations can be grouped into three units, namely (i) the Archaean crystalline rocks, (ii) consolidated Gondwana with Tertiary sediments and (iii) the recent Alluvium. Most of the geological formations are concealed by the alluvial materials, except for a few exposures of crystalline rocks like charnockites along the railway track in Guindy area. The thickness of Gondwana shales is highly variable in the city. It is more than 130 m at Porur and Koyembedu whereas it exceeds 25 m in Ashok Nagar and 60 m in Sterling Road. The highly variable nature of Gondwana sediments indicated the irregularly eroded crystalline basement, over which the Gondwana sediments are deposited.

Geological succession in Chennai district Group	System	Age	Lithology	Aquifer Characteristics							
Quaternary	Recent	Sub-Recent	Soils, Alluvium (sand & silt)	Moderate to good porous aquifer system							
Tertiary	(Cuddalore Sandstone equivalents)	Eocene to Piliocene	Sandstone & and shale (fossiliferous)	Moderately Porous Aquifer							
		UNCONFIRMITY	(
Mesozic	Upper Gondwana (Sri Perumbudur Beds)	Lower Cretaceous to Lower Jurassic	Brown Sandstone and siltstone; Grey shale; Black shale	Less Porous aquifer with minor fractures							
	UNCONFIRMITY										
Azoic	Archaean		Charnockites, Granites, Gneisses	Fractured Aquifer							

Source: cpheeo.nic.in

4.2.4 Land Use

82. While there is no great increase in extent of lands zoned for urban activities, the intensity of development is likely to increase in sparsely developed and less developed areas to optimum levels thus increasing the efficiency of urban form. Restricting reclassification and open layout developments would prevent urban sprawl beyond the area zoned for urban development.

83. In the North, large industrial units are located at Ennore, Thiruvottiyur and Manali; industrial estates are located at Madhavaram, Kodungaiyur and Gummipoondi. In the West

¹⁵ <u>http://agritech.tnau.ac.in/agriculture/agri_soil_soilratingchart.html</u>

important industrial locations include Ambattur. Padi and Sembiam. ICF Perambur and HVF Avadi are important industries under public sector. Many small and medium scale industries are located at Ambattur, Villivakkam, Thirumazhisai, Poonamallee and Noombal. Thermal power plant is located at Basin bridge. Hyundai car factory at Sriperumbudur, Hindustan Earth Movers at Tiruvallur and automobile industries at Irugattukottai are other important industries. In the south most of the industries are located along the G.S.T Road (NH45). Simpson, Addison and TVS industries are located in the heart of the City along Anna Salai. Madras Export Processing Zone (MEPZ) spread over an area of 105 hectares is located at Tambaram. Leather tanneries and leather-based industries are located near Tambaram.

84. Large-scale automobile engineering, glass and ceramic industries are located at Maraimalai Nagar. Mahindra Industrial Park developed over an area of 520 hectares is located near Chengalpattu along the GST Road. The highlights of land use in CMA are residential use and water bodies. Land use in year 2006 is depicted in Figure 4.4 and classified in Table 4.7. landuse for 2026 Maps with planned can be found at CMDA's website (http://cmdalayout.com/landusemaps/landusemaps.aspx). The predominant land use pattern along the corridor 4 is dominated by industrial, residential and commercial use. The buildings along the alignment of Corridor 4 are majorly low rise varying from 4 to 6-storey.

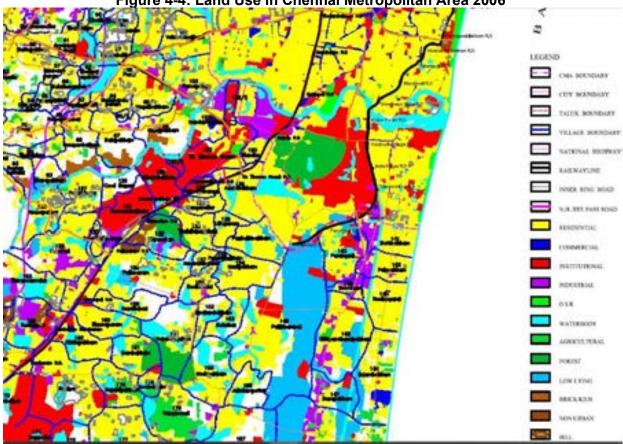
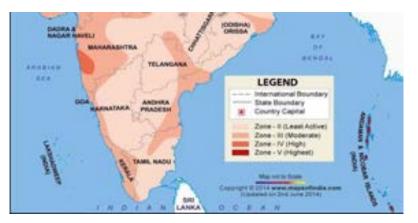


Figure 4-4: Land Use in Chennai Metropolitan Area 2006

Source: Second Master Plan for Chennai Metropolitan Area, 2026


Table 4.7: Land Use in CMA										
	Land u	se 2006	Land use 2026							
	Area (ha)*									
Land use	Chennai City	Rest of CMA	Chennai City	Rest of CMA						
Residential	9,523	22,877	8,342	45,593						
Commercial	1,245	390	714	880						
Industrial	908	6,563	822	10,690						
Institutional	3,243	3,144	2,868	3,888						
	Land u	se 2006	Land use 2026							
Open Space and Recreational	366	200	1,000	392						
Agricultural	99	12,470	Nil	7,295						
Non-urban	82	2,433	113	2,333						
Others	2,087	56,507	3,754	28,147						
Urbanisable	Nil	Nil	Nil	2,075						
Total	17,553	104,584	17,613	101,293						

* Rounded off Source: Second Master Plan for Chennai Metropolitan Area, 2026

4.2.5 Seismicity

85. As per seismic zoning map of India shown at Figure 4.5, Tamil Nadu and Chennai are located in Moderate Seismic Zone (Zone III–BIS: 1893 (2001)). A study of seismic hazard for representative locations in Chennai (Seismic Hazard Assessment of the city of Chennai, India, Subhadeep Banerjee and A Boominathan, ASEM, Aug-Sept 2017) concluded that Santhome falls in class D; Vadapalani and Alwarpet fall in class C. Out of 5 classes (A, B, C, D and E) of soil that have been defined (NEHRP, USA) to rate building shaking due to seismic events, class A is the least vulnerable and class E is most vulnerable. Another micro zonation study (First level seismic micro zonation map of Chennai city - A GIS approach, Ganapathy, Natural hazards and earth system sciences 11(2) · February 2011) concluded that hazard for Santhome to Nandanam section except Alwarpet is low and Nandanam to Alwarthiru nagar section is moderate as depicted in Figure 4.6.

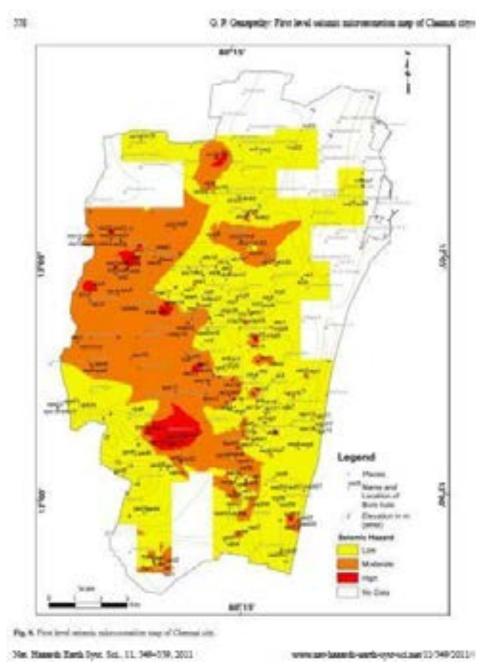


Figure 4-6: Seismic micro zonation of Chennai

First level seismic micro zonation map of Chennai city - A GIS approach, Ganapathy, Natural hazards and earth system sciences 11(2) · February 2011

86. Last reported tremor in Chennai was on 12 February 2019 due to earthquake measuring 5.1 Richter (Source: IMD) with epicenter 10 km deep in Bay of Bengal.

87. The known faults and shear zones of the peninsular shield closely follow the pattern of major rivers. The fault details around Chennai city are listed in Table 4.8 which shows that none of them passes through the project site.

SL 100.	Name of fault	Fieilt length L (km)	Distance (km)	Hypocentral distance, R (km)	Moment magnitude (M ₊)	PGA (g)
1	Fault 15d	40	10	14	4.0	0.066
2	Fault 24	-365	10	14	4.4	0.306
3	Fault 53	137	32	34	4.1	0.025
4	Kilchert fault	26	33	34	4.0	0.025
5	Fault 15a	105	95	47	4.5	0.032
6	Neutectonic fault	105	46	49	3.8	0.013
7	Palar fault.	85	59	60	4.0	0.013
	Tambaram fault	10	59	60	4.4	0.021
	Fault 15	546	61	42	3.7	0.009
10	Fault 52	115	67	68	3.6	0.007
11	Fault 15c	50	68	60	4.5	0.020
12	Fault 54	129	70	71	3.8	0.009
13	Mahapalipuram fault	5	75	76	4.0	0.010
14	Kullenlam fault	36	82	83	3.6	0.005
15	Muttakedu fault	11	95	96	3.5	0.004
16	Fault 26d	160	96	97	4.5	0.013
17	Fault 56c	75	97	595	4.5	0.013
18	Fault 26	1000	98	99	4.5	0.013

 Table 4.8: Seismic Faults

(Source: Seismic hazard assessment of Chennai city considering local site effects A Boominathan*, G R Dodagoudar, A Suganthi and R Uma Maheswari, J. Earth Syst. Sci. 117, S2, November 2008)

4.2.6 Meteorology

4.2.6.1 Temperature

88. Chennai has a tropical wet and dry climate. The city lies on the thermal equator and is also on the coast, which prevents extreme variation in seasonal temperature. Meteorological data like monthly total rainfall, maximum & minimum temperature, wind rose and relative humidity of the Chennai for a period of Jan 2014 to Dec 2023 collected from Indian Meteorological Department (IMD). Table 4.9 and Table 4.10 depicts that the hottest part of the year is in the month of May with maximum temperature varies 41.0°C to 43.0°C. The coolest part of the year is in the month of January, with minimum temperature varies 18.7°C to 20.6°C.

YEAR	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
2014	30.6	32.3	36.6	38.6	42.8	41.8	39.2	38.5	36.7	36.2	32.5	31.8
2015	31.3	33.1	35.1	36.8	42.2	39.6	41.0	37.6	36.9	35.7	32.6	32.4
2016	33.0	34.0	39.0	41.0	41.0	39.0	37.0	38.0	37.0	37.0	34.0	31.0
2017	31.0	36.0	36.0	41.0	43.0	41.0	39.0	37.0	36.0	36.0	34.0	33.0
2018	31.1	32.8	35.6	36.6	39.1	39.8	38.1	37.8	37.3	36.4	32.7	31.3
2019	30.8	34.0	35.6	36.8	41.5	41.5	40.4	38.3	36.8	34.4	35.1	31.0
2020	32.2	33.0	34.4	36.2	41.8	40.6	38.3	36.5	36.6	37.1	33.3	31.2
2021	32.0	33.5	38.3	41.2	40.3	39.9	37.2	36.8	36.6	35.9	32.2	32.4
2022	32.2	33.5	37.6	36.0	39.8	40.1	36.6	37.2	37.5	35.1	31.8	31.9

Table 4.9: Monthly Highest Maximum Temperature (Deg C)

-	_	_	_	_	_	_	_	_	_	_	_	_
2023	31.1	34.1	34	38.1	41.8	42.3	37.6	38.2	36.4	36.5	32.6	32.2

Source: Regional Meteorological Centre, Chennai

YEAR	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
2014	20.3	19.0	22.1	25.6	24.3	23.0	23.6	22.9	23.7	23.4	21.3	21.0
2015	19.0	20.8	23.2	23.5	25.6	24.6	23.9	23.1	23.5	24.3	22.4	21.5
2016	19.0	20.0	23.0	25.0	25.0	24.0	24.0	24.0	23.0	22.0	19.0	19.0
2017	19.0	19.0	22.0	26.0	27.0	25.0	24.0	24.0	24.0	23.0	23.0	21.0
2018	19.0	19.0	21.0	25.4	26.6	25.2	22.4	23.2	22.4	23.8	22.6	20.0
2019	19.7	21.0	23.6	26.4	28.4	23.4	23.8	23.2	22.9	23.9	22.8	22.0
2020	18.7	20.3	23.7	23.1	27.9	25.4	24.2	24.6	24.0	23.6	20.8	20.7
2021	20.6	20.4	22.6	23.1	24.6	24.4	23.8	23.6	24.0	24.2	20.8	19.2
2022	20.6	20.4	22.2	26.4	24.7	22.8	24.7	23.9	25.0	22.2	21.3	19.8
2023	19.5	20.0	22.0	24.7	25.0	24.5	24.6	22.8	23.8	23.3	23.3	20.6

Table 4.10: Monthly Lowest Minimum Temperature (Deg C)

Source: Regional Meteorological Centre, Chennai

4.2.6.2 Rainfall

89. Chennai gets most of its seasonal rainfall from the North–East monsoon, from October to December. South-West monsoon prevails from June to September. Cyclones in the Bay of Bengal sometimes hit the city. The highest annual rainfall recorded is 1,049.3mm in November 2015, the highest recorded since November 1918 when 1,088 mm of rainfall was recorded. The monthly rainfall is given in Table 4.11.

YEAR	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
2014	0.1	9.9	0.0	0.0	13.5	96.2	69.7	222.6	130.8	405.5	196.9	149.9
2015	2.8	0.0	0.0	12.3	7.9	20.3	205.9	106.5	75.0	159.9	1049.3	454.7
2016*	0.4	0.0	0.0	0.0	216.8	133.1	41.3	24.5	264.7	16.4	73.8	219.9
2017*	0.0	5.0	2.5	0.0	0.5	60.0	55.0	90.0	65.0	160.0	155.0	9.0
2018	1.9	1.0	2.9	0.0	0.0	63.1	117.0	191.5	60.7	162.2	190.7	35.8
2019	0.2	4.0	0.0	0.0	0.0	44.7	142.9	120.9	184.1	318.2	108.2	178.8
2020	67.8	0.8	0.0	25.6	0.0	41.8	69.2	69.4	113.0	318.5	525.9	189.1
2021	166.2	8.5	0.0	24.4	16.8	54.7	242.8	168.2	92.1	216.4	1044.3	224.1
2022	90.3	0.0	0.0	0.0	39.5	167.1	107.2	102.2	121.2	171.0	526.2	263.1
2023	4.1	0.8	52.7	1.5	44.9	210.8	56.3	56.3	200.6	109.5	564.7	594.6

Table 4.11: Monthly Rainfall (mm)

Source: Regional Meteorological Centre, Chennai, *www.meteoblue.com

4.2.6.3 Humidity

90. Mean Relative Humidity is presented in Table 4.12 and Table 4.13. It varies 56% to 100% at 08:30 hrs and 57% to 87% at 17:30 hrs. 2016 and 2017 data were collected at different time slots.

YEAR	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
2014	78	79	72	72	67	64	70	78	77	82	82	83
2015	83	81	74	72	69	66	70	77	77	83	91	86
2016*	94	100	94	94	100	100	100	100	100	94	100	100
2017*	100	94	94	94	89	100	100	100	100	100	100	100
2018	78	79	81	74	68	62	64	71	78	81	82	83
2019	82	79	77	78	75	66	74	72	83	86	87	86
2020	86	83	85	84	76	63	82	81	81	79	85	83
2021	85	76	77	74	66	67	76	79	82	85	94	84
2022	87	72	84	83	78	72	75	73	73	81	87	87
2023	82	82	79	73	72	66	69	76	75	80	90	86

Table 4.12: Monthly Mean Relative Humidity at 08:30 hrs (%)

Source: Regional Meteorological Centre, Chennai, * at 05.30 hrs (www.timeanddate.com)

Table 4.13: Monthly Mean Relative Humidity at 17:30 hrs (%)

YEAR	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
2014	69	67	64	68	68	66	65	74	75	80	77	76
2015	73	71	67	69	69	65	70	71	75	78	87	78
2016*	38	30	29	30	30	37	37	33	37	30	27	27
2017*	35	24	38	23	25	16	33	42	47	36	43	40
2018	68	67	68	70	69	60	56	67	73	76	74	73
2019	66	68	67	74	80	70	70	65	78	78	79	80
2020	74	75	76	80	75	64	75	77	77	76	80	73
2021	74	63	65	69	68	65	65	72	76	80	88	73
2022	74	60	71	77	77	69	68	65	71	71	80	77
2023	65	62	67	66	67	67	51	70	73	73	84	77

Source: Regional Meteorological Centre, Chennai, *at 14.30 hrs(www.timeanddate.com)

4.2.6.4 Wind

91. The wind rose diagram has been prepared based on the daily data for the period of 10/2009 to 08/2016. The prominent direction is NE, ESE and SE. Wind rose diagram for the Chennai is shown in Figure 4.7.

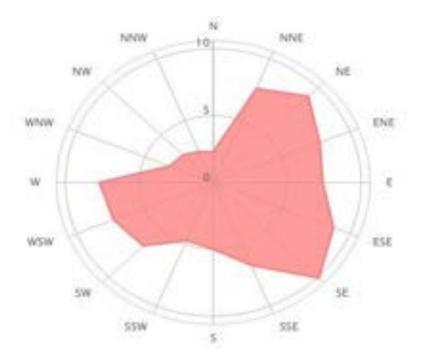


Figure 4-7: Wind Rose Diagram for Chennai

WIND ROSE FOR CHENNAI, TAMIL NADU, INDIA

ANNUAL WIND PATTERN 44 < 0.5 m/s NINN NNE 0.5-1 m/s 1-2 m/s N.E tub.A 2-3 m/s 3-4 m/s the WWW 4-5 m/s > 5 m/s Ŵ ŧ WOW D4 SW STAT. 104 4 www.envitrans.com | 2024/1/18 Data Source: Envitrans Met Data Archive

4.3 Ambient Environment

92. In order to assess the impact on existing ambient environment due to Corridor 4, it is necessary to have baseline status of ambient environmental parameters.

4.3.1 Water Resources

93. As the city lacks a perennial water source, catering the water requirements of the population has remained an arduous task. Groundwater levels from Jan 2022 to Jan 202were up to 10m below ground in pre-monsoon as well as post-monsoon seasons and rise in water level of up 2 to 4m in all observation wells in Chennai district between pre-monsoon and post-monsoon months. From May 2016 and May 2022, the groundwater levels were up to 4m in77% of observation wells (*Groundwater Yearbook of Tamil Nadu and UT Puducherry, 2022 - 2023 Central Groundwater Board*).

94. As per data provided by Chennai water authority, CMWSSB in Jan 2024, the combined water level in the five reservoirs namely Red Hills, Cholavaram, Chembarambakkam, Kandigai ,and Poondi lakes was 11757mcft or. In May 2019 the combined storage level of these reservoirs was about 160 mcft or 8 MLD. On 19 June 2019, Chennai city officials declared that "Day Zero", or the day when almost no water is left, had been reached, as all the four main reservoirs supplying water to the city had run dry. Two years of deficient monsoon rainfall, particularly in late 2017 and throughout much of 2018 had led to this crisis (*India Today 20 June 2019*).

95. Chennai receives about 985 MLD from various sources against the required amount of 1,200 MLD. As of year 2018, 300 million litres of water was estimated to have been be sourced from the four reservoirs in Chennai with their storage standing at 40% of their capacity; 180 MLD from the desalination plants in Minjur and Nemmeli and 70 MLD (against the usual 180 MLD) from Veeranam tank. Krishna water of about 400MLD supplements these sources; and other water sources, including abandoned stone quarries, agriculture wells and Neyveli Corporation mines. (*Down to Earth 22 May 2019*).

4.3.2 Drainage

96. Adyar River originates at the confluence (Thiruneermalai) of two streams that drains the upstream area of Chembarambakkam tank. It is a small river of 42 km length and a catchment of 800 Sq. km. The river carries flow all through 365 days of a year with an average discharge of 89.43 MCM/Year at Kathipara cause way. It drains the southern part of the district and remains flooded during monsoon. During the high tides, the backwater from the Bay of Bengal enters inland up to 3 - 4 km.

97. Cooum or Koovum (sometimes called as Triplicane River) is the other main river flowing through the central part of the district and carries only drainage water, which is highly polluted. It originates from the surplus waters from the Cooum tank in Tiruvallur taluk and the tanks, which are in enroute, discharge their surplus water into the river during flood season. The flow of Cooum River at Korattur is 40.2 MCM/year for an average duration of 31 days in a year.

98. Otteri nala is another small stream flowing in the northern part of the city. Buckingham canal is the man made one for navigation purposes earlier, but now it act as sewerage carrier in the city.

4.3.3 Water Quality

The analysis of water samples is presented in Table 4.14. Laboratory analysis of water 99. sample depicts that most of the parameters are well within the prescribed permissible limits as per the Bureau of Indian Standards except some parameters viz Turbidity at 4A, and 5C, Total Dissolved Solids, Calcium, Total Hardness, and Chloride at 4G, Lead at 4E exceed the permissible limit. Bacteriological contamination found at 4A, 4B, 4C, 4D and 4H. Total Dissolved Solids (TDS) and Total Hardness at Santhome Church sampling location are higher than limits. this could be due to higher mineral content in the groundwater especially Calcium and Magnesium. Laboratory analysis of water sample depicts at most locations that TDS, hardness and coliform are more than prescribed desirable limits for drinking water. The analysis of water samples is presented in Table 4-15. Laboratory analysis of water samples depicts that most of the parameters are well within the prescribed permissible limits as per the Bureau of Indian Standards except some parameters viz Turbidity at 5D,5E,5L,5M,5N and 5O Aluminium at 5L,5M,5N,5O,5P,5Q,5R Manganese at 5L,5M,5N,5O,5P,5Q, Boron at 5L, 5O exceed the permissible limit. Bacteriological contamination found at all locations is higher than the permissible limit. Due to higher mineral content in the groundwater, especially aluminum and Manganese. At most locations. laboratory analysis of water samples shows that Turbidity and coliform are more than the prescribed desirable limits for drinking water.

100. For any water body to function adequately in satisfying the desired use, it must have corresponding degree of purity. Drinking water should be of highest purity. Each water use has specific quality need. Therefore, to set the standard for the desire quality of a water body, it is essential to identify the uses of water in that water body. In India, the CPCB has developed a concept of designated best use. According to this, out of the several uses of water of a particular body, the use which demands highest quality is termed its designated best use. Table 4-14 shows that the water in Porur Lake (sample 4H) would be classified as 'D', propagation of wildlife and fisheries, because of high amounts of Zinc and a large Biological Oxygen Demand.

S.	Parameter	Unit	Corridor 4 Corridor 4 Acceptable/ Effluent										Surf	ace w	ater cr	iteria	a *	
N			4A	4B	4C	5C	4D	4E	4F	4G	4H	Permissible Limit for drinking water IS 10500	standards IFC/WBG for treated sanitary effluent in mg/l	А	В	с	D	E
1	pH at 25 ^o C	-	6.87	6.77	6.62	7.13	7.21	7.49	6.56	7.31	7.45	6.5-8.5/no relaxation	6.0-9.0					
2	Turbidity	NTU	59.2	<0.1	<0.1	67.3	<0.1	5.5	<1	<1	<1	1/5 max						
3	Total Dissolved Solids	mg/L	1186	1104	675	1826	612	1412	56	4510	418	500/2000 max						
4	Aluminium as Al	mg/L	BDL	BDL	BDL	BDL	BDL	0.05	BDL	BDL	BDL	0.03/0.2 max						
5	Free Am monia (as NH ₃)	mg/L	<0.1	>0.1	<0.1	<1	<0.1	<0.1	<0.1	<0.1	<0.1	-						
6	Barium (as Ba)	mg/L	BDL	BDL	BDL	0.13	BDL	0.058	BDL	0.099	BDL	0.7 max/ no relaxation						
7	Boran (as B)	mg/L	BDL	BDL	BDL	0.004	BDL	BDL	BDL	BDL	BDL	0.5/1						
8	Calcium as Ca	mg/L	100.2	116.2	76.2	82.6	48.1	57.8	2.1	289	32.1	75/200						
9	Chloride as Cl	mg/L	207	182.3	123.2	670.1	98.6	409	14.8	2118.8	113.3	250/1000		250		600		600
10	Copper as Cu	mg/L	0.0021	0.0023	BDL	BDL	0.0021	BDL	BDL	0.007	BDL	0.05/1.5		1.5		1.5		
11	Fluoride as F	mg/L	>1	>1	>1	>1	>1	>1	<0.1	>1	<1	1.0/1.5		1.5	1.5	1.5		
12	Iron as Fe	mg/L	BDL	BDL	BDL	0.15	BDL	BDL	BDL	BDL	BDL	0.3/ no relaxation		0.3		50		
13	Magnesium (as Mg)	mg/L	58.4	31.7	19.5	52.7	17	42.6	1.3	95.3	14.6	30/100						
14	Manganese as Mn	mg/L	1.16	0.003	BDL	0.54	0.002	0.35	BDL	0.137	0.003	0.1/0.3						
15	Nitrate as NO ₃	mg/L	BDL	70.8	21.6	BDL	1.2	5	BDL	11.3	BDL	45/ no relaxation		20		50		
16	Phenolic Compounds	mg/L	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.001/0.002						
17	Seleniem (as Se)	mg/L	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.01/ no relaxation						
18	Silver (as Ag)	mg/L	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.01/ no relaxation						
19	Sulphate as SO₄	mg/L	312.7	196	50.8	46.1	85	61.7	BDL	224.2	BDL	200/400		400		400		1000
20	Sulphide (as S)	mg/L	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	27.4	0.05/ no relaxation						

Table 4.14: Results of Laboratory Analysis of Water Sample

S.	Parameter	Unit				C	orridor 4					Acceptable/	Effluent	Surface water criteria *						
N			4A	4B	4C	5C	4D	4E	4F	4G	4H	Permissible Limit for drinking water IS 10500	standards IFC/WBG for treated sanitary effluent in mg/l	A	в	С	D	E		
21	Total Alka linity as CaCO₃	mg/L	223.3	396	310	460.6	467	539	9.8	372.4	BDL	200/600								
22	Total Har dness as CaCO ₃	mg/L	490	420	270	422.3	190	319.3	10.3	1112.4	152.3	200/600								
23	Zinc as Zn	mg/L	BDL	BDL	BDL	BDL	BDL	0.027	0.14	0.034	140	5/15		15		15				
24	Cadmium (as Cd)	mg/L	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.003/ no relaxation								
25	Cyanide (as CN)	mg/L	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.05/ no relaxation								
26	Lead as Pb	mg/L	BDL	BDL	BDL	BDL	BDL	0.045	BDL	BDL	BDL	0.01/ no relaxation								
27	Mercury (as Hg)	mg/L	BDL	0.0008	0.000 93	0.006	0.0002 5	BDL	BDL	0.0004 5	BDL	0.001/ no relaxation								
28	Nickel	mg/L	BDL	BDL	BDL	BDL	BDL	0.002 5	BDL	BDL	BDL	0.02/ no relaxation								
29	Total Arsenic as As	mg/L	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.004	BDL	0.01/0.05								
30	Total Chromium (as Cr)	mg/L	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.05 max/no relaxation								
31	Total Sus pended Solids	mg/L	29.0	9	7	21	7	9	3	8	8	-	50	500		150 0		2100		
32	Vanadium (as V)	mg/L	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	-								
33	Amonical Nitrogen (as N) mg/L	<0.1	>0.1	<0.1	<1	<0.1	<0.1	<0.1	<0.1	<0.1	0.5/No relaxation								
34	Total Kjeldahl Nitrogen (as N)	mg/L	BDL	89	27.8	0.2	1.5	11.6	0.1	14.2	1.12	-								
35	Chromium (as Hexavalent Cromium)	mg/L	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	-								
36	Oil and Grease	mg/L	<5	<5	<5	<1	<5	<1	<1	<1	<5	-	10							

S.	Parameter	Unit				C	Corridor 4					Acceptable/	Effluent	Surfa	ace w	ater c	riteri	a *
Ν			4A	4B	4C	5C	4D	4E	4F	4G	4H	Permissible Limit for drinking water IS 10500	standards IFC/WBG for treated sanitary effluent in mg/l	A	в	с	D	Е
37	Dissolved Oxygen	mg/L	6	6.8	6.6	4.6	6.7	4.4	6.1	4.9	5.7	-		6	5	4	4	
38	Chemical Oxy gen Demand	mg/L	32	24	16	64	20	64	Nil	52	56	-	125					
39	Biochemical Oxygen Demand (3 day 27 ⁰ C)	mg/L	13	9	6	23	8	20	Nil	19	20	-	30	2	3	3		
40	Total Phosphate as P	mg/L	0.1	3.3	1.3	0.9	2.4	1.2	BDL	1.4	0.18	-	2					
41	Dissolved Phosphate (as P)	mg/L	0.1	3.3	1.3	0.9	2.4	1.2	BDL	1.4	0.18							
42	Sodium as Na	mg/L	135	137.5	110	575	165	455	10.9	925	75	-						
43	Potassium as K	mg/L	5.8	47	24.3	15	24.8	29	BDL	61	12	-						
44	Nitrate Nitrogen	mg/L	BDL	16	4.9	BDL	0.27	1.13	BDL	2.6	BDL	-						
45	Total Nitrogen	mg/L	BDL	89	27.8	0.2	1.5	11.6	0.1	14.2	1.12	-	10					
46	Organic Phosphorus	mg/L	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.002 max						
47	Coliform Count	MPN/10 0 ml	160	20	40	<1	90	<1	<1	<1	90	Absent						
48	Fecal Coliform	MPN/10 0 ml	50	10	10	<1	30	<1	<1	<1	20	Absent						
49	Total Colif orm Organism	MPN/10 0 ml	250	69	80	<1	230	<1	<1	<1	200	Absent	400	50	50 0	500 0		

* Surface Water Quality Standards CPCB for Best Designated Usage

S.N o	Parameters	Units	5A	5B	5D	5E	5F	5G	5H	51	5К
1	Turbidity	NTU	0.9	BDL(DL:0. 5)	56.0	31.1	BDL(DL:0. 5)	1.0	BDL(DL:0. 5)	BDL(DL:0. 5)	1.0
2	pH Value @ 25 °C	-	7.33	6.83	6.99	7.29	6.93	7.59	6.82	7.11	7.83
3	Electrical Conductivity @ 25°C	µS/cm	985	1403	1365	1798	456	577	1013	1997	2440
4	Total Dissolved Solids @ 180ºC	mg/L	644	920	894	1173	294	382	655	1304	1580
5	Total Suspended Solids @ 105°C	mg/L	BDL(DL:2. 0)	BDL(DL:2. 0)	27.0	76.4	BDL(DL:2. 0)	BDL(DL:2. 0)	BDL(DL:2. 0)	BDL(DL:2. 0)	BDL(DL :2.0)
6	Oil & Grease	mg/L	BDL(DL:5. 0)								
7	Total Phosphorous (as P)	mg/L	BDL(DL:0. 1)								
8	Total Nitrogen (as N)	mg/L	11.3	21.4	18.6	18.1	6.26	8.5	10.2	20.6	7.3
9	Volatile Organic Compound (VOC)	mg/L	BDL(DL 1.0)								
10	Dissolved Oxygen (as DO)	mg/L	6.8	7.1	6.7	6.6	7.1	6.2	6.7	7.2	6.7
11	Manganese (as Mn)	mg/L	BDL(DL:0. 05)	0.74							
12	Selenium (as Se)	mg/L	0.10	0.08	0.06	0.12	BDL(DL:0. 01)	0.05	BDL(DL:0. 01)	BDL(DL:0. 01)	BDL(DL:0. 01)
13	Barium (as Ba)	mg/L	BDL(DL:0. 05)	BDL(DL:0. 05)	BDL(DL:0. 05)	0.07	BDL(DL:0. 05)	BDL(DL:0. 05)	0.12	2.16	0.44
14	Silver (as Ag)	mg/L	BDL(DL:0. 01)								

 Table 4.15 : Results of Laboratory Analysis of Water Sample

15	Aluminium (as Al)	mg/L	0.06	0.05	0.04	0.09	0.03	0.27	0.05	0.13	1.57
16	Boron (as B)	mg/L	BDL(DL:0. 05)	0.11	0.09	0.15	BDL(DL:0. 05)	BDL(DL:0. 05)	BDL(DL:0. 05)	0.20	0.46
17	Copper (as Cu)	mg/L	BDL(DL:0. 01)	0.02	BDL(DL:0. 01)	0.04	BDL(DL:0. 01)	BDL(DL:0. 01)	BDL(DL:0. 01)	BDL(DL:0. 01)	0.05
18	Zinc (as Zn)	mg/L	0.03	BDL(DL:0. 01)	0.10						
19	Cadmium (as Cd)	mg/L	BDL(DL:0. 001)	0.01							
20	Cyanide (as CN)	mg/L	BDL(DL:0. 02)	BDL(DL:0. 02)							
21	Lead (as Pb)	mg/L	BDL(DL:0. 01)	BDL(DL:0. 01)	BDL(DL:0. 01)	0.02	BDL(DL:0. 01)	BDL(DL:0. 01)	BDL(DL:0. 01)	0.27	0.10
22	Mercury (as Hg)	mg/L	BDL(DL:0. 001)	0.35							
23	Nickel (as Ni)	mg/L	BDL(DL:0. 01)	0.16							
24	Arsenic (as As)	mg/L	0.13	0.24	0.21	0.33	BDL(DL:0. 001)	0.06	BDL(DL:0. 001)	BDL(DL:0. 001)	0.04
25	Total Chromium (as Cr)	mg/L	BDL(DL:0. 01)	0.59							
26	Escherichia coli (MPN)	Present/Ab sent	Present	Present							

S.N o	Parameters	Units	5L	5M	5N	50	5P	5Q	5R	5S	Α
1	Turbidity	NTU	177	136	14.8	106	1.0	BDL(DL:0. 5)	0.8	1.0	BDL(DL:1.0)
2	pH Value @ 25 ℃	-	6.41	6.65	7.19	6.52	7.26	6.55	7.02	6.86	7.67
3	Electrical Conductivity @ 25°C	μS/cm	1935	2590	1157	1246	1926	1493	1187	1435	-
4	Total Dissolved Solids @ 180ºC	mg/L	1258	1680	752	814	1271	973	772	947	756
5	Total Suspended Solids @ 105°C	mg/L	38.0	6.67	BDL(DL :2.0)	38.30	BDL(DL :2.0)	BDL(DL :2.0)	40.0	BDL(DL :2.0)	-
6	Oil & Grease	mg/L	BDL(DL:5.0)	BDL(DL:5. 0)	BDL(DL:5. 0)	BDL(DL:5.0)	BDL(DL:5.0)	BDL(DL:5. 0)	BDL(DL:5. 0)	BDL(DL:5.0)	-
7	Total Phosphorous (as P)	mg/L	BDL(DL:0.1)	BDL(DL:0. 1)	BDL(DL:0. 1)	BDL(DL:0.1)	BDL(DL:0.1)	BDL(DL:0. 1)	BDL(DL:0. 1)	BDL(DL:0.1)	-
8	Total Nitrogen (as N)	mg/L	10.1	6.59	9.1	2.47	5.87	37.0	13.8	7.60	-
9	Volatile Organic Compound (VOC)	mg/L	BDL(DL 1.0)	-							
10	Dissolved Oxygen (as DO)	mg/L	BDL(DL 1.0)	4.8	7.7	7.5	6.9	8.7	6.6	7.1	6.5
11	Manganese (as Mn)	mg/L	15.7	5.32	12.9	9.86	12.1	0.56	0.37	3.85	BDL(DL:1.0)
12	Selenium (as Se)	mg/L	BDL(DL:0.0 1)	BDL(DL:0. 01)	BDL(DL:0. 01)	0.03	BDL(DL:0.0 1)	BDL(DL:0. 01)	BDL(DL:0. 01)	BDL(DL:0.0 1)	BDL(DL:0.0 05)
13	Barium (as Ba)	mg/L	0.42	0.16	0.12	0.07	0.33	0.05	0.05	0.31	BDL(DL:0.0 5)
14	Silver (as Ag)	mg/L	0.19	BDL(DL:0. 01)	BDL(DL:0. 01)	BDL(DL:0.0 1)	BDL(DL:0.0 1)	BDL(DL:0. 01)	0.02	0.14	BDL(DL:0.0 1)

15	Aluminium (as Al)	mg/L	5.19	4.99	2.38	11.7	3.03	1.78	2.45	3.9	BDL(DL:0.5)
16	Boron (as B)	mg/L	1.52	BDL(DL:0. 05)	0.69	2.43	1.18	0.50	0.72	1.14	BDL(DL:0.1)
17	Copper (as Cu)	mg/L	0.05	BDL(DL:0. 01)	1.62	BDL(DL:0.0 1)	0.05	BDL(DL:0. 05)	BDL(DL:0. 01)	0.05	BDL(DL:0.3)
18	Zinc (as Zn)	mg/L	2.82	1.47	6.41	0.34	1.19	0.31	BDL(DL:0. 01)	2.12	BDL(DL:0.0 2)
19	Cadmium (as Cd)	mg/L	BDL(DL:0.0 01)	0.01	0.01	BDL(DL:0.0 01)	BDL(DL:0.0 01)	0.001	0.01	BDL(DL:0.0 01)	BDL(DL:0.0 1)
20	Cyanide (as CN)	mg/L	BDL(DL:0.0 2)	BDL(DL:0. 02)	BDL(DL:0. 02)	BDL(DL:0.0 2)	BDL(DL:0.0 2)	BDL(DL:0. 02)	BDL(DL:0. 02)	BDL(DL:0.0 2)	BDL(DL:0.0 5)
21	Lead (as Pb)	mg/L	0.05	0.06	0.08	0.02	0.05	0.06	0.01	0.04	BDL(DL:0.0 01)
22	Mercury (as Hg)	mg/L	0.29	0.08	0.25	0.16	0.22	0.24	0.38	0.15	BDL(DL:0.0 1)
23	Nickel (as Ni)	mg/L	0.09	0.08	0.27	0.03	0.06	0.08	0.11	0.07	BDL(DL:0.3)
24	Arsenic (as As)	mg/L	0.06	0.03	0.01	0.02	0.04	0.04	0.03	0.05	-
25	Total Chromium (as Cr)	mg/L	0.34	0.34	13.5	1.66	0.26	0.4	0.58	0.226	-
26	Escherichia coli (MPN)	Present/Ab sent	Present	Present	Present	Present	Present	Present	Present	Present	Present

4.3.4 Air Quality

101. The air pollutants emitted by point and non-point sources are transported, dispersed or concentrated by meteorological and topographical conditions. The monitoring results for ambient air quality test conducted in 2021 -2022 are presented in Table 4.16 and 4.17, respectively. 24-hour air quality monitoring results indicates that the air quality was moderate, while the parameters of Sulphur dioxide (SO2) and Nitrogen dioxide (NO2) were within the permissible level of National Ambient Air Quality Standards (NAAQS) and World Health Organization (WHO) guideline. Particulate Matter was within NAAQS but exceeded WHO guideline. Concentration of Carbon Monoxide (CO) exceeded the permissible level of NAAQS in all the monitoring locations but was generally within WHO guidelines. CO exceeded prescribed limits on Corridor 4. The NAAQS laid down by CPCB and WHO guideline are given in Table 4.18.

						Poll	ution					
SI No	Parameter	Unit	Corridor-4									
NU			4A	4B	4C	5C	4D	4E	4F	4G		
1	Sulphur Dioxide (SO ₂)	µg/m³	5.52	12.16	10.47	9.58	8.48	9.43	8.82	10.50		
2	Nitrogen Dioxide (NO ₂)	µg/m³	11.52	18.03	17.53	13.60	23.64	17.53	12.17	17.71		
3	Particulate matter (PM ₁₀)	µg/m³	68.90	82.87	62.68	84.12	58.85	74.14	56.61	47.62		
4	Particulate Matter (PM _{2.5})	µg/m³	36.67	48.75	38.33	41.67	34.64	24.74	29.28	33.33		
5	Carbon Monoxide (CO)	mg/m ³	6.0	7.0	6.0	6.0	5.0	8.5	5.8	8.0		

 Table 4.16: Ambient Air Quality (24hr Time weighted Average)

Parameters	Sulphur dioxide (SO ₂)	Oxides of Nitrogen (NO ₂)	Respirable Particulate Matter (PM ₁₀)	Respirable Particulate Matter (PM _{2.5})	Carbon Monoxide (CO)
Units	µg/m³	µg/m³	µg/m³	µg/m³	mg/m ³
5A	11.5	23.1	60.7	28.4	BDL(DL:1.14)
5B	9.25	22.4	59.9	26.7	BDL(DL:1.14)
5D	12.4	22.3	62.9	25.5	BDL(DL:1.14)
5E	10.3	18.5	56.8	27.6	BDL(DL:1.14)
5F	13.2	20.1	64.9	32.5	BDL(DL:1.14)
5G	12.1	23.9	57.9	30.4	BDL(DL:1.14)
5H	11.7	21.4	64.7	28.6	BDL(DL:1.14)

51	14.4	19.6	66.1	26.4	BDL(DL:1.14)
5K	12.9	20.7	62.7	29.5	BDL(DL:1.14)
5L	13.0	21.6	70.0	38.1	BDL(DL:1.14)
5M	13.7	22.5	74.7	41.1	BDL(DL:1.14)
5N	14.3	24.0	67.0	33.2	BDL(DL:1.14)
50	13.5	23.1	73.8	39.0	BDL(DL:1.14)
5P	8.56	14.7	76.1	38.1	BDL(DL:1.14)
5Q	14.1	26.2	74.0	40.6	BDL(DL:1.14)
5R	12.5	21.8	69.4	46.2	BDL(DL:1.14)
5S	15.5	23.8	67.4	35.9	BDL(DL:1.14)
5T	8	26	78	24	BDL(DL1.14)
5U	8.5	30	72	26	BDL(DL1.14)
5V	7.6	32	75	30	BDL(DL1.14)
5W	6.8	26	79	31	BDL(DL1.14)
5X	7	27	71	29	BDL(DL1.14)
5Y	8.5	27	81	36	BDL(DL1.14)
5Z	7.3	28	69	24	BDL(DL1.14)
6A	7.8	25	83	39	BDL(DL1.14)
6B	8.3	29	70	26	BDL(DL1.14)

Table 4.18: National Ambient Air Quality Standards

	Time	Concentration in A	mbient Air*	WHO
Pollutant	weighted Average	Industrial, Residential, Rural &Other Area	Ecological Sensitive Area	Guideline
Sulphur Dioxide (SO ₂) µg/ m ³	Annual	50	20	-
	24 Hours	80	80	-
Oxides of Nitrogen (NO ₂) µg/	Annual	40	30	40
m ³	24 Hours	80	80	-
Particulate Matter (size less	Annual	60	60	20
than 10μm) or PM ₁₀ μg/ m ³	24 Hours	100	100	50
Particular Matter (size less than	Annual	40	40	10
2.5μm) or PM _{2.5} μg/m ₃	24 Hours	60	60	25
Carbon Monoxide (CO) mg/ m ³	24 Hours	-	-	7
Carbon Monoxide (CO) mg/ m	8 Hours	02	02	10

	Time	Concentration in A	mbient Air*	WHO
Pollutant	weighted Average	Industrial, Residential, Rural &Other Area	Ecological Sensitive Area	Guideline
	1 Hour	04	04	30
O_{7}	8 Hours	100	100	100
Ozone (O ₃) μg/m ³	1 Hour	180	180	-
Lood (Dh) ug/m3	Annual	0.5	0.5	-
Lead (Pb) µg/m³	24 Hours	1.0	1.0	-
Ammonia (NH ₃) µg/m ³	Annual	100	100	-
	24 Hours	400	400	-

*Source: CPCB guidelines for AAQM

4.3.5 Noise

1. The noise data was collected at 8 noise monitoring stations at hourly interval during morning, afternoon and evening such that peak and off-peak hours are covered. Most of the stretch is along the existing road. Later in 2019, more detailed monitoring of noise was conducted at 30 sample locations with sensitive receptors which are located within 200 m on either side of the alignment of Corridor 4, as listed in Table 4.21 and shown in Figure 4.8. The noise monitoring results are given in Table 4.19 and Table 4.19A, the detailed test reports of the 2019 noise monitoring can be found in Annex 1. , Baseline Noise levels are recorded in the year (2021-2022) at 26 locations along the project alignment before the commencement of construction activities and the noise level observed are listed in 4-20.

Figure 4-8: Locations of noise monitoring at sensitive receptors on Corridor 4

Field Survey: Nov/Dec 2019

Table 4.19: Ambient Noise Level Monitoring Results (by land use) – (2016 to 2019)

Location	Land Use	Lmax	Lmin	Lday	Lnight
Corridor-4	4 Light House to Poonamallee Bypas.	s			
4A	Commercial	75.98	68.23	72.92	70.85
4B	Residential	67.06	52.36	62.79	57.32
4C	Residential	77.20	57.66	70.80	59.90
5C	Residential	81.60	61.26	77.66	66.61
4D	Residential	78.94	63.03	76.11	68.14
4E	Commercial	75.35	72.62	75.02	74.00
4F	Silence Zone (educational)	76.27	69.84	73.65	71.37
4G	Silence Zone (religious)	82.54	58.91	79.42	66.57

Note: 4E to 4G in July 2016, 4A,4B,4C,4D in May 2017

Location	Land use	Leq _{day}	Leq _{night}				
	Corridor-4 Light House to	Poonamallee Bypass					
5A	Commercial	60.2	52.2				
5B	Commercial	50.1	39.7				
5D	Commercial	48.1	38.9				
5E	Commercial	46.1	36.5				
5F	Commercial	51.1	41.1				
5G	Commercial	47.9	36.2				
5H	Commercial	59.7	50.2				
51	Commercial	51.9	41.6				
5K	Commercial	63.9	42.9				
5L	Commercial	64.4 42.					
5M	Commercial	62.4 4					
5N	Commercial	61.7 43					
50	Commercial	61.7	42				
5P	Commercial	61.3	42.7				
5Q	Commercial	60.5	42.3				
5R	Commercial	62.8	41.7				
58	Commercial	61.6	42				
5T	Commercial	66.1	57.3				
5U	Commercial	66.4	58				
5V	Commercial	67	58.4				
5W	Commercial	64	54.9				

Table 4.20: Ambient Noise Level Monitoring Results (by land use) - 2021 to 2022

5X	Commercial	67.3	58.8
5Y	Commercial	66.9	57
5Z	Commercial	65.8	58.7
6A	Commercial	65.7	59.3
6B	Commercial	67	57.7

Field Survey: 5A to 6B; Pre-construction Baseline study 2021-2022

Table 4.21: Ambient Noise Level Monitoring Results (at sensitive receptors)

Table 4.21: Ambient Noise Level Monitoring Results (at sensitive receptors)									
No	Name of the Sensitive Receptor	Locations on Corridor 4	Type of Sensitive Receptor	Distance from the outer most proposed tracks (m)	L _{eq} (Day) 50 dB(A) ¹⁶	L _{eq} (Night) 40 dB(A)			
1	Queens Mary College	Light House Station – Kutchery Road	College	94.57	53.5	35.1			
2	St. Thomas church	Light House Station – Kutchery Road	Church	110	46.4	31.6			
3	St. Bede's Anglo Indian Hr. Sec. School	Light House Station – Kutchery Road	School	71.16	56.8	35.2			
4	Santhome church	Light House Station – Kutchery Road	110	47.5	32.7				
5	Rosary Church	Light House Station – Kutchery Road	Church	Church 1.0		30.4			
6	St. Raphael's Girls Hr. Sec. School	Light House Station – Kutchery Road	School	6.07	59.6	33.9			
7	Majood Jamal	i nirumayliai Metro	Mosque	5.5	46.2	33.5			
8	Jumma Mosque	Kutchery Road - Thirumayilai Metro	Mosque	11.87	43.7	34.6			
9	Luz Church	Thirumayilai Metro - Alwarpet	Church	76.43	45.2	31.3			
10	Anjaneyar Temple	Alwarpet - Bharathidasan Road	Temple	9.66	43.6	32.5			
11	Trinity Hospital	Alwarpet - Bharathidasan Road	Hospital	7.58	52.8	38.2			
12	AVT Hospital	Alwarpet - Bharathidasan Road	Hospital	28.9	55.1	36.8			
13	SIET College	Adyar Gate Junction to Nandanam	College	31.17	57.3	35.3			
14	Venkateshwara Hospital	Nanadanam to Panagal Park	Hospital	38.23	51.6	37.9			

¹⁶ Presented data in table 4-17 is based on a day time from 6.00 AM to 10.00 PM (CPCB). Hourly data can be found in Annexure 1 if needed to calculate for different day time periods (WBG: 7 AM - 10 PM)

No	Name of the Sensitive Receptor	Locations on Corridor 4	Type of Sensitive Receptor	Distance from the outer most proposed tracks (m)	L _{eq} (Day) 50 dB(A) ¹⁶	L _{eq} (Night) 40 dB(A)
15	Government Arts College	Adyar Gate Junction to Nandanam	College	18.48	56.9	33.4
16	Little Oxford Matriculation Higher Sec School	Nandanam to Panagal Park	School	73.81	50.4	34.7
17	Thyagarayar Higher Secondary School	Nandanam to Panagal Park	School	22.45	49.8	31.9
18	Thirumala Tirupathi Devasthanam	Nandanam to Panagal Park	Temple	25.6	54.6	49.6
19	Rose of Sharon Ac Church	Kodambakkam Metro to Kodambakkam Flyover	Church	180.34	48.9	37.2
20	Meenakshi College for Women	Kodambakkam Flyover to Power House	College	120.9	52.9	35.7
21	Chennai Higher Secondary School	Power House to Vadapalani	School	19.00	56.2	34.3
22	Saraswathi Vidyalaya Sr. Sec. School	Power House to Vadapalani	School	12.79	54.7	33.3
23	Vijaya Hospital	Vadapalani to Saligramam	Hospital	15.70	51.1	39.1
24	Karthikeyan Matric School	Vadapalani to Saligramam	School	35.96	49.8	34.7
25	Narayanan E- Tecno School	Alwar thiru nagar to Valasarwakkam	School	14.17	47.3	36.5
26	The Holy Cross Matric Hr. Sec. School	Valasaravakkam to Karambakkam	School	87.30	52.6	38.1
27	Parvathy Hospital	Alapakkam Junction- Porur Junction	Hospital	57.56	48.3	36.7
28	Lakshmi Hospital	Ramchandra Hospital to Iyappanthangal Bus Depot	Hospital	38.38	52.7	37.6
29	Mangalam Hospital	Mullai Thottam to Poonamallee Bus Terminus	Hospital	23.85	54.1	35.3
30	Government Hospital	Mullai Thottam to Poonamallee Bus Terminus	Hospital	18.01	59.3	41.5

Field survey: Nov/Dec 2019

2. The Ambient Noise limits laid down by CPCB and WHO have been given in Table 4.22. The noise levels monitored at 8 locations along the alignment were above the national and international permissible limits. Noise levels was also monitored at 30 sensitive locations

belonging to the silence zone, with 60% slightly exceeding the noise limits of 50dB the daytime limit (23.3% per WHO guideline of 55dB), and 1 out of 30 exceeding 40 dB the nighttime limit. The predominant source of ambient noise at the monitored locations are from road traffic (urban arterials and regional highways).

Area Cada	Cotogony of Area	CPCB Limits	WHO/IFC/WB Guideline		
Area Code	Category of Area	Day time* Night tim		Day time	Night time
А	Industrial area	75	70	-	70
В	Commercial area	65	55		70
С	Residential area	55	45	55	45
D	Silence Zone**	50	40	1	

Table 4.22:	Ambient Noise Limits

Source: CPCB guideline (as per The Noise Pollution (Regulation and Control) Rules, 2000) * CPCB day time is from 6.00 AM to 9.00 PM, WHO defines day time as 7.00 AM to 10 PM. Presented data in table 4-17 are based on a day time from 6.00 AM to 10.00 PM. Hourly data can be found in Annex 1

**Silence Zone is defined as an area up to 100m around premises of Hospitals, Educational Institutions, Courts of law and religious places or any others declared as such.

4.3.6 Vibration

3. Vibration consists of rapidly fluctuating motions of the particles without any net movement. Objects can vibrate differently in three mutually independent directions which are vertical, horizontal and lateral. It is common to describe vibration levels in terms of velocity, which represents the instantaneous speed at a point on the object that is displaced. Vibrations are transmitted from the source to the ground and propagate through the ground to the receiver.

4. The triaxial transducers are placed at proposed survey location. The signals obtained from all three axes are in horizontal, transverse and vertical directions viz. X- Easting, Y Northing and Z-Vertical direction. The standard measurable units for velocity are in mm/s.

Measuring the peak particle velocity (PPV) is mostly used for representation of vibrating 5. situation when the pressure wave passes through the particles. Soil conditions have a strong influence on the level of ground-borne vibration. The PPVs are usually expressed in terms of m/s or mm/s.

The dynamic analysis and seismic response have been studied for 13 identified sensitive 6. receptors on Corridor 4 comprising educational institutions and hospitals which are located near by the project corridors as shown in Figure 4.9 & 4.10. Of these locations, 2 are heritage assets namely Rosary Church and Our Lady of Light Shrine; permission to conduct vibration study at the third heritage asset Santhome Church was not available.

Figure 4-9: Locations of vibration measurement at sensitive receptors Part 1

Field Survey: Nov 2019

Figure 4-10: Locations of vibration measurement at sensitive receptors Part 2

7. The induced ground vibration level is summarized in Table 4.24 and monitoring schedule is shown in Table 4.23.

8. All the measurements are characterized on ground level i.e., pickup point is on ground level. Peak VdB vibration level at 11 out of 13 monitored locations is found to exceed acceptable criteria for ground borne vibration prescribed by the Federal Transit Administration (FTA) USA and Railway Design & Standards Organisation (RDSO) (**Annexure 3**). However the observed levels at all 13 locations are well below the construction vibration damage criteria for blasting as per Directorate General of Mines Safety (DGMS) and Central Institute of Mining and Fuel Research (CMFRI or CMRI) which are relevant only if blasting is undertaken during construction (Table 4.24).

No	Location	Monitoring schedule	Duration (hrs)	Date of Commencement
		Part 1	(110)	
1	C4-D-St. Bede's Anglo Indian School	10:35 AM – 6:52 PM	08	22/11/2019
2	C4-E-Aashraya Hospital	08:52 AM -5:00 PM	08	24/11/2019
3	C4-F- Jain Temple	11:47 AM - 7:59 PM	08	19/11/2019
4	C4-G- Luz Church	10:42 AM – 6:47 PM	08	17/11/2019
5	C4-H-Anjaneyar Temple	10:28 AM -6:37 PM	08	23/11/2019
6	C4-I – SIET College	11:16 AM - 7:24 PM	08	20/11/2019
7	C4-J-Thirupathi Thirumala Devastanam Temple	8:43 AM – 5:01 PM	08	21/11/2019
8	C4-K-Koncept Hospital	10:34 AM - 6:38 PM	08	25/11/2019
9	C4-L-The Holy Cross Matric IIr. Sec School	10:19 AM - 6:28 PM	08	26/11/2019
10	C4-M- Government Hospital	09:46 AM – 5:47 PM	08	27/11/2019
		Part 2		
C4-A	Near Porur Lake	7:45 PM -7:40 PM	24	20/07/2019 to 21/07/2019
C4-B	Vadapalani Junction	1:03 PM - 12:55 PM	24	19-07-2019 to 2007- 2019
C4-C	Santhome Church	9:57 AM - 10:03 AM	24	16-07-2019 to 1707- 2019

Table 4.23: Monitoring Schedule

Table 4.24: Standards for Vibration

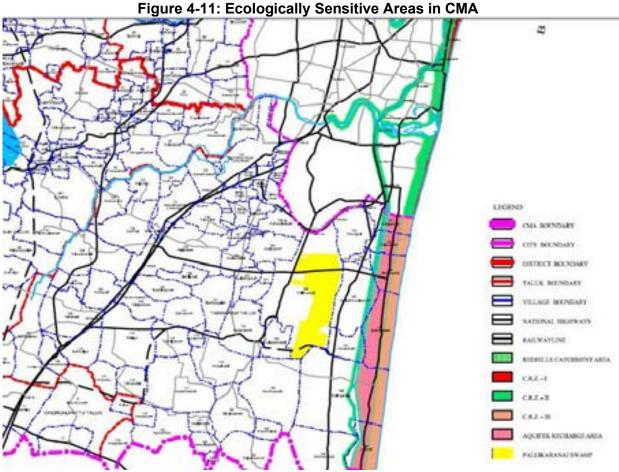
Type of structure	Vibration (mm/s) for dominant excitation frequency, Hz					
	< 8Hz	8-25Hz	>25Hz			
DGMS						
(A) Buildings/structures not belonging to the owner						
Domestic houses/structures (kuccha, bricks &cement)	5	10	15			
Industrial building	10	20	25			
Objects of historical importance & sensitive Structures	2	5	10			
(B) Buildings belonging to the owner with limited span of life	•					
Domestic houses/structures	10	15	20			
Industrial buildings	15	25	50			

After CMRI Standard (Dhar et al, 1993)

Type of structures	PPV (mm/s)		
	<24 Hz	>24 Hz	
Domestic houses, dry well interior, construction Structures with Cemented, bridge	5.0	10.0	
Industrial buildings, steel or reinforced concrete structures	12.5	25.5	
Object of historical importance, very sensitive Structures, more than 50 years old construction and Structures in poor state condition	2.0	5.0	
IS 14881:2001			
Soil, weathered or soft conditions: 70mm/s			
Hard rock conditions: 100mm/s			

Source: DGMS (Tech) (S&T) Circular No. 7 of 1997

SN	Name of location	Surface	PPV (Maximum) mm/sec			VdB (Maximum)			VdB (Average)			VdB RMS	
		Туре	East	North	Up	East	North	Up	East	North	Up	Max.	Time
Part 1													
1	C4-D-St. Bede's Anglo Indian School *	Marble	0.231	0.141	0.497	79.176	74.888	85.830	68.43	65.82	68.56	82.82 (Up)	02:26 PM
2	C4-E- Aashraya Hospital **	Cemented Floor	0.089	0.082	0.187	70.85	70.18	77.34	66.09	66.08	63.86	74.33 (Up)	3:19 PM
3	C4-F- Jain Temple ***	Marble	0.303	0.096	0.103	81.53	71.54	72.16	73.86	65.78	65.48	78.52 (East)	12:34 PM
4	C4-G- Luz Church	Cemented Floor	1.840	0.324	0.474	97.20	82.11	85.42	72.70	69.95	69.98	94.19 (East)	6:30 PM
5	C4-H- Anjaneyar Temple	Marble	1.110	0.504	0.833	92.81	85.95	90.32	75.64	68.62	75.55	89.80 (East)	02:25 PM
6	C4-I – SIET College	Marble	0.261	0.170	0.251	80.24	76.51	79.90	68.27	68.16	67.45	77.22 (East)	07:16 PM
7	C4-J- Thirupathi Thirumala Devastanam Temple	Marble	1.420	0.499	0.792	94.95	85.87	89.88	79.25	69.78	75.51	91.94 (East)	11:54 AM
8	C4-K- Koncept Hospital ****	Marble	0.894	0.200	0.502	90.93	77.92	85.92	74.01	68.73	70.80	87.92 (East)	01:57 PM
9	C4-L-The Holy Cross Matric IIr. Sec School	Tiles	0.439	0.099	0.237	84.75	71.81	79.40	72.32	66.66	69.50	81.74 (East)	11:46 AM
10	C4-M- Government Hospital	Marble	0.311	0.250	0.266	81.76	79.86	80.40	69.31	66.37	69.08	78.75 (East)	10:23 AM
Part 2													
C4-A	Near Porur Lake	Soil	0.207	0.356	0.325	78.22	82.93	82.14	64.34	66.77	72.20	79.92 (North)	04:34 AM
С4-В	Vadapalani Junction	Soil	0.210	0.430	0.788	78.34	84.57	89.83	67.58	75.22	79.29	86.82 (Up)	06:36 AM
C4-C	Santhome Church	Soil	0.456	0.356	0.094	85.08	82.93	71.39	65.49	62.95	62.59	82.07 (East)	12:05 PM


Table 4.25: Baseline Vibration

Meenakshi College for Women

4.4 Ecological Environment

9. Corridor 4 passes through the urbanized area of Chennai which is considered as a modified habitat. No natural habitat exists on or near the alignment. The coastal zone near Foreshore road is used for commercial activities such as fisheries and vendors and is void of any natural vegetation. The area for the planned depot at Poonamalle bypass is currently in use as agricultural land.

4.4.1 Ecologically Sensitive Areas in CMA

Source: Second Master Plan for Chennai Metropolitan Area, 2026

10. The ecologically sensitive areas in Chennai Metropolitan Area (CMA) are depicted in Figure 4.11.

11. The section of alignment from Lighthouse to Thirumayilai with a length of 1.56 km along Corridor 4 falls in CRZ. The DPR alignment (shown in violet colour in Figure 4.11) from Lighthouse station to Kutchery Road is located in CRZ II category. And the other section between Kutchery Road and Thirumayilai Metro is identified as CRZ II and CRZ IV-B due to the alignment passes through the tidal influenced water bodies (shown in blue colour in Figure 4.12).

12. In the alignment (shown in brown in Figure 4.12) which is revised post-DPR, length of about 2249m length of alignment traverses through CRZ area (18,344.91 sq.m of area in CRZ II and 220.9 sq. m of area in CRZ IV-B),

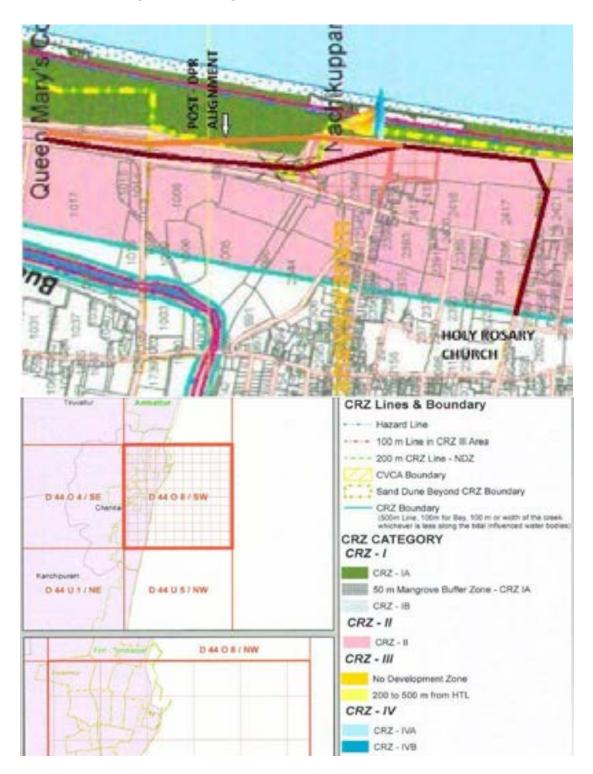
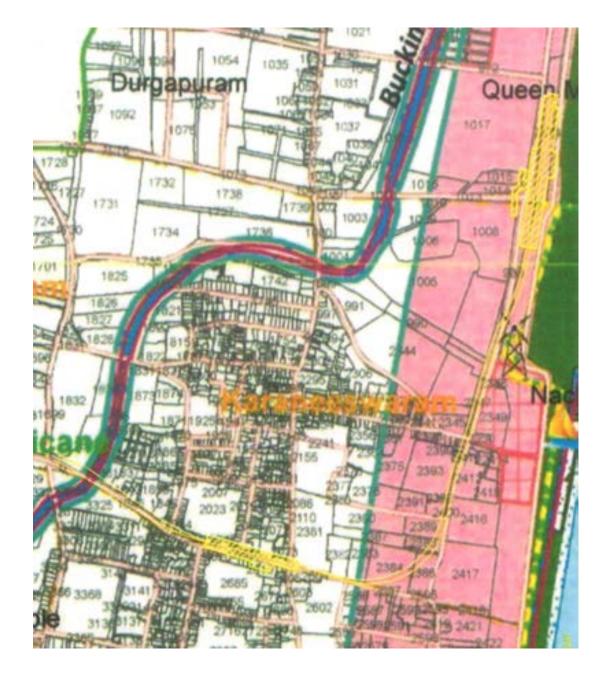



Figure 4-12: Alignment in CRZ II and IV-B Area

Source: Coastal Zone Management Plan Tamil Nadu Sheet No. D 44 O 8 /SW, NCSCM 2017-18

13. The elevated alignment of Corridor 4 is proposed to pass across Porur lake, which is located on the fringes of the suburb of Porur in south-west Chennai. Porur Lake functions as a source of water for the people residing in Chennai. It also acts as a drainage area that is connected with the Chembarambakkam Lake. As shown in Figure 4.14, Porur Lake is located at 13.034223 degrees north and 80.15065 degrees east. It occupies a water spread area of 250 acres with a capacity of 46 million cubic feet.

14. Since 1995, the government has prohibited activities like swimming, bathing and washing clothes in Porur Lake. In the year 2012, another initiative was taken by the Water Resources

Department, not only to restore the lake, but also to meet the city's growing demands for drinking water. This project was aimed at increasing the capacity of the tank to 70 mcft. Since 2019 CMWSSB started tapping Porur Lake for drinking water and started desilting the lake during the dry season, when hardly any water was left in the lake. Many uncontrolled and illegal activities also termed as encroachment are responsible for disturbing the ecology of any setting or area. Porur Lake also acquired the ill fate of many other lakes in India in terms of degradation of water quality. This is evident from the observations of the residents of Porur. According to these residents, Porur Lake has turned into a dumping ground for garbage and the release of sewage. They have even emphasized on the fact that when this lake's bund would be breached, flooding of several localities around the lake would be its consequence. This troublesome event would take place every year during the monsoon season. Bearing in mind the desilting operations, the lack of water in the dry season and the continuous polluting Porur lake is assumed to have little ecological value.

15. No mangroves are located near the project alignment. The nearest mangroves are those planted after flood of 2015 in Adyar river islands 2.2 km away and natural mangrove forest at Pichavaram 185 km away from Chennai. No forest area falls along Corridor 4. Forest cover map of Chennai district is shown in Figure 4.15.

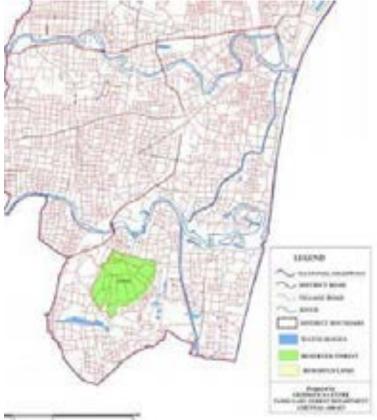


Figure 4-14: Forest Cover Map of Chennai District

16. The following Table 4.26 lists the bird-watching areas in Chennai. (*Source: Madras Naturalists' Society*)

S.no	Location
1	Indian Institute of Technology, Adyar – tropical dry evergreen forest with exotic plantation
2	Pallikaranai Marsh – Open water interspersed with reeds and bulrushes
3	Adyar Estuary/creek/Adyar Poonga – Estuary with Mudflats
4	Nanmangalam Forest Reserve – Scrub covered slopes and water covered pools
5	Guindy National Park – Tropical Dry Evergreen Forest
6	Vandalur Hills and Zoo – Undulating terrain with original scrub and planted trees
7	Crocodile Bank – Coastal setting with artificial ponds and tall planted trees being used as a heronry
8	Pallavaram Hills – Original scrub and some trees
9	Manali and Madhavaram Jheel – Lakes
10	Edayanchatram – Open scrub
11	Thiruneermalai, Pammal – Hillock with some scrub
12	Red Hills and Cholavaram – Lakes
13	Ennore Creek – Coastal vegetation
14	Chemmencheri tank – Waterbody
15	Chembarampakkam lake

17. Guindy National Park with an area of 2.70 sq. km, which is under Reserve Forest category is classified as a Protected Area (ENVIS Centre of Wildlife and Protected Areas) and is located at distance of 2.6 km from the project alignment. In terms of density of vegetation cover, the area falls under sparse category.

18. The Guindy National Park is classified under tropical dry evergreen forests of the Coromandal coast and is being used for recreational purposes. The vegetation is mainly of the tropical dry evergreen type, and over 350 species of plants have been found including trees, shrubs, climbers, herbs and grasses. Chital and Blackbuck graze are found in the open grassland on the northern end of the park. Nocturnal animals include the toddy cat, civets, jungle cat, pangolin, and hedgehog. The dense forest, grasslands and water-bodies provide an ideal habitat for a large species of birds. Apart from snakes, certain species of tortoise and turtles, lizards, geckos, chameleons and the common Indian monitor lizard are also found here.

19. Vide letter dated 31 July 2013, MoEF&CC informed States that a default area of 10 km from the boundary will be the Eco-Sensitive Zone (ESZ) of such protected areas for which proposals identifying ESZs were not forwarded by the States to MoEF&CC. Corridor 4 falls in default ESZ of Guindy National Park. Vide MoEF&CC clarification dated 2 July 2012, projects falling in ESZs which are not covered under Notification 2006 and which do not require Environmental Clearance (EC) do not require prior approval of National Board of Wildlife (NBWL). As commercial development equal to or above threshold of 20,000 sq.m is not proposed, prior EC need not be sought and hence prior approval of NBWL need not be sought. In accordance with 2011 Guidelines for declaration of ESZ around national parks and wildlife sanctuaries, activities relevant to the project are categorized in Table 4.27.

Table 4.27: Guidelines for ESZ Activities										
Activity	Prohibited	Regulated	To be promoted							
Discharge of effluents and solid waste in natural water bodies or terrestrial area	Yes									
Felling of trees		Yes								
Commercial use of natural water resources including ground water harvesting		Yes								
Erection of electrical cables		Yes								
Widening of roads		Yes								
Movement of vehicular traffic at night		Yes								
Air and vehicular pollution		Yes								
Sign boards and hoardings		Yes								
Underground cabling			Yes							
Rain water harvesting			Yes							
Renewable energy			Yes							
Green technology for all activities			Yes							

Table 4.27: Guidelines for ESZ Activities

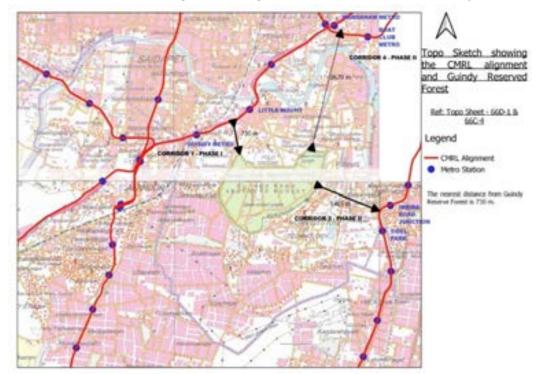

Some of the ecologically sensitive areas of Chennai district are shown in Figure 4.15 and

Figure 4-16.

Figure 4-15: Ecologically Sensitive Areas of Chennai District

Figure 4-16: Topo sheet showing CMRL alignment , ESZ areas and Guindy National Park

20. The Nanmangalam Reserve Forest is home to 100-125 species of birds in addition to 40 different species of butterflies and close to 20 species of damselflies and dragonflies. 442 different species of flowering plants are found inside the forest alone. The Reserve Forest's most famous inhabitant and star attraction is the great horned owl.

21. Pallikaranai Marsh is a freshwater swamp. It is one of the three wetlands in the state of Tamil Nadu which are included in wetlands identified under National Wetland Conservation and Management Programme. (MoEF&CC Annual report 2006-2007). Biodiversity of Pallikarnai is seen in (*Source: nammapallikarnai.org*) 125 species of birds, 10 mammals, 21 reptiles, 9 amphibians,49 fishes,9 molluscans and 7 butterflies and 120 plant species. It is home to some of the most endangered birds such as the Black bellied tern, Great-knot and black -tailed godwit. Pallikarnai known for diverse variety of visitors and resident bird species. It is also home to some of the mostly rare reptiles such as the fan throated lizard, Russel viper and cobra. Other estuarine fauna present at the marsh includes the windowpane oyster, mud crab, mullet, halfbeak and green chromide. Plankton study shows that the water body is Eutrophic in nature.

4.4.2 Flora and Fauna

22. Corridor 4 passes underneath Panagal Park which is a recreation park; the metro station will be located underground at the south-east corner of the park. Tree count was carried out along the proposed alignment and in depot sites in 2018. Most of the trees exist along the sides of road and on median. The predominant tree species along the project corridors are listed below in Table 4.28.

Species	IUCN status
1. Vembu- Azadirachta indica (Neem)	LC
2. Vadam- Terminalia catappa (Indian Almond)	LC
3. Nirkadambai - Neonauclea purpurea	NE
4. Thoongumoonji – Samanea saman (Rain tree)	-
5. Panei - Borassus flabellifer (Palmyra)	NE
6. Pungam – <i>Millettia pinnata</i>	LC
7. Mayir Konnai - <i>Delonix regia</i> (Gulmohar)	LC
8. Nettilingam- Polyalthia longifolia (False Ashoka)	NE
9.Vagai – <i>Albizia lebbeck</i>	NE
10.Thennai - Cocos nucifera (Coconut)	NE
11. Shevaga – <i>Morinda tinctoria</i>	-
12. Nuna - Bombax malabarica	NE
13. Arasu - <i>Ficus religiosa</i> (Peepal)	NE
14.Al - <i>Ficus benghalensis</i> (Banyan)	NE
15. Ma – <i>Mangifera indica</i> (Mango)	DD
Noto: LC Looot Concern: NE Not evolucted: DD Date Deficient: Not Im	

 Table 4.28: Predominant Tree Species along the Corridor (Local name- Botanical name)

Note: LC Least Concern; NE Not evaluated; DD Data Deficient; - Not known

23. The number of trees likely to be cut is presented in Table 4.29. No rare or endangered species of trees were noticed during field studies. To minimize tree cutting it is proposed to transplant young trees to the extent possible. Local forestry officials will be consulted to transplant the trees at suitable locations.

24. Common birds observed in the project area are pigeons, parrot, crows, and doves. The predominant mammals observed in the project area are mongoose, bat, Squirrel, monkey and mice etc. No rare or endangered species were noticed.

S. No	Description	Number of Trees for felling						
Corridor-4 (Light House to Poonamallee Bypass)								
1	Alignment	707						
2	Poonamallee Bypass Depot	187						
	Sub-Total	894						

Table 4.29: Tree Cutting

*This figure will be confirmed upon completion of socio-economic survey, preparation of land plan and impact micro plan

25. A biodiversity survey was conducted from 16th November to 15th December 2020. The primary data on floral diversity and faunal diversity was collected from Nanmangalam RF and Pallikarnai Marshland area, in order to know any endangered species of flora and fauna found in the areas. The result indicated that the Nanmangalam RF harbours a notable diversity of flora and fauna, with the potential of functioning as an in situ conservation area for plants. The merit of the RF is further enhanced by the presence of a sizeable number of endemics and endangered organisms. The primary ecological data for Porur lake was not collected because there are no migratory birds observed in that area, except local birds based on secondary literature. On the other hand, Porur Lake is an artificial water resource and polluted. Most of the plantations in Poonamallee depot area are manmade and mostly exotic trees are present. Native flora and fauna is not affected in corridor 4 depot. Hence, the biodiversity assessment was not carried out initially. In addition, due to COVID-19 restrictions , CMRL could not initiate the ecological survey at the Porur lake. CMRL will conduct an ecological survey of the Porur lake once the site survey restrictions are minimized.

4.5 Socioeconomic Environment

4.5.1 Utilities

26. Corridor 4 is planned to run through the urban area above the ground i.e. elevated in less densely populated and underground in populated and sensitive areas. The alignment will cross drains, a large number of sub-surface, surface and utility services, viz. sewer, water mains, storm water drains, telephone cables, overhead electrical transmission lines, electric pipes, traffic signals, roadside lights etc.

27. These utility services are essential and have to be maintained in working order during different stages of construction, by temporary/permanent diversions and relocation or by supporting in position. Any interruption to these will have serious repercussions on the most sensitive suburban services and direct impact on the public besides set back in construction and project implementation schedule & costs. Therefore, meticulous detailed survey and planning will be required to protect/divert the utility services. The utility maps and network information are attached in **Annexure 4**.

28. The underground part of the alignment from Lighthouse station to Kodambakkam Flyover passes a total of 8 colleges, 13 schools and 18 hospitals, all located within 200 meter from the center of the alignment. The elevated section of the alignment from Kodambakkam Flyover to Poonamalle bypass passes 11 colleges, 30 schools and 15 hospitals. Exact details of these sensitive receptors including their coordinates and distance to the alignment can be found in **Annexure 2**.

29. Based on the Resettlement Plan (RP) for the project a total of 1 school and 4 religious structures will be directly impacted by the cut-and-cover construction of the underground stations. The elevated section of corridor 4 will directly impact 2 schools and 4 religious structures. All affected structures will be duly compensated as per the RP.

30. Corridor 4 will impact 734 households engaged in commercial activity (214 owners, 386 tenants, 48 squatters 85 encroachers and 1 kiosk) leading to loss of business premises, business income and rental income. Furthermore, corridor 4 will impact 297 residential households (236 owners, 43 tenants, 12 squatters and 6 encroachers) Affected households will be duly compensated following the Entitlement Matrix which is part of the RP.

31. The underground section will pass the 1.6 hectare urban Natesan Park on the south-west side (underneath Venkatanarayana Road) and will traverse underneath the 3.2 hectare urban Panagal Park, with a station planned on the south-east side of Panagal Park (underneath Venkatanarayana Road) and metro entrances both north and south of the park.

4.5.2 Physical Cultural Resources

32. No archaeological monuments/sites are located on or along the proposed corridors. Three draft lists heritage of assets in CMA are available (http://www.cmdachennai.gov.in/HeritageBuildings.html). Phase I list which was sent in year 2013 comprised 20 assets in Grade I, 43 in Grade II and 3 in Grade III; Phase II list which was sent in year 2014 comprised 38 assets in Grade I, 3 in Grade II and none in Grade III; Phase III list which was sent in year 2016 comprised 29 assets in Grade I, 28 in Grade II and none in Grade III. In Grade I assets no interventions are permitted except to strengthen their life. In Grade II assets, internal changes and adaptive reuse will be generally allowed, but external changes will be subject to scrutiny; ensure the conservation of all special aspects. In Grade III assets, external and internal changes, and adaptive reuse would generally be allowed. Of these the following three are located close to the proposed alignment. These 3 heritage assets in Table 4.30 are as shown in photographs placed below.

Santhome Church

Rosary Church

Our Lady of Light Shrine

Table 4.30: Heritage Assets near the Underground section of the Alignment

S.no	Name of Heritage asset	Approx. distance from road Centre line followed by the C4 alignment (m)	Grade
1	National Shrine of Santhome Church, Santhome High Road, Santhome	110	I
2	Rosary Church, Rosary Church Road	1*	I
3	Our Lady of Light Shrine, Luz Church Road	73	I

Note: * Distance up to boundary is 1m, distance up to building is 17m.

33. Besides these three heritage assets the underground alignment passes another 5 mosques, 8 churches and 31 temples, all located within 200-meter distance from the alignment. The elevated section of the alignment passes another 10 mosques, 37 churches and 81 temples. Details of these physical cultural resources can be found in Annexure 2.

4.5.3 Demographic Features

34. The Project will improve passenger transportation in Chennai Metropolitan Area which is projected to support resident population of 125.82 lakh in year 2026. As in year 2014, almost all households in the urban parts of the 3 districts contributing to CMA are supported by at least one employed person. In the project affected households, about 50% of are working on salary or daily wages or contract or job works, 40% are business owners; 17% of households are in vulnerable category comprising those below income poverty line (about 4%), socially weak communities and women headed households. The other socioeconomic baseline is described in the standalone Social Impact Assessment.

35. Based on the RP a total of 1031 households will be fully or partially affected by the construction of corridor 4. Table 4-31 provides a breakdown of this number between residential and commercial and partially or fully affected.

Tenure	Resid	ential	Comm	Grand Total	
	Affected not- displaced	Displaced	Affected not displaced	Displaced	
Owners	115	121	199	15	450
Encroacher	6	0	85	0	91
Squatters	0	12	0	48	60
Kiosk	0	0	0	1	1
Tenants	20	23	330	56	429
Total	141	156	614	120	1031

Table 4.31: Impact on Families

36. The affected families will be given compensation and assistance to mitigate loss of land, properties, loss of rental incomes, loss of livelihood and business income.

5. ANTICIPATED IMPACTS AND MITIGATION MEASURES

5.1 Methodology

37. The methodology of assessing environmental impacts from the project entailed clearly identifying the environmental components that will be impacted, type of impacts, assessment area where the impacts will be felt and defining the criteria for assessing the significance of each type of impact. After defining these aspects, a screening of project impacts during design and preconstruction (D), construction (C) and operation (O) stages of the project was carried out to identify the minor, moderate and major impacts to guide development of mitigation measures and ensure that residual impacts are minimized to the extent possible.

5.2 Identification of environmental components

38. This includes identifying the valued environmental components (VEC) of the physical, biological, and human environments that are at risk of being impacted by the project. The VECs for this project which are based on the environmental baseline are:

- Physical environment air quality and greenhouse gas emissions, land and soil, surface water quality and quantity, and groundwater quality and quantity;
- Biological environment terrestrial and aquatic vegetation, mammals, avifauna, and ecologically important areas;
- Social environment private land and buildings, public infrastructure including utility structures, noise and vibration levels, cultural/heritage buildings, and occupational health and safety for the construction workers and local community living within the vicinity of the project area.
- 39. Type of impact on the VECs. The type of impact can be described as:
 - Positive: Improvement in the quality of the VECs because of the project;
 - Negative: Degradation or reduction in the quality of the VECs because of the project;
 - Neutral: No noticeable change in VECs.

40. Area of impact assessment. The area covered for assessing direct project impacts includes:

- For physical impacts an average of 15-meter corridor on either side along the existing road;
- For vibration impacts any sensitive receptors in an area of 100 meter on either side of the metro alignment;
- For noise impacts any sensitive receptors in an area of 200 meter on either side of the metro alignment.

41. In addition, a 10 km strip throughout the project alignment was studied for indirect impacts.

42. Significance of impacts. The assessment of the significance of the impacts on the VECs requires understanding the sensitivity of each VEC within the project context; the duration of impact; the extent of impact, the intensity of impact and the likelihood of impact. The following sections elaborate these.

43. Sensitivity of VEC. The sensitivity of a VEC can be determined by the existing conditions of the VEC within the project area and existence of important VEC's within the project areas. Sensitivity of each VEC is described as high, medium or low as described below:

- Low: No environmentally important areas (such as protected areas, natural or critical habitat areas, heritage sites, places of worship etc.) are located within the direct and indirect impact zone. The quality of existing conditions of VECs is good or fair;
- Medium: There are one or more environmentally important areas within the indirect impact zone of the project area. The quality of existing conditions of VECs is good or fair;
- High: There are one or more environmentally important areas within the direct impact zone of the project area. The quality of existing conditions of the VECs is poor or degraded (such as poor air quality, high noise levels, poor water quality), which makes the VEC highly susceptible to further deterioration.

44. Based on baseline conditions in the project area and sensitivity criteria, the level of sensitivity of each VEC is provided in Table 5-1.

VEC	Sensitivity	Remarks						
	level	i temarka						
	1. Physica	al environment						
1.1 Air quality	High	The average ambient air quality in the project area is generally poor with PM_{10} , $PM_{2.5}$, SO_2 , NO_2 and CO being the main pollutants.						
1.2 GHG emissions	High	Vehicular pollution is expected to be the main source of GHG pollution.						
1.3 Surface water quality	High	Water quality of the surface waters in the project area is moderate due to high levels of Zinc and organic matter. Porur lake is within direct impact zone.						
1.4 Surface water quantity	High	Chennai is facing major water shortages.						
1.5 Ground water quality	Medium	Water quality of the groundwater in the project area is moderate due to high mineral content and high levels of coliforms.						
1.6 Ground water quantity	High	Chennai is facing major water shortages.						
1.7 Land degradation and pollution	Medium	The project alignment is following major roads which pass mainly through residential and commercial areas. Underground section will generate huge amounts of spoil.						
	2. Biologic	al environment						
2.1 Trees, terrestrial and aquatic vegetation	Medium	Guindy National Park is located at 2.6 km from the alignment, corridor 4 partly falls within its eco sensitive zone. Furthermore						

Table 5.1: Sensitivity of VECs in the project area

VEC	Sensitivity level	Remarks
2.2 Terrestrial fauna (mammals, birds, insects)	Low	the alignment passes Porur lake. Pallikaranai Marsh and Nanmangalam Forest reserve are located further away at 10 and 12 km respectively. Approx. 707
2.3 Ecologically important areas	Medium	trees at project alignment and 187 trees at poonamalle depot , total of 894 trees have to be removed from the project alignment.
	3. Social	environment
3.1 Private land and buildings	Medium	Approximately 1031 families will be affected, approx. 14,022 m ² of private land needs to be acquired.
3.2 Public property/ infrastructure/ utility structures	High	Major pipelines and high voltage lines run along the proposed alignment
3.3 Noise	High	The existing ambient noise levels in general already exceed the CPCB and WBG-EHS limits.
3.4 Vibration	High	There are several structures located near the proposed alignment, including 3 heritage sites. Regular traffic adds to vibration levels
3.5 Occupational health and safety	Medium	The project area already experiences some road safety issues due to the traffic. A
3.6 Public health and safety	Medium	moderate risk of flooding exists for the underground section.
3.7 Physical cultural resources (PCR)	Medium	The alignment passes 3 heritage sites and multiple religious places, some of them at close distance.

45. Duration of the impact. Duration means the time dimension of the impact on the VECs. The terms permanent, temporary and short-lived are used to describe the duration of impact:

- Short-lived: The impact disappears promptly;
- Temporary: The impact is felt during one project activity or, at most, during the construction period of the project;
- Permanent: The impacts are felt throughout the life of the infrastructure.

46. Extent of impact. The extent of impact entails the spatial scale of impact on one or more of the VECs. The terms CMA (Chennai Metropolitan Area, regional), local and on-site are used to describe the area of impact:

- On-site: The impact is felt within the direct impact zone;
- Local: The impact is felt within the indirect impact zone;

• CMA: The impact is felt beyond the indirect impact zone.

47. Intensity of impact. The intensity or seriousness of an impact entails understanding the repercussion or risks posed by the impact. This is a subjective criterion which is defined as high, medium or low as below:

- High: The severity of impact is high if grave repercussions are expected as a result of the impact due to any of the following or similar situations: the impact will be felt by a large number of people or receptors; the receptors are highly sensitive; the impacts will cause serious health issues; there is already a history of complaints from the project area and people have raised significant concerns during public consultation; some of the VEC in the project area already severely degraded and maybe further worsened by the project; there will be a significant change in one or more VEC because of the project;
- Medium: The severity of impact is medium due to any of the following or similar situations: the impact will be felt by a small number of people; some receptors are affected but they are not sensitive; the impact will not cause serious health issues; some concerns were raised during public consultations, but they were not significant; there will be minor changes in one or more VEC because of the project;
- Low: The severity of impact is low due to any of the following or similar situations: the impact will not be felt by anyone; no or limited receptors are affected; no concerns were raised during public consultations; there will be no noticeable changes in one or more VEC because of the project.

48. Based on the sensitivity of the VEC and the rating of duration, extent, intensity of impact as described above and bearing in mind the likelihood of occurrence of the impact, the overall significance of each impact was classified as major, moderate or minor as demonstrated in Table 5-2.

Significance	VEC Sensitivity	Duration	Extent	Intensity
Minor	Medium or Low	Short-lived or Temporary	Limited, Local or Regional	Low
	Low	Permanent	Limited	Low
Moderate	High or Medium Moderate		Limited, Local or Regional	Medium
	Medium	Permanent	Limited	Medium
Major	High	Permanent or Temporary	Limited, Local or Regional	High
•	High or Medium	Permanent	Local or Regional	Medium

Table 5.2: Criteria for rating the significance of adverse impacts.

5.3 Screening of impacts

49. Based on the rating criteria provided in table 5-2, environmental impacts anticipated during the project design and pre-construction stage (D), construction (C) stage and operation (O) stage were screened for their level of significance as demonstrated in table 5-3 below. If for example the sensitivity of a VEC is considered high (table 5-1) and a large number of people will be permanently affected on a regional scale, the impact will be considered highly significant. On the other hand if a VEC is medium sensitive and only a few receptors will be temporarily affected on a localized scale, the significance of the impact will be minor. The screening was carried out for impacts that are expected without mitigation. Hence, it guided the identification of impacts that need mitigation and clearly point out significant/major negative impacts that need to be prioritized for mitigation.

50. The significance of each environmental impact or project activity is indicated in the cells in the second to last column of table 5-3, the last column shows the anticipated residual impacts after mitigation. Red indicates a major negative impact, orange indicates a moderate negative impact; purple indicates a minor negative impact and green indicates a positive impact. The following section discusses the details of impacts on each of the VECs in line with the identification of major, moderate, and minor impacts in the screening matrix. Major impacts have been given priority for identification of mitigation measures to ensure that residual impacts are minimized to the extent possible.

51. The negative environmental impacts will mainly occur during construction work and during operation phase. The significant impacts screened are:

I. Design phase:

- Loss of about 894 trees for construction of metro rail alignment as well as depot area.
- Dislocation or involuntary resettlement of people as there will be a need for land acquisition for elevated as well as underground sections and also for depots.
- II. Construction phase:
 - Subsidence, noise and vibration due to tunnelling boring machine (TBM), excavation machines, and materials hauling.
 - Safety risks, inconvenience of traffic nuisance and poor accessibility due to road closures and diversions, noisy conditions etc. will also be created due to plying of large number of heavy trucks transporting construction material, equipment and machinery in and around the project area.
 - Increased noise and air pollution resulting from traffic volume during construction.
 - Increased local air pollution due to rock crushing, cutting and filling works, and chemicals from asphalt processing.
 - Increase in Emission from the machinery and vehicles, emission from the site operation in construction yard, dumping of excavate and waste at disposal sites.
 - Degradation of water quality in surface as well as ground water due to run off and wastewater from the construction sites, construction yards, waste disposal sites, labour camps, hazardous waste etc.,
 - Risk and damage of aquatic ecosystems due to accidental release of waste.
 - Risks for damage to structures from vibration during construction .

III. Risks and vulnerabilities related to occupational health and safety due to physical, chemical and biological hazards during project construction.Operation phase:

- Risks for damage to structures and annoyance to people from vibration during operation.
- Increased noise from train operation
- Risks and vulnerabilities related to occupational health and safety due to physical, biological, and electromagnetic hazards during project operation.

52. Adverse impacts that are likely to result from Corridor 4 development have been listed in Table 5-3 under the following headings:

- Impacts and Mitigation Measures during Project Location and Design;
- Impacts and Mitigation Measures during Construction;
- Impacts and Mitigation Measures during Project Operation (including depot)

	I able 5.3: Impacts Screening Adverse Impacts										Significance	Residual impacts			
S.N.	Parameter	Duration Extent Intensity/Risk Likelihoo								bo	before	after mitigation			
		S	T	 Р	0	L	C	L	M	Н	U –	L	D	mitigation	u
A.	Impacts due to Location and Design (Pre	-Cons	tructior	1)	-	<u> </u>		. –						U	
1	Land degradation use of ground water and construction materials			*	*				*				*	Moderate	Minimal –ve
2	Land degradation, location of construction yards		*		*				*				*	Minor	Minimal –ve
3	Land degradation, location of muck disposal sites			*		*		*					*	Moderate	Minimal –ve
4	Flora and fauna, impact on trees and ecosystems			*		*			*				*	Moderate	Minimal –ve
5	Private land and buildings			*		*				*			*	Moderate	Minimal -ve
6	Aesthetic impact, alignment, architecture and station planning			*	*					*			*	Moderate	Minimal –ve
7	Public property/ infrastructure/ utility structures			*		*			*				*	Major	None
8	Physical cultural resources		*		*			*					*	Minor	Minimal -ve
9	Public health and safety, risk of flooding due to sea level rise resulting from climate change			*	*					*		*		Moderate	Minimal –ve
10	Public Health and safety, risk of flooding due to anomalous heavy rainfall		*			*				*	*			Minor	Minimal –ve
11	Public Health and Safety, earthquake Risk			*	*				*			*		Moderate	Minimal -ve
В.	Impacts due to Project Construction					•									•
1	Air quality, ambient air pollution		*			*			*				*	Moderate	None
2	Water quantity, increased water demand		*			*			*				*	Minor	None
3	Groundwater quality, impact on water and soil quality		*			*		*				*		Moderate	Minimal –ve
4	Groundwater quantity, dewatering		*		*			*					*	Minor	None
5	Land degradation, muck disposal			*			*		*				*	Major	Minimal –ve
6	Land degradation, waste disposal			*			*		*				*	Moderate	None
7	Land degradation, impacts due to labour camp		*			*		*				*		Moderate	None
8	Land degradation, soil erosion		*		*			*				*		Minor	Minimal -ve
9	Public and private property, damage due to ground subsidence			*		*				*		*		Moderate	None
10	Traffic and utility diversion		*			*				*			*	Major	None
11	Noise and Vibration		*			*			*				*	Major	None
12	Occupational Health and Safety		*		*				*			*		Moderate	None
							1								

*

*

*

Minor

None

13

Energy, increased energy demand

*

Table 5.3: Impacts Screening

0.11	Parameter					Significance	Residual impacts								
S.N.		Duration				Exten	<u>dverse</u> t	1	ensity/	Risk	Likelihood			before	after mitigation
		S	Т	Р	0	L	С	L	M	Н	U	L	D	mitigation	
14.	Damages to aquatic ecosystem due to accident release of waste		*			*			*				*	Moderate	Minimal –ve
C.	Impacts due to Project Operation														
1	Water supply and Sanitation at Stations			*		*		*					*	Moderate	Minimal –ve
2	Noise			*		*			*				*	Major	Minimal –ve
3	Vibration			*		*			*				*	Major	Minimal –ve
4	Health and Safety			*	*				*			*		Moderate	Moderate -ve
5	Energy Consumption at stations			*		*			*				*	Moderate	Minimal -ve
6	Depot • Water supply • Sewage and Effluent • Oil Pollution • Noise • Surface Drainage • Solid waste • Loss of trees			*	*			*					*	Moderate	Minimal –ve
	POSITIVE IMPACTS														
1	Employment Opportunities			*			*			*			*		Moderate +ve
2	Benefits to Economy			*			*			*			*		Moderate +ve
3	Direct benefits to passengers			*			*			*			*		Moderate +ve
4	Reduced fuel consumption			*			*			*			*		High +ve
5	Reduced air pollution			*			*			*			*		High +ve
6	 Utilization of Grade Separator (1. The Grade separator is designed as an integrated structure with the proposed elevated metro lines thereby reducing the additional land acquisition, felling of trees, etc. 2. Better flow of vehicular movement through Grade separator, reduces traffic stagnation.) 			*		*				*			*		High +ve

Note:

Impact: +ve = positive; -ve = negative Duration: S = Short-lived; T = Temporary; P = Permanent

Extent: O = on-site; L = Local; C: Chennai Metropolitan Area (regional)

Intensity: L = low; M = medium; H = high

Likelihood: U: unlikely; L: likely; D: definite

53. For each of the VECs, potential impacts are evaluated and mitigating measures have been proposed.

5.4 Air Quality

54. **Impact.** The major sources of ambient air pollution are demolition of structures to be removed; operation of construction equipment; installation of earth retaining structures, pile driving where cast-in-situ is not feasible, blasting in rock; movement of vehicles transporting construction materials, muck and waste. The pollution is in terms of fugitive dust and emissions from trucks.

55. Trucks are required to transport raw material to casting yards and Ready Mix Concrete (RMC) plants; from pre-cast yards and batching plants to construction site and between construction site and muck/waste disposal site. Vehicular emission is estimated as in Table 5-4.

Pollutant	Emission (ton)
Carbon Monoxide (CO)	63.00
PM _{2.5}	2.0
Hydro-Carbons (HC)	2.0
Nitrogen Oxide (NO _x)	131.0
VOC	20.0
Carbon dioxide (CO ₂)	8145

 Table 5.4: Emissions due to truck movement

56. Emissions from DG sets, pollution at sites of waste disposal and muck disposal during unloading and stacking, emissions from fuel and other hazardous chemicals are among other sources of air pollution.

57. Air pollution from road based vehicles especially particulate is found to cause diseases of brain, heart, lungs and kidneys.

58. **Mitigation**. Mitigation measures which will be adopted to reduce the air pollution are listed below:

- Contractor's transport vehicles and other equipment shall conform to emission standards. The Contractor shall carry out periodical checks and undertake remedial measures including replacement, if required, so as to operate within permissible norms.
- Procedure for truck maintenance, including selection of service providers considering environmental aspects, application of low-Sulphur fuel, no idling of trucks, routine maintenance (including assurance of proper engine operations related to emissions and noise), and disposal of used oil and other fluids, batteries, and tires etc. □ DG sets compliant with emission standards will be used □ The following dust protection methods will be used:
 - Dust screens during excavation and demolition near sensitive receptors o Dust filters atop cement silos
 - Wet suppression for aggregate crushing and screening

- Good quality project roads with added petroleum emulsions and adhesives, speed control, traffic control.
- Material of specifications as per contract will be procured by Contractor from Government-approved quarries
- The Contractor will ensure that trucks carrying loads of sand and aggregate required in construction being transported to construction yards are covered and loaded with sufficient free board to avoid spills--within the largest compartment of tanker truck. Transportation will be scheduled by time and route to minimize air pollution in habitat areas.
- The Contractor will ensure that the authorized vendor covers loads of construction and demolition (C&D) waste and hazardous waste being transported from construction sites. All trucks carrying loose material should be covered and loaded with sufficient free - board to avoid spills through the tailboard or sideboards. Containers carrying hazardous waste are loaded onto trucks with due care to avoid escape of fumes or spillage enroute. Transportation of muck and waste will be scheduled by time and route to minimize air pollution in habitat areas. The contractor will implement similar safeguards while transporting muck.
- The temporary muck storage areas will be maintained by the Contractor at all times until the excavate is re-utilized for backfilling or as directed by GC. Dust control activities will continue even during any work stoppage. Soil erosion by runoff will be controlled by installing proper drainage systems using contour information It is suggested to avoid bringing soil from outside the project boundary and to use the excavated mounds for filling low lying area where it is necessary.
- The Contractor will provide a wash pit or a wheel washing and/or vehicle cleaning facility at the exits from construction depots and batching plants. At such facility, high pressure water jets will be directed at the wheels of vehicles to remove all spoil and dirt.
- Construction yards with aggregate crushing and screening, pre-casting, material and fuel storage and GC plants will be located away from habituated or ecologically sensitive areas.
- Labour residing in camps will be provided with LPG fuel for cooking.

59. **Residual impact**. Through modal shift from fossil-fuel driven transport to electric public transport the metro will have a long-lasting high positive residual impact on the air quality. The magnitude of the beneficial impact of metro will increase with increasing ridership.

60. Based on number of daily vehicle kilometer reduction, daily reduction in fuel (diesel and petrol) consumption has been estimated. The reduction has been estimated based on retiral - without addition - of pre-BS VI vehicles from year 2020 onwards; in accordance with the report commissioned by Niti Aayog, 100% of 3 wheelers and buses and 40% of private 2 wheelers and cars have been assumed to be electric from year 2030 onwards. The benefit is an interplay between shift from road modes to Metro and shift from more polluting pre-BS VI road vehicles to less polluting BS VI road vehicles. The estimated daily vehicle-kilometre that will be reduced due to operation of Corridor 4 is given in Table 5.15. Reduction in fuel consumption is reported in Table 5.16. The reduction of air pollution is presented in Table 5.17. Net reduction in CO2 has been estimated as result of trade-off between ambient reduction due to operation of metro rail and increase due to grid power used to operate the Metro.

Mode	Mode Delivy which km Bodycod due to Corridor 4		
Widde	Daily vehicle km Reduced due to Corridor 4		
	2025	2035	2045
Bus	1,065,268	1,429,592	1,614,089
2 wheeler	225,656	528,539	804,727
Car	135,548	379,296	476,847
3 Wheeler	60,562	137,509	201,331

Table 5.5: Reduction in Daily Vehicle kilometers

Source: Detailed Project Report for Corridor 4 Chennai Metro Phase 2, Oct. 2018

Table 5.6: Reduction in Fuel Consumption (million litre per year)

Mode/Year	2025	2035	2045
Diesel	96.30	0.20	0.30
Petrol	2.90	3.50	4.70

Pollutant	2025	2035	2045
CO	2,581	195	276
PM	57	1	1
HC+NO _x	2,475	32	45
CO ₂ (net)	180,839	71,809	53,834
Treatment cost (Rs million per year)	602	59	59

Table 5.7: Pollution Reduction (ton/year)

5.5 Water quality and quantity

61. **Impact**. Public facilities such as water supply, sanitation and washrooms are very much needed at the stations. The water requirement for stations would be for drinking, toilets, cleaning and also for other purpose like Air Conditioning. Water Demand for alignment is calculated and presented in Table 5.8. The water requirement for the stations will be met through the public water supply system.

		l able 5.8:	Water Demand	
S. No.	Particular		Water Demand at Each Station (KLD)	Total Water Demand (KLD)
1	In Underground softening plant	stations with	85.0	765
2	In Elevated stations		16.6	298.80
			Total	1,063.80

62. Thus there would be total water requirement of 1,063.8 KLD in 30 stations. Arrangement of water will have to be made at each station separately with proper drainage system for wastewater. CMWSSB water supply will be supplemented by rainwater harvesting along viaduct and rooftop of elevated stations. Sewage of 904.2 KLD will be generated. Wastewater will be led into municipal sewage system.

63. The water demand will increase during construction phase for meeting drinking and domestic water requirement of workers. Water consumption during construction is of the order of 433 KLD for Corridor 4.

64. Construction materials, oils and greases from construction sites; used water from the RMC plant; water used for dust suppression at aggregate crushers are sources of pollution of surface water bodies or groundwater. Sewage from labour camp can also pollute surface water bodies or groundwater which seeps into excavations can get contaminated by chemicals used in construction and consequently pollute groundwater outside the excavations upon dewatering.

65. Chemicals used in tunneling could result in pollution of seepage water and further contaminate the groundwater or surface water into which this water is discharged: polyurethane resin used to seal water leaks through tunnel segments is toxic to aquatic life with long lasting effects (ECHA). Bentonite used to seal infiltration of water through soil is not classified as harmful. Polymers are used to facilitate tunneling in clayey soils.

66. Table 5.9 shows groundwater levels up to 10m below ground in pre-monsoon as well as post-monsoon seasons and rise in water level of up to 4m in 80% to 90% of observation wells in Chennai district between pre-monsoon and post-monsoon months. It indicates that significant dewatering of excavations might be required.

Month/year	% of observation wells in each range of water level (m) below ground level		range of	Rise (m) in water level	Fall (m) in water level
	0 to 2	2 to 5	5 to10		
May 2013	8	54	38	60% wells <2m, 30%	100% wells <2m
January 2014	36	36	29	wells 2m to 4m	
May 2014	14	33	53	50% wells <2m, 30%	Zero
January 2015	56	25	19	wells 2m to 4m, 20% wells >4m	
May 2015	14	50	36	60% wells <2m, 30%	Nil
January 2016	41	47	12	wells 2m to 4m, 10% wells >4m	
May 2016	24	59	17	83% wells <2m	86% wells <2m
January 2017	14	79	7		
August 2019	5	18	42	31% wells seen more8.2 % wells seen morethan 2m risethan 2m fall	
January 2020	21	33	30		
August 2021	11	39	38	<2m rise in 24%; >2m rise 38%	<2m fall in 35%; >2m fall 3.4%
January 2022	44	39	13		

Table 5.9: Ground water level in Chennai District

(CGWB Yearbooks 2013-14,2014-15,2015-16,2016-17,2017-18,2018-19, 2019-20, 2021-22 for Tamil Nadu and Puduchery)

67. **Mitigation.** Sufficient water for construction purpose would be made available from CMWSSB supply, or treated effluent from ETPs located nearby or seawater or surface run off in view of the quality requirements of construction based contractor-defined estimated volumes.

68. Sewage and wastewater from labour camps, construction sites and construction yards will be treated to meet CPCB standards by means including precipitation chambers before disposal into sewage system. Dewatered water will used for dust suppression purpose, and the remaining will be suitably treated to meet CPCB standards before recharging groundwater or discharging into storm water drain.

69. The dewatering of tunnel muck will be conducted prior to transportation to the muck disposal site. The muck disposal plan will contain detailed requirements of such activity. Seepage water during tunneling will be collected, treated and added to groundwater to recharge.

70. Wastewater generated will be collected and discharged into municipal drains after proper treatment to meet the CPCB standards. Efforts should be made conserve the water by recycling water in the system. Also, as an environmental conservation measure, to conserve and augment the storage of groundwater, it is proposed to construct rainwater harvesting structure of suitable capacity at the elevated stations and in the elevated alignment. Each pillar can have inbuilt downpipes to collect the rainwater from the viaduct and rooftop of elevated stations and then led into underground tanks through layers of sand and gravel. At annual rainfall of 1,541mm, potential for rainwater harvesting is 2.80 lakh cum per year on Corridor 4.

71. Water required for operation of depot shall be sourced from municipal supply. This shall be supplemented by rainwater harvesting. Treated sewage will be used for horticulture and nondrinking purposes in operational facilities and staff quarters if any. Train washing requires 22 KLD by year 2055, generating 19 KLD sewage. Water demand will be 70 KLD for domestic purpose including staff quarters at Poonamalle depot resulting sewage will be 63 KLD.

72. To conserve and augment the storage of groundwater, it has been proposed to construct rainwater harvesting structures in the proposed depots to receive runoff from sloping roof of the depot as well as recharge of ground water in uncovered land area. On Depot potential for rainwater harvesting is 0.77 lakh cum per year from roof of structures in the depots. In addition, estimated quantity of 1.57 lakh cum per year will be available for ground water recharge.

73. Sewage will be generated from depot which could be treated up to the level so that it could be used for horticulture and non-drinking purposes in the Depot. For Poonamalle Bypass depot Sewage Treatment Plant (STP) and Effluent Treatment Plant (ETP) are proposed. The wastewater from depot will have oil, heavy metals grease and detergent as main pollutants. This has to be treated as per requirement of Tamil Nadu State Pollution Control Board, the standards for discharge of effluent on land for irrigation purposes are included in Annexure 11 Oil spilled in depot should be trapped in oil and grease trap and disposed to authorized collectors so as to avoid any underground/ surface water contamination. Oil that is mixed in water shall be removed in the ETP.

74. **Residual impact**. The stations will have an impact on the amount of sewage to be treated throughout the operational phase and, in case of insufficient treatment, indirectly have an impact on the water quality. Temporary leakages of the sewerage at the stations cannot be ruled out completely. Therefore, a minimal negative residual impact will exist.

75. Water demand at stations will impact the availability of this commodity which cannot be completely mitigated through rainwater harvesting. A minimal negative residual impact will therefore remain.

5.6 Land degradation

76. **Impact**. Change in land use and excavation of soil will lead to soil erosion. Measures must be taken to avoid damage to the topsoil (more specific) from median, and depot site topsoil. It has to be preserved and utilized. Soil excavation will be required for piling activities for metro piers. Muck from tunneling containing bentonite would also be generated in the project.

77. Corridor 4 construction is a material intensive activity. Huge quantity of different construction materials will be required for construction of elevated section and stations. These shall be sourced from the nearest source. Quarry operations are independently regulated activities and outside the purview of the project proponent. It is, nonetheless, appropriate to give consideration to the environmental implications in selection of quarry sources since poorly run operations create dust problems, contribute noise pollution, ignore safety of their employees, or cause the loss of natural resources. So, the construction material shall be sourced only from legalized and approved quarries.

78. Construction material waste, demolition waste and hazardous waste from construction equipment and construction vehicles can pollute air, water and soil. The procedure of demolition will be conducted as per the demolition plan prepared by the Contractor in consultation with CMRL. The existing structures should be demolished one after another cautiously.

79. C&D waste is part of solid waste that results from land clearing, excavation, construction, demolition, remodeling and repair of structures, roads and utilities. C&D waste has the potential to save natural resources (stone, river sand, soil etc.) and energy, its bulk which is carried over long distances for just dumping, its occupying significant space at landfill sites and its presence impedes processing of bio-degradable waste as well as recyclable waste. C&D waste generated from metro construction has potential reuse after processing and grading. The contractor will segregate and temporarily store the C&D waste till he transports and disposes it at sites approved by TNPCB, CMDA and CMRL for the project. Disposal of waste should follow good practice and some level of screening should be conducted. Normal construction waste can go to existing facilities conform to national systems, however when large scale spoil disposal will take place in specific designated locations this will need to be carefully managed.

80. Prior to demolition of any building or structure contractor has to assess if Asbestos Containing Material (ACM) is potentially present in the building or structure to be demolished. The initial investigation on the potential presence of ACM has to be executed by a competent and duly qualified person. If the presence of ACM is likely or confirmed, contractor has to prepare an Asbestos Removal and Disposal Plan prior to the demolition works, to be approved by the PIU.

81. During construction phase there would be establishment and operation of Batching Plant and Casting Yard which would be located in an area designated and allotted by CMRL away from habitation. If possible, these facilities will be located at least 500 m away from habitations and at least 1 km away from environmentally or ecologically sensitive area. Selection of the sites for batching plant and casting yard has to follow the criteria for site selection as laid down in Annexure 10 of this EIA with the final location and layout of the sites to be approved by MDBs prior to putting the site into use.

82. There would be significant movement of men, material and machinery in batching plant and casting yard. It is expected that both batching plant and casting yard would be located at same complex. Huge quantity of cement, aggregates and other construction materials would be used in batching plant and casting yard. There would be generation of dust, noise, flue gases and other contaminants from the working of heavy machinery for handling and transporting the construction materials. The mitigation measures for different aspects, such as the soil and groundwater quality baseline shall be collected by contractor prior to mobilization and shall be monitored during construction, have been elaborated in EMP.

83. Hazardous waste would mainly arise from the maintenance of equipment which may include used engine oils, hydraulic fluids, waste fuel, spent mineral oil/cleaning fluids from mechanical machinery, scrap batteries or spent acid/alkali, spent solvents etc.

84. The disposal of the hazardous waste should be as per the requirements given in the Hazardous Waste Management Rules 2016. The contractor will ensure that hazardous wastes from construction activity and equipment are labeled, recorded, stored in impermeable containment and for periods not exceeding mandated periods and in a manner suitable for handling storage and transport. The contractor shall maintain a record of sale, transfer, storage of such waste and make these records available for inspection. The contractor shall get Authorized Recyclers to transport and dispose Hazardous Waste, under intimation to the Project Authority.

85. During construction activities the contractor is responsible for providing and maintaining necessary (temporary) housing and allied facilities for the workforce in accordance with living standards approved by CMRL. Improper disposal of municipal solid waste generated by labour camps can pollute surface water bodies and groundwater. Burning of waste can cause air pollution. Construction workers are more prone to infectious diseases due to unsafe sexual activity and lack of sanitation facilities (water supply and human waste disposal) and insect vectors. Problems could arise due to cultural differences between workers from outside and local residents. Criteria for the camp management and the workers code of conduct are further specified under section 5.14, Occupational Health and Safety.

86. **Mitigation**. The construction activities will cause soil erosion during excavation. This can be mitigated by utilizing around 35 % of excavated soil for land filling purposes. The excavated top fertile soil is suggested to be preserved and used later for gardening and lawn establishment.

87. Subject to specifications issued by CMRL in the works contracts, the earth excavated during cut and cover and tunneling and displaced during piling will be used as backfill on the project. Such backfill will result in estimated surplus quantity of 0.94 million cum from Corridor 4. If this muck is not contaminated by hazardous substances such as heavy metals or POPs17, the contractor will be permitted to sell it as fill for activities outside the project; in case of hazardous contamination it will be disposed at permitted sites by licensed vendors

88. Sites for muck disposal will be decided by CMRL before start of construction in consultation with and after approval of TNPCB, Municipal Corporation/Municipalities and CMDA. The sites will be located away from residential areas, water bodies and ecologically sensitive locations as to avoid disrupting natural drainage. Spoil and waste disposal sites will be selected following the site selection criteria as included in annexure 10 and will be subject to approval of MDBs prior to use. Responsibility of disposal of this soil will lie with contractor and will be regulated by TNPCB rules. Bentonite slurries used in diaphragm wall construction should be reconditioned and reused wherever practicable. Disposal of residual muck containing bentonite, a natural clay,

¹⁷ Methods Manual of Soil Testing in India from Ministry of Agriculture or any other internationally recommended guideline/standards will be used for the soil investigation.

should be at a designated site away from water bodies due to its capacity to increase pH values and should follow the international good practice. The C&D waste would be handled and disposed off to waste processing facility or for back filling of low lying areas only if the area is covered afterwards with a good quality layer of topsoil of sufficient thickness, leaving no significant impact on environment.

89. Soil erosion by runoff will be controlled by installing proper drainage systems using contour information. Material will be stabilized by watering or other accepted dust suppression techniques. The muck shall be filled in the dumping site in layers and compacted mechanically. Suitable slopes will be maintained on the stockpile. Once the filling is complete, it will be protected by low walls, provided with a layer of good earth on the top and covered with vegetation. A muck disposal plan will be prepared by Contractor, which will be approved by CMRL.

90. As per Building & Other Construction Workers (BOCW Regulation of Employment and Conditions of Service) Act, 1996 the employer (contractor) is liable to arrange for sanitation, health care facilities of labours, free of charge. Labour camps will be in full compliance of BOCW Act.

91. It is estimated that about 5,784 people will work during peak construction activity on 50% sections of the corridors on site, in casting yards and depots. Estimated total population in the labour camps will be 5,784. The water requirement at camps will be 780 KLD, wastewater generation 492 KLD & municipal solid waste generation 1.3 ton per day. This is tentative and will vary depending on the construction schedule during construction.

- **Water supply:** Uncontaminated water for drinking, cooking, washing and health care must be provided to all workers in the labour camp.
- Sanitation Facilities: Construction sites and camps shall be provided sanitary latrines and urinals. Sewerage drains should be provided for the flow of used water outside the camp. Drains and ditches should be treated with bleaching powder on a regular basis. The sewage system for the camp must be properly designed by providing septic tanks, built and operated so that no health hazard occurs and no pollution to the air, ground or adjacent watercourses takes place. Garbage bins must be provided in the camp and regularly emptied and the garbage disposed in a hygienic manner. Labour camps should also be provided with proper ventilations and air cooling system.

92. Solid waste generated will have to be disposed in compliance with Municipal Solid Waste (Management & Handling) Rules, 2000, as amended to date. Municipal solid waste will be collected and taken away and disposed by municipality. Solid waste management facilities will be arranged by the construction contractors. Prior to commencement of the works contractor has to prepare a solid waste management plan, describing the expected amounts of waste, the handling and temporary storage of the waste and the final destination of the waste. In the waste management plan distinction has to be made between hazardous and non-hazardous waste including the procedures to establish the waste category.

93. Solid waste generation from passengers at stations is likely to be 342 ton per day. Nonhazardous solid waste generated in stations will be collected and transported to the disposal sites by Chennai municipal corporation.

94. The solid waste generated from the Depot will be taken by the cleaning contractor weekly and disposed to the municipal waste disposal sites. It is estimated that municipal solid waste of about 0.18 ton per day will be generated from Poonamalle Bypass depot. During operational phase the depot will need to have in place a Pollution Prevention and Waste Management plan and needs to have permanent facilities installed to handle and temporarily store both hazardous and non-hazardous waste. Storage of lubricants, oil, fuel and other noxious fluids must take place within roofed, rain-exclusive containment structures with concrete or non-permeable flooring material and should have a capacity of at least 115% of the volume of the largest container stored, constructed only in locations with zero probability of flooding during heavy rains. Training in spill prevention and spill response should be provided to all workers involved in refueling or equipment servicing.

95. **Residual impact**. Since it will take some time for soil to settle after the construction works a minimal negative residual impact for soil erosion and ground subsidence might exist, especially at muck disposal sites. Although contractor has to take every effort to prevent contamination of construction yards and waste disposal sites, a certain degree of pollution cannot be ruled out. Therefore, a minimal negative residual impact exists, especially if the contractor's liability for any pollution that has arisen is insufficiently covered.

96. The project will use large amounts of construction material and thus will deplete construction material sources to a certain extent. Materials shall be sourced from the nearest source and from legalized and approved quarries. Requirement of electricity will be optimized by proper use of natural day/night light. Full height platform screen doors will be implemented so as to conserve energy for ventilation and air conditioning in underground stations. Green Building features will be implemented in station design. Residual impact is considered minimal negative.

97. Locations will be sought that are away from residential areas, water bodies and environmentally or ecologically sensitive areas. It cannot be ruled out that construction yards and muck disposal sites could cause a change in drainage patterns around the sites. When sites are carefully selected the residual impact will be minimal negative.

5.7 Flora and Fauna

98. **Impact**. The construction of Corridor 4 were felled of about 894 public trees in total, 187 of these are located at the Poonamallee Bypass depot. site. None of the trees to be cut are rare or endangered species. With removal of these trees, the process for CO2 conversion will get affected and the losses are reported below:

•	Total number of Trees	:	894
•	Decrease in CO ₂ absorption due to	loss of trees:	2,682 kg/year
•	Decrease in Oxygen production due	e to tree loss:	9,834 kg/year

99. Amount of oxygen produced per tree per year for urban forests was adopted as 11 kg (Oxygen Production by Urban Trees in the United States, David J. Nowak, Robert Hoehn, and Daniel E. Crane, Arboriculture & Urban Forestry 2007). Based on model for tropical trees (Tree allometry and improved estimation of carbon stocks and balance in tropical forests, J.Chave et al, Oecologia 2005) and wood density for Asian species as per Food Agriculture Organization (FAO), CO2 sequestered per year per tree has been estimated for this report as 3 kg for typical tree of 30 cm girth.

100. CMRL has obtained the CRZ clearance from TNCZMA prior to contractor's mobilization. CMRL has ensured the compliance of the general conditions and specific conditions set forth in the CRZ clearance.

101. Corridor 4 passes underneath Panagal Park which is a community park; underground station is proposed at the south-east corner of the park with access on roads at its periphery. The station will be constructed by cut and cover, loss of trees and birds and animals dependent on trees might be dislocated.

102. Artificial Light at Night (ALAN) has been linked to important maladies such as cancer incidence and reduced skeletal muscle function. Effects of ALAN on wildlife have been recorded: influences on nest site selection by sea turtles, changes in the diversity and behavior of nocturnal moths, and alterations to ecological interactions of insects. Trees in close proximity to sources of artificial lights budburst earlier than trees away from lights. In birds, a positive phototaxis effect (attraction to lights) resulting in high mortality due to collision with illuminated buildings and windows. More subtle effects of light pollution on birds are also known, such as disorientation, alterations in reproductive physiology, disruption of circadian rhythms, and changes of flight behavior (Light pollution is greatest within migration passage areas for nocturnally-migrating birds around the world, Sergio A. Cabrera-Cruzetal, Scientific Reports volume 8, Nature). Independently the elevated structure could impede flight of birds.

103. The elevated section of corridor 4 will pass Porur Lake. As discussed in section 4.4.1 Porur lake is assumed to have little ecological value, therefore no additional ecological mitigation measures are foreseen for this lake other than prevention of surface water pollution as described in section 5.5.

104. **Mitigation**. Location for compensatory plantation will be decided by CMRL in consultation with owner of the land as well Forest Department such that displacement does not become necessary. Tamil Nadu Forest Department, Government of Tamil Nadu is responsible for the conservation and management of the trees. It is proposed to plant twelve saplings for each tree to be cut. Hence 12,146 trees shall be planted. The native plant species and miscellaneous indigenous tree species are recommended for plantation.

105. At Panagal Park, an ecological restoration plan is required with a process of assisting the recovery of the ecosystem that will have been degraded, damaged or destroyed due to the construction of Corridor 4. Passive restoration actions may include fencing and installing informatory signs in sensitive areas during construction, which will minimize construction impacts. Active restoration actions include soil decompaction, revegetation, removal formal or informal trails out of sensitive area. These actions will accelerate ecosystem recovery and promote the health and longevity of the Panagal Park.

106. In addition to the compensatory plantation, green belt area will be developed for the total length of elevated corridor using native shrubs, herbs and grasses. A central ribbon area will be planted with small tree species which grows up to height of 4-5 m. The peripheral ribbons will be planted with grasses and perennial herbs interspersed with medicinal plants like Tulasi, Vinca, Evolvulus, Hemidiscus etc. Appropriate shade loving and light loving trees could be preferred depending on the location. In a case study of green belt in cement industry in India, ambient concentrations of SO2 was found to reduce by 39%, NOx by 40%, SPM by 37%, THC by 86%, CO by 93%, VOCs by 87.1% across the green belt and the overall air pollutant removal efficiency was calculated as 63% (Assessment of Carbon Sequestration Ability of Trees for Adopting in Green Belt of Cement Industries in Karnataka, March 2016, Central Pollution Control Board Zonal Office South). Thus the green belt will provide aesthetic view of elevated track and also helps to serve as dust and noise absorbent barrier.

107. Efforts will be made to minimize the cutting of trees by transplantation of the young trees. Transplantation will be done in coordination with the forest department.

108. Lighting at Panagal Park station will be kept to the minimum and of frequencies and brightness which do not affect bird behavior. Construction and operation of the metro viaduct on these sections could disturb nesting and breeding due to noise

109. **Residual impact**. An estimated and total 894 trees were felled for the project. Compensatory plantation will be done in a ratio of 12 saplings against each tree felled. However because of the time it will take for the saplings to mature the short term residual impact will be minimal negative. Once the saplings have matured the residual impact will be positive.

5.8 Private land and buildings

110. **Impact**.. The proposed project will require transfer of $31,797 \text{ m}^2$ government land out of which 29,100 m² is for Poonamallee depot and acquisition of 14,022 m² private land out of which 7,100 m² is for depot. 1,031 families comprising title holders, tenants and non-title holders who are residents physically displaced and business owners economically displaced due to acquisition of land and buildings will be affected by the project. These families comprise a total of 4,755 project affected persons. These figures will be revised upon completion of field socio-economic survey of affected families, revision of detailed drawings, preparation of land plan and micro plan of impacts.

111. **Mitigation**. The impacts due to land acquisition, resettlement and socio-economic impacts are assessed in the separate Resettlement Plan for the project.

112. **Residual impact** The project affected people will be duly compensated as laid down in the Resettlement Plan for the project. Residual impact is expected to be minimal negative.

5.9 Aesthetics

113. **Impact.** The introduction of metro system implies a change in streets through which it will operate. An architecturally well designed elevated section can be pleasing to the eyes of beholders. Recent metro rail projects have attempted to incorporate this objective in their designs. Since a low profile would cause the least intrusion, the basic elevated section has been optimized at this stage itself.

114. **Mitigation.** During design stage, the stakeholder engagement will be conducted to disclose the station designs and to incorporate the feedbacks.

115. **Residual impact.** An architecturally well designed elevated section can be pleasing to the eyes of beholders. Residual impact is expected to be minimal negative.

5.10 Public property/ infrastructure/ utility structures

116. **Impact**. Corridor 4 is planned to run through the urban area above the ground i.e. elevated in less densely populated and underground in populated and sensitive areas. The alignment will cross drains, large number of sub-surface, surface and utility services, viz. sewer, water mains, storm water drains, telephone cables, overhead electrical transmission lines, electric pipes, traffic

signals, roadside lights etc. These utilities/ services are essential and have to be maintained in working order during different stages of construction by temporary/permanent diversions or by supporting in position.

117. The Organizations / Departments responsible for concerned utility services are reported in Table 5-10.

S.no	Organization/ Department	Utility/Services
1.	PWD / Chennai Municipal Corporation	Road
2.	Chennai Municipal Corporation/ Chennai Metro Water Supply and Sewerage Board (CMWSSB)	Sewerage and drainage lines. Water mains and their service lines, including hydrants and fountains etc., water treatment plants, pumping stations, Roads, surface water drains, nallahs, sewer lines, streetlights, high mast lights etc.
3.	NHAI	National Highways
4.	TNHD	State Highways
5.	BSNL (OFC and Telephone Cables)	Tele cables, junction boxes, telephone posts, O.H lines
6.	Airtel, Vodafone, Idea, Jio	Telecommunications cables, junction boxes, telephone posts, etc.
7.	Power Grid Corporation of India Ltd.	HT towers, cables
8.	Irrigation Dept.	Canal
9.	BPCL	Gas pipelines
10.	Gas Authority of India (GAIL)	Gas pipelines
11.	Chennai Corporation and Tamil Nadu Generation and Distribution Corporation Limited (TANGEDCO)	HT/other overhead Power lines

 Table 5.10: Organizations Responsible for Utilities and Services

118. The alignment of the metro will negotiate a number of utilities which will have to be maintained in working order during construction. They may require temporary or permanent diversion subject to their depth, details such as piling configuration or span of viaduct, utility protection measures, etc. Utility lengths to be diverted are as follows: sewer and water supply lines (depth 2.5m below ground) 3,420m and 15,000m between Lighthouse and Kodambakkam Flyover, and Power House and Poonamalle Bypass respectively; telecom cables (depth 1m to 4m below ground) 40,919m and 185,990m respectively; above ground HT/LT electric cables 22,888m Power House and Poonamalle Bypass.

119. During construction phase there will be great amount of issues encountered for the utility system/infrastructure facilities already existing within the alignment. The most important and hazardous aspect will be pipelines network running along the alignment. A decision has to be taken regarding encasing these pipelines as shifting/relocating will be of great inconvenience to the residential areas.

120. During construction period, complete/partial traffic diversions on road will be required, as most of the construction activities are along the road. In order to retain satisfactory levels of traffic flow during the construction period, traffic management and engineering measures need to be taken. They can be road widening, traffic segregation, one-way movements, traffic diversions, acquisition of service lanes, etc.

121. Corridor 4 does not pose any substantial direct physical risk to existing buildings since there is distance of more than 15 meters between buildings and proposed alignment except at a few shops the alignment is passing over the temporary shops. Here special care has to be taken for safety of the structures during construction when they will be shifted for short duration.

122. **Mitigation**. Shifting of pipelines is a hazardous operation of relocation and therefore a proper HAZOP study (& risk analysis) has to be conducted by contractor and CMRL during preconstruction period for any kind of handling of this issue in concurrence with gas supply agency. The similar study has to be conducted for water supply and high tension lines with the concurrence with concern agencies.

123. Delayed approvals and diversion of utilities can affect construction schedule while damage to utilities can cause disruption to essential services to the citizens. Ahead of start of construction on the respective sections, diversion plans will have to be prepared based on updated location drawings and concurrence of respective agencies. Preferably they will have to be diverted by the agencies themselves.

124. Span and pile arrangement of the viaduct may be suitably adjusted to ensure that pier foundations do not foul with major underground utilities. They will be diverted either temporarily or permanently before or during construction in those sections where the alignment cannot be fine-tuned to avoid conflict with utilities.

125. Preparation of Traffic management Plan and maintenance of diverted roads in good working condition to avoid slow down and congestion shall be a prerequisite during construction period.

126. Various construction technologies are in place to ensure that traffic impedance is done at the minimum. They are:

• The requirement would be mainly along the central verge/ side of the road

• As regards to the alignment cutting across a major traffic corridor, 'Box Girder Construction Technology' would be applied to prevent traffic hold-ups or diversions of any kind

• Cut and cover at underground stations will be employed to ensure that traffic impedance is minimized

127. The basic objective of the following guidelines is to lay down procedures to be adopted by contractor to ensure the safe and efficient movement of traffic and also to ensure the safety of workmen at construction sites. The Contractor shall develop detailed and robust traffic management plans consistent with the Indian Roads Congress (IRC) on Traffic Management in work zones (IRC:SP:55-2014), prior to mobilization for respective sections with site- or station-specific plans and measures to minimize the overall impact on traffic throughout the construction and operation periods.

• All construction workers should be provided with high visibility jackets with reflective tapes as most of viaduct and station works are on the right-of-way. The conspicuity of workmen at all times shall be increased so as to protect from speeding vehicular traffic.

- Warn the road user clearly and sufficiently in advance.
- Provide safe and clearly marked lanes for guiding road users.
- Provide safe and clearly marked buffer and work zones
- Provide adequate measures that control driver behaviour through construction zones.

- The primary traffic control devices used in work zones shall include signs, delineators, barricades, cones, pylons, pavement markings and flashing lights.
- Advance traffic updates/ information on communication systems for users of affected roads.
- Efforts will be given to divert traffic to roads wide enough to accommodate extra traffic.
- Incorporation of community safety considerations into plan design, especially at locations such as Kutchery Road where buildings are close to the construction site.

Residual impact. A great amount of issues with the utility system/infrastructure facilities already existing within the alignment is expected to be encountered. However by adjusting span and pile arrangement of the viaduct and temporarily or permanently diversion of utilities in those sections where the alignment cannot be fine-tuned, the residual impact can be reduced to nil.

5.11 Detailed Noise and Vibration Modelling

128. **Impact**. Noise is a contributing factor to degradation of human health. The noise pollution will be generated by construction activities, mainly due to demolition of structures to be removed; installation of earth retaining structures; pile driving where cast-in-situ is not feasible; blasting in rock etc., and also due to the construction equipment if they are not in maintained condition. Also during such activities if existing vehicular traffic is not properly diverted then congestion and then continuous honking habits will also lead to incremental noise levels which are of indirect nature. This will also pave way for vehicular air pollution which is also to be minimized effectively. Corridor 4 construction is equipment intensive.

129. Annexure 2 lists a total of 270 identified receptors such as schools, hospitals and places of worship. From this list 10 representative sensitive receptors were chosen for initial noise modeling. In addition to these receptors a total of 8 high-rise residential buildings were identified as potential sensitive receptors during the noise modeling carried out. Initial modeling is based on a design speed of metro of 80 kmph and was carried out over the lifetime of the project, including increase in estimated number of trains over time as per DPR.

130. The major sources of noise during construction phase are due to operation of various construction equipment. Permitted number of impacts (example piling) at various noise levels is prescribed under Model Rules of the Factories Act, 1948. Actual noise from construction equipment (Lmax) measured at 50 feet distance (Construction Noise Handbook August 2006, FHWA, USA) ranged from 76 dB(A) to 84 dB(A); vibratory pile driver at 101 dB(A). The noise levels generated by various construction equipment are given in Table 5-11.

 Table 5.11: Average Noise Levels Generated by Operation of Various Construction

 Equipment

Equipment	Typical Noise Level (dBA) at 50 ft from source
Air Compressor	81
Backhoe	80
Ballast Equalizer	82
Ballast Tamper	83
Compactor	82
Concrete Mixer	85
Concrete Pump	82
Concrete Vibrator	76

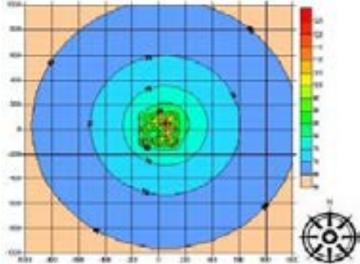
Equipment	Typical Noise Level (dBA) at 50 ft from source
Crane Derrick	88
Crane Mobile	83
Dozer	85
Generator	81
Grader	85
Impact Wrench	85
Jack Hammer	88
Loader	85
Paver	89
Pile Driver (Sonic)	96
Pneumatic Tool	85
Pump	76
Rock Drill	98
Roller	74
Scraper	89
Shovel	82
Truck	88

Source: FTA Transit Noise and Vibration Guidance Handbook, May 2006

Equipment	Actual Lmax Noise Level (dBA) at 50 ft from source
Auger drill rig *	84
Compressor *	78
Dump truck *	76
Excavator *	81
Flatbed truck *	74
Front end loader *	79
Vibratory Pile driver *	101
Press Pile	70
Batching Plant	90
Booster pump	80

* Source: Construction Noise Handbook, US FHWA, Aug 2006

131. During construction phase, there will be significant increase in vehicular movement for transportation of construction material. In addition to the noise mentioned above, there will also be background noise of the usual traffic resulting due to traffic congestion. During construction phase, the increase in vehicular movement is expected to increase up to a maximum of 5 to 6 trucks/hour.


132. The effect of high noise levels on the operating personnel has to be considered as this may be particularly harmful. It is known that continuous exposures to high noise levels above 90 dB(A) affects the hearing acuity of the workers/operators and hence, should be avoided. To prevent these effects, it has been recommended by Occupational Safety and Health Administration (OSHA) that the exposure period of affected persons is limited (Table 5-12).

Maximum equivalent continuous Noise level dB(A)	Unprotected exposure period per day for 8 hrs/day and 5 days/week
90	8
95	4
100	2
105	1
110	0.5
115	0.25
120	No exposure permitted at or above this level

Table 5.12: Maximum Exposure Periods Specified By OSHA

133. Noise modelling during construction phase was carried out using CPCB/ MoEF&CC approved noise model "DHWANI" assuming that all the equipment emit noise simultaneously considering as worst-case scenario. The spatial variation of the predicted noise levels at an interval of 5 dB(A) without control around the project site on the area of 1 km x 1 km are shown in Figure 5.3. Modelling result shows that noise level meets the Ambient Noise Quality Standards (ANQS) 55 dB(A) (average between 6 am to 10 pm) at a distance of about 900m. Uncontrolled noise levels generated from construction equipment, in the range of 94-124 dB(A) have been considered for prediction purpose. However, the CPCB standards specify to limit the construction equipment to ensure that noise emission specifications for such equipment should not exceed 75 dB(A). The noise levels predicted here is without mitigation measures. It is assumed that with the adoption of the mitigation measures noise levels will be further restricted within very short distances from the source. With respect to occupational exposure, the permissible threshold is 90 dB(A) (continuous exposure over 8 hours). Thus, based on the modelling results it can be concluded that all sensitive receptors (i.e. labour colonies) should be located beyond 125 meters from the noise generating source location during construction activities.

Figure 5-1: Spatial Variation of Construction Equipment Noise Levels dB(A)

134. Operation phase is extremely important from environmental issue viz. noise levels. The noise will be generated due to friction of the rolling stocks on the tracks which will generate

incremental noise levels. The major noise level generating activities includes 1. Approach and breaking of rolling stocks 2. Rolling stock leaving from station, 3. During its travel between two stations and 4. Announcements on the Metro station.

135. Noise generations for metro operation activities have been recorded from past experience from existing metro railways in India as well as project authorities. The following data includes various noise levels in above activities. During the operation phase the main source of noise will be from running of metro trains. Noise radiated from train operations and track structures generally constitute the major noise sources. Airborne noise is radiated from elevated structures. The noise level at 2m distance from the rail alignment is about 73 dB(A) which is higher than the CPCB permissible limit of 65 dB(A), and is much higher than the 50 dB (A) daytime limit for silence zone. The noise level reduces with distance logarithmically. Refer Tables 5-13 and 5-14.

S. No	Description	Average Noise Levels dB(A)
		Elevated tracks
1	Background Noise Level	64.0± 1.5
2	Train entering the Platform (Max)	84.0± 1.5
3	Train leaving the Platform (Max)	84.0± 0.5
4	Train stopping in Platform	79.0± 0.0
5	Train stationary in Platform	76.0± 0.5
6	Train starting from Platform	78.5± 1.0
7	Train braking	86.0± 0.0
8	Announcement	74.0± 0.5
Overall		76.0± 7.0

 Table 5.13: Exterior Noise Levels in Metro Stations

S.No	Description	Average Noise Levels dB (A)					
		Elevated tracks					
1	Train stationary	62.0±1.0					
2	Train starting	62.0±1.0					
3	Train motoring	70.0±2.5 72.0±2.0					
4	Train coasting						
5	Train at max. speed	78.0±1.0					
6	Train decelerating	69.0±0.5					
7	Train stopping	64.4±1.0					
8	Train braking	74.5±1.0					
9	W/R Noise	75.0±1.5					
10	Door operations (max.)	-					
Overal		69.0±5.0					

2. Source: Studies carried out by Central Road Research Institute (CRRI) for metro projects in India 232.

The main source of noise from depot is the operation of workshop. The roughness of the contact surfaces of rail and wheels and train speed are the factors which influence the magnitude of rail -

wheel noise. The vibration of concrete structures also radiates noise. Due to less activity and the absence of sensitive receptors near the depot site, no impact on the around the depot due to noise is anticipated.

136. As part of the detailed design a noise modeling and assessment along the alignment should be conducted prior to start of construction by CMRL and contractor. At sensitive receptor locations within 200 m along the alignment (where operational stage noise level is expected to be higher than permissible limits). Appropriate mitigation measures including design, height and length of noise barriers at sensitive receptor locations shall be determined by CMRL and contractor and agreed by MDBs.

137. **Mitigation**. In order to establish feasibility of noise mitigation for this project initial noise modeling has been carried out for this EIA for 6 schools, 2 churches, 2 hospitals and 8 high-rise residential buildings. The predicted noise levels during construction phase are summarized in table 5-15.

								C	onstructio	on				
					W	ithou	t Barri	ier			V	/ith Ba	arrier	
SI.N o			Baseline Noise levels db(A)		Predict ed Noise levels db(A)	Final Noise ¹⁸		Status - No Barrier		Mitigati on - Model	Final Mitigated Noise		Status with barrier	
			L _{eq} , d	L _{eq} , n	L _{eq} ,d	L _{eq} , d	L _{eq} , n	L _{eq} ,d	L _{eq} ,n ¹⁹	L _{eq} ,d & Leq,n	L _{eq} , d	L _{eq} , n	L _{eq} ,d	L _{eq} ,n
1	St. Bede's Anglo Indian Hr. Sec. School	125	71. 4	69. 2	61.10	71. 79	69. 83	No- Impact	No- Impact	48.10	71. 42	69. 23	No- Impact	No- Impact
2	Rosary Church	85	65. 6	63. 6	64.40	68. 05	67. 03	No- Impact	Impact	51.40	65. 76	63. 85	No- Impact	No- Impact
3	Luz Church	36	73. 5	73. 6	53.30	73. 54	73. 64	No- Impact	No- Impact	55.10	73. 56	73. 66	No- Impact	No- Impact
4	SIET College	240	71. 6	65. 8	55.40	71. 70	66. 18	No- Impact	No- Impact	42.40	71. 61	65. 82	No- Impact	No- Impact
5	Meenaksh i college for women	16	74. 3	55. 4	78.90	80. 19	78. 92	Impact	Impact	65.90	74. 89	66. 27	No- Impact	Impact
6	Vijaya Hospital	200	69. 4	64. 0	69.90	72. 67	70. 89	Impact	Impact	64.10	70. 52	67. 06	No- Impact	Impact
7	Narayana n E-Tecno School	82	57. 6	51. 5	74.00	74. 10	74. 02	Impact	Impact	59.50	61. 66	60. 14	Impact	Impact

Table 5.15: Summary of predicted Noise Levels during construction phase

¹⁸ The final noise presented in this table for residential receptors is based on daytime piling operations since modeling has shown this activity is considered to cause the highest noise levels. Piling operations will not be carried out during nighttime.

¹⁹ As per SHE Manual no construction work shall be carried out during nighttime near sensitive receptors

								C	onstructio	on				
						ithou	t Barri	ier			V	Vith Ba	arrier	
SI.N o	Name of the Sensitive Receptors	Distan ce (m)	No lev	eline vise vels (A)	Predict ed Noise levels db(A)		nal se ¹⁸		s - No rier	Mitigati on - Model	Mitigated		Status with barrier	
			L _{eq} , d	L _{eq} , n	L _{eq} ,d	L _{eq} , d	L _{eq} , n	L _{eq} ,d	L _{eq} ,n ¹⁹	L _{eq} ,d & Leq,n	L _{eq} , d	L _{eq} , n	L _{eq} ,d	L _{eq} ,n
8	The Holy Cross Matric Hr. Sec. School	17	63. 3	56. 9	64.00	66. 67	64. 78	Impact	Impact	59.20	64. 73	61. 22	No- Impact	Impact
9	Governme nt Hospital	18	62. 9	56. 2	73.80	74. 14	73. 87	Impact	Impact	72.20	72. 68	72. 31	Impact	Impact
10	Sri Ramachan dra Dental College	132	72. 2	66. 2	58.40	72. 38	66. 87	No- Impact	No- Impact	50.80	72. 23	66. 32	No- Impact	No- Impact
11	Prestige Bellavista	89	63. 4	59. 7		85		Impact			82		Impact	
12	Prince High Land	20	64. 9	58. 3		87		Impact			85		Impact	
13	Pruva Jade	20	67. 1	63. 5		95		Impact			89		Impact	
14	Lancor Kiruba Cirrus	9	67. 2	63. 2		89		Impact			87		Impact	
15	Ceebros	43	68. 3	61. 5		88		Impact			85		Impact	
16	Cerus- Appaswa my	33	61. 6	58. 0		86		Impact			79		Impact	
17	Kodambak kam Railway station	20	62. 7	54. 3		96		Impact			89		Impact	

								C	onstructio	on				
					W	ithou	t Barri	ier		With Barrier				
Name of SI.N the o Sensitive Receptors		Distan ce (m)	Baseline Noise levels db(A)		Predict ed Noise levels db(A)	Final Noise ¹⁸		Status - No Barrier		Mitigati on - Model	Final Mitigated Noise		Status with barrier	
			L _{eq} , d	L _{eq} , n	L _{eq} ,d	L _{eq} , d	L _{eq} , n	L _{eq} ,d	L _{eq} ,n ¹⁹	L _{eq} ,d & Leq,n	L _{eq} , d	L _{eq} , n	L _{eq} ,d	L _{eq} ,n
18	Luz Golden enclave	46	64. 2	55. 6		85		Impact			82		Impact	

138. Table 5-15 shows that even with the use of noise barriers construction noise cannot be fully mitigated (less than 3dB(A) increase from baseline noise) at all locations, especially during nighttime. High levels of construction noise can be related to piling operations in those instances where in-situ casting is not possible. Piling operations will be restricted to day time hours only, the piling operation would be short term, few hours in a day and therefore the significance of the noise disturbance is not continuous and can be reduced by carefully planning the piling operations.

139. During construction various measures such as noise mufflers, enclosures, low-noise equipment and temporary noise barriers will reduce noise. Wherever baseline noise already exceeds the standards, only 3dB of noise increase is allowed. If baseline noise is below the CPCB and IFC-EHS standards, the construction noise has to be less than level prescribed in these standards. Vehicles and construction equipment will be in good state of maintenance, where feasible of low noise design, fitted with noise mufflers. Other mitigation measures to be taken are:

- At sensitive locations, auger piling will be carried out in place of mechanical (by driven) piling which will generate less noise than mechanical piling (around 70-75 dB(A)). Also 2m high barricade of GI sheet will be installed on all sides of piling operations. This could effectively cut down noise levels by 10-15 dB (A). Piling operations will be restricted during day time hours only;
- Noisy construction activities will be enclosed by use of transportable noise screens between noise sources and identified noise sensitive areas for the duration of noisy construction activities;
- RCC pumps will be covered from all sides. Bends and excessive head will be avoided;
- DG sets have to comply with the maximum noise levels and acoustic enclosure specifications as set forth in the CMRL Health & Safety Manual;
- If needed, construction traffic may be confined to certain routes (based on infrastructure capacity) or restricted to certain off -peak hours (that is, to reduce noise pollution at night or to avoid commuting and school hours during the day);
- Local residents and shop owners will be informed about the nature and duration of intended activities including the construction method, probable effects, quality control measures and precautions prior to commencement;
- Noise monitoring is required during construction, including field observations and measurements.

140. During the operational phase the project rail noise was predominantly less than the GOI noise Standards and was identified to be less than the existing ambient noise, even without noise barriers. The results of the noise modeling for the operational phase are presented in Table 5.16.

			Operation										
			Base	eline		Wit	hout B	arrier			With	Barrie	r
SI N o	Name of the Sensitive Receptors	Distan ce (m)	No lev db		Predio Noise l db(evels	Final Noise ²⁰		Remark s	L _{eq} , d	L _{eq} , n	Fina I Noi se Lev el	Statu s
			L _{eq} , d	L _{eq} , n	L _{eq} ,d	L _{eq} , n	Leq, d	Leq ,n					
1	St. Bede's Anglo Indian Hr. Sec. School	125	71	69	Note 1	Not e 1	71	69	No- Impact	Not e 1	No te 1	71	No- Impa ct
2	Rosary Church	85	66	64	Note 1	Not e 1	66	64	No- Impact	Not e 1	No te 1	66	No- Impa ct
3	Luz Church	36	74	74	Note 1	Not e 1	74	74	No- Impact	Not e 1	No te 1	74	No- Impa ct
4	SIET College	240	72	66	Note 1	Not e 1	72	66	No- Impact	Not e 1	No te 1	72	No- Impa ct
5	Meenakshi college for women	16	74	55	Note 1	Not e 1	74	55	No- Impact	Not e 1	No te 1	74	No- Impa ct
6	Vijaya Hospital	200	69	64	60	59	70	65	No- Impact	56	55	70	No- Impa ct
7	Narayanan E- Tecno School	82	58	52	51	50	58	54	No- Impact	36	35	58	No- Impa ct
8	The Holy Cross Matric Hr. Sec. School	17	63	57	49	46	63	57	No- Impact	35	34	63	No- Impa ct
9	Government Hospital	18	63	56	67	66	59	58	No- Impact	51	51	63	No- Impa ct

Table 5.16: Summary of predicted Noise Levels during operational phase

²⁰ The noise levels for the high rise buildings are predicted per floor. The noise levels presented in this table are for the floor with the highest predicted noise levels

								Opera	ation				
			Base	eline		Wit	hout B	arrier			With	Barrie	r
SI · N o	Name of the Sensitive Receptors	Distan ce (m)	lev	iise vels (A)	Predi Noise db(levels	Fin Noi:		Remark s	L _{eq} , d	L _{eq} , n	Fina I Noi se Lev el	Statu s
			L _{eq} , d	L _{eq} , n	L _{eq} ,d	L _{eq} , n	Leq, d	Leq ,n					
1 0	Sri Ramachandra Dental College	132	72	66	56	54	72	66	No- Impact	52	51	72	No- Impa ct
1 1	Prestige Bellavista	89	63. 4	59. 7	56.6	47			No- Impact	44.1	34. 5		No- Impa ct
1 2	Prince High Land	20	64. 9	58. 3	58.4	48.8			No- Impact	45.6	36. 1		No- Impa ct
1 3	Pruva Jade	20	67. 1	63. 5	60.8	51.2			No- Impact	47.4	37. 9		No- Impa ct
1 4	Lancor Kiruba Cirrus	9	67. 2	63. 2	61.5	51.9			No- Impact	47.9	38. 4		No- Impa ct
1 5	Ceebros	43	68. 3	61. 5	59.4	49.9			No- Impact	46.3	36. 8		No- Impa ct
1 6	Cerus- Appaswamy	33	61. 6	58. 0	57.4	47.8			No- Impact	44.3	34. 8		No- Impa ct
1 7	Kodambakkam Railway station	20	62. 7	54. 3	Note 1	Not e 1			No- Impact	Not e 1	No te 1		No- Impa ct
1 8	Luz Golden enclave	46	64. 2	55. 6	Note 1	Not e 1			No- Impact	Not e 1	No te 1		No- Impa ct

Note 1: Located at the underground section of corridor 4, therefore no operational impact is expected

141. Although the modeling has shown noise barriers might not be necessary, to be on the conservative site the noise modeling report suggests noise barriers to be put in place near curves in the alignment and at station locations.

142. **Embedded Measures**: Noise barriers shall be placed along the curved portion of the viaduct and at stations during operation. The ballast-less track supported on two layers of rubber pads can reduce track noise and ground vibrations. In addition, providing skirting of coach shell covering the wheel will screen any noise coming from the rail wheel interaction as of propagating beyond the viaduct. Screening of noise can be ensured by providing parabolic noise barriers on

each side of the track along the curved portion of the viaduct and at stations during operation. Polycarbonate²¹ noise barriers 15 mm to 25 mm are known to reduce noise level by between 30 dB to 33 dB. Elevated stations located at the median of existing roads will be 140 m long and 24 m wide. In view of adequate right of way of road, the stations will be constructed on portal frames. The typical elevated station consists of three levels: ground, concourse and platform. Passenger facilities, operational and commercial areas are provided at the concourse level. The viaduct is 2-level comprising space for the future construction of an elevated road at lower level with a minimum vertical clearance of 5.50 m above road level and metro at the higher level.

143. Additional Measures- Baffle wall as parapets will be constructed up to the rail level so as reduce sound levels. Noise at source will be controlled or reduced by incorporating suitable feature in the design of structures and layout of machines and by use of resilient mounting and dampers etc. The roughness of running surfaces will be reduced through regular maintenance of wheels and tracks and will be considered for replacing traditional jointed track with continuously welded rail. Also, noise controls at the source will be installed for improved sound-proofing and other noise reducing features will be installed such as engine enclosures and shielding of wheels with vehicle-mounted shrouds.

Table 5.17	: Noise Barrier for Noise Reduction	
Place of Noise Barrier	Height of noise barrier	Noise reduction
On the viaduct in front of yard	4m (3.5m Absorptive+0.5m transparent green color	15 dB(A)
On washing yard (s curve)	5m (Aluminium foam noise barrier) yellow color	/17 dB(A)
On the back side boundary wall	3m (100% absorptive) blue color)	13 dB(A)
On the both sides of metro yard shade	3m (100% absorptive) blue color)	13 dB(A)

144. Noise barriers are recommended with noise reduction possibilities in Table 5.16.

145. Table 5-15 shows that noise reduction is possible from 13-17 dB(A) after installation	on of
noise barrier. Therefore, study suggested that noise barrier is the best option to reduce	e the
instantaneous noise generated by metro; tree plantation is not a scientific option for reducti	on of
noise levels.	

146. Efforts should be made to keep the noise levels under control by appropriate noise attenuation and adopting employee safety measures. Temporary route direction markings will be placed in appropriate locations.

147. To reduce the harmful effects, personnel working at high noise levels would be provided with noise protective gears such as ear mufflers, sound barriers etc. Vehicles used for transportation of construction materials would be equipped with silencers. Careful planning has been made to operate the construction equipment to have minimal disturbances. The construction equipment's will be in use during the daytime and their noise levels would be monitored as per

²¹ Noise barriers consisting of 15mm thick UV coated clear transparent polycarbonate sheets meeting the criteria for acoustic performance as per EN 1793 and mechanical and structural performance as per EN 1794 including necessary structural galvanized steelwork and rubber gasket all around, have been included in the tender document. The sound transmission class rating corresponding to sound attenuation of 30dB or above is required.

CPCB standards. Besides other measures such as use of low-noise equipment and ensuring good maintenance, trying to avoid using high-noise equipment simultaneously at the same section etc. will also be implemented to minimize construction noise.

148. Exposure of workers to high noise levels will be minimized by measures such as the following:

- Personal protective equipment such as passive or active ear-muffs
- Use of electric instead of diesel powered equipment
- Use of hydraulic tools instead of pneumatic tools
- Acoustic enclosures for noise generating construction equipment like DG sets
- Scheduling work to avoid simultaneous activities that generates high noise levels
- Job rotation
- Sound-proof control rooms
- Automation of equipment and machineries, wherever possible.

149. **Residual impact**. During construction, especially during pile driving operations, a residual noise impact on sensitive receptors will exist. However the impact will be temporary, not continuous and only during daytime Operation of the metro will generate a certain amount of noise. The detailed design will incorporate features to reduce the noise and vibration levels. Detailed analysis (computer modeling) of noise will be conducted for each of the identified sensitive receptors based on the detailed engineering design and will be finalized prior to contractor's mobilization. It is expected the detailed mitigation measures will be able to reduce the noise to an extent that the increase is less than 3dB(A) and will be able to reduce vibration to levels under the human annoyance threshold. However, a minimal negative residual impact will remain.

5.12 Vibration

150. As part of the detailed design a noise and vibration modeling and assessment along the alignment should be conducted prior to start of construction by CMRL and contractor at sensitive receptor locations within 62 m along the alignment (where operational stage vibration level is expected to be higher than permissible limits). As part of this EIA an initial vibration assessment has been conducted in which a general vibration assessment for both construction and operational phase has been carried out as well as an assessment of the vibration impacts on 13 selected sensitive receptors has been assessed.

151. **Impact**. Pile driving for viaduct piers and buildings and tunnel driving generate vibrations. Apart from distance from the alignment, age and condition of buildings adjacent to the alignment determines extent of damage to such buildings due to vibration. Continuous effect of vibration on the buildings can cause damage to buildings. Buildings subjected to the vibration of more than 150 VdB might be subjected to structural damage. Historic buildings are more susceptible to vibration effect due to type of building material and design. Corridor 4 is located in moderately to above moderately vulnerable seismic micro zones.

152. In order to evaluate the construction stage vibration levels from the project construction activities, the Construction Vibration Damage Criteria set by FTA for different building category is referred in Table 5-17 and 5-18 below.

Building Category	PPV (in/s)	PPV (mm/s)	Approximate Lv, RMS velocity in decibels (VdB) re 1 µin/s.
I. Reinforced-concrete, steel or timber (no plaster)	0.5	12	102
II. Engineered concrete and masonry (no plaster)	0.3	7.6	98
III. Nonengineered timber and masonry buildings	0.2	5	94
IV. Buildings extremely susceptible to vibration damage	0.12	3	90

 Table 5.18: Construction Vibration Damage Criteria as per FTA guidelines

Table 5.19: Vibration Annoyance Criteria as per FTA guidelines

Land Use Category		GBV Impact Lo B re 1 micro-in		GBN Impact Levels (dB re 20 micro Pascals)				
	Frequent Events ¹	Occasional Events ²	Infrequent Events ³	Frequent Events ¹	Occasional Events ²	Infrequent Events ³		
Category 1: Buildings where vibration would interfere with interior operations.	65 VdB ⁴	65 VdB ⁴	65 VdB*	N/A ⁴	N/A ⁴	N/A ⁴		
Category 2: Residences and buildings where people normally sleep.	72 VdB	75 VdB	80 VdB	35 dBA	38 dBA	43 dBA		
Category 3: Institutional land uses with primarily daytime use.	75 VdB	78 VdB	83 VdB	40 dBA	43 dBA	48 dBA		
 "Infrequent Ever commuter rail This criterion Ii microscopes. 	ory. ents" is defined many operation ts" is defined a branch lines. mit is based on Vibration-sensi s. Ensuring low 5.	as between 30 and as s fewer than 30 vi levels that are acco tive manufacturing ver vibration level:	d 70 vibration ever bration events of the optable for most m g or research will n s in a building offe	its of the same so he same kind per oderately sensiti equire detailed e n requires specia	ource per day. Mo day. This catego ve equipment suct valuation to define	st commuter trun y includes most as optical the acceptable		

153. During construction of the underground section, TBM will be used. With a tunnel depth of approximately 25 m (vertical distance between tunnel top and floor of building above ground), the expected vibration level during operation of the TBM is approximately 99VdB in conditions of

sandy and clay soil which is dominant in the project area. Attenuation of vibration is expected to be about 16 VdB resulting in a net vibration at the ground floor of the building above ground to be about 83 VdB.

154.	The sensitive	receptors	that v	were	considered	for	the	initial	vibration	assessment	are
shown	in figure 5-4.										

S. No	Location No	Location	Elevated / Underground	Distance from alignment [m]	Location coordinates
9	C4-A	Near Porur Lake	Elevated	8	Lat: 13" 2'11.12"N Long: 80" 9'5.28"E
10	C4-8	Vadapalani Junction	Elevated	12	Lat: 13° 2'58.66"N Long: 80° 12'39.45"E
11	C4-C	Santhome Church	UG	10	Lat: 13° 2'0.85"N Long: 80° 16'40.16°E
12	C4-D	St. Bede's Anglo Indian School	UG	80	Lat: 13"02'04.6"N Long: 80"16'41.6"E
13	C4-E	Aashraya Hospital	UG	2	Lat: 13" 2"1.09"N Long: 80"16'33.16"E
14	C4-F	Jain Temple	UG	10	Lat: 13" 2'4.72"N Long: 80"16'17.58"E
15	C4-G	Luz Church	UG	68	Lat: 13° 2'17.32"N Long: 80°15'44.74"E
16	C4-H	Anjaneyar Temple	UG	9	Lat: 13°02'18.7"N Long: 80°15'31.5"E
17	C4-I	S.I.E.T College	UG	>100	Lat: 13° 2'9.79"N Long: 80°14'51.81"E
18	C4-J	Thirupathi Thirumala Devastanam Temple	UG	18	Lat: 13° 2'8.91"N Long: 80°14'11.09"E
19	C4-K	Koncept Hospital	Elevated	33	Lat: 13" 3'7.64"N Long: 80"13'7.18"E
20	C4-L	The Holy Cross Matric Hr. Sec. School	Elevated	85	Lat: 13° 2'23.40"N Long: 80°10'19.90"E
21	C4-M	Government Hospital, Poonamallee	Elevated	18	Lat: 13" 3"1.61"N Long: 80" 5"57.75"E

Source: AV Ingenieros / Aimil Ltd. Vibration Forecasting report

155. The heritage sites as presented in section 4.5.2 are C4-C (Santhome Church), C4-E (this hospital is near Rosary Church) and C4-G (Luz Church), all at the underground section of the alignment.

156. Based on the general vibration assessment it is concluded that in general during construction pile driving can affect buildings up to 40 meters distance from the piling location. Annoyance from piling could be felt at a distance of up to 100 meters, as shown in **Table 5.20** and **Table 5.21** and presented in the vibration assessment report in **Annexure 11**.

	Affected area distance from construction zone (m) – Considering the structure type			
Construction equipment	structure type 1 (0.5 inch/s)	structure type 2 (0.3 inch/s)	structure type 3 (0.2 inch/s)	structure type 4 (0.12 inch/s)
Impact pile drive (upper range)	16 m	23 m	30 m	41 m
Sonic pile drive (upper range)	10 m	14 m	19 m	25 m
Impact pile drive (typical range)	9 m	12 m	16 m	23 m
Clam shovel drop	4 m	6 m	8 m	11 m
Vibratory roller	4 m	6 m	8 m	11 m
Sonic pile drive (typical range)	4 m	6 m	6 m	9 m

Table 5.20: Predicted affected area for structural damage during construction per structure type

Table 5.21: Predicted affected area for annoyance during construction per structure type

Building structure	Affected area distance from track centre (m) – Considering the land use		
Building structure	Category 1 (65 VdB)	Category 2 (72VdB)	Category 3 (75 VdB)
Impact pile drive (upper range)	100 m	100 m	100 m
Sonic pile drive (upper range)	100 m	93 m	76 m
Impact pile drive (typical range)	100 m	89 m	70 m
Clam shovel drop	69 m	41 m	32 m
Vibratory roller	69 m	41 m	32 m
Sonic pile drive (typical range)	64 m	37 m	30 m

157. Affected areas for vibration during operation of the metro system are presented in **Table 5.22** and **Table 5.23** and presented in the vibration assessment report in **Annexure 11**.

Table 5.22: Predicted affected area for annoyance during operation in the underground section for design and scheduled speed

Design speed 80 kmph

Building structure	Affected area radius from track centre (m) – Considering the land use		
Building structure	Category 1 Category 2 (65 VdB) (72VdB)	Category 3 (75 VdB)	
Wood-Frame Houses	70 m	36 m	26 m
1-2 Story Masonry	58 m	29 m	20 m
3-4 Story Masonry/ Large Masonry on Piles	44 m	20 m	13 m
Large Masonry on Spread Footings	32 m	13 m	

Scheduled speed 32 kmph

Building structure	Affected area radius from track centre (m) – Considering the land use		
Building structure	Category 1 Category 2 (65 VdB) (72VdB)		Category 3 (75 VdB)
Wood-Frame Houses	32 m	14 m	
1-2 Story Masonry	20 m	10 m	
3-4 Story Masonry/ Large Masonry on Piles	18 m		
Large Masonry on Spread Footings	12 m		

Table 5.23: Predicted affected area for annoyance during operation in the elevatedsection for design and scheduled speed

Design speed 80 kmph

Duilding structure	Affected area radius from track centre (m) – Considering the land use		
Building structure	Category 1 Category 2 (65 VdB) (72VdB)		Category 3 (75 VdB)
Wood-Frame Houses	36 m	16 m	10 m
1-2 Story Masonry	29 m	12 m	7 m
3-4 Story Masonry/ Large Masonry on Piles	20 m	7 m	4 m
Large Masonry on Spread Footings	13 m	3 m	2 m

Scheduled speed 32 kmph

Bulldian atmatum	Affected area radius from track centre (m) – Considering the land use		
Building structure		Category 2 (72VdB)	Category 3 (75 VdB)
Wood-Frame Houses	14 m	4 m	
1-2 Story Masonry	10 m	2 m	
3-4 Story Masonry/ Large Masonry on Piles	5 m		
Large Masonry on Spread Footings	3 m		

158. During operation of the metro system in the underground section, a maximum distance of 58 m will be affected by induced vibration if 80 kmph design speed and masonry building structure are considered. This distance will be reduced to 20 m if 32 kmph scheduled speed is considered. For elevated sections, a maximum distance of 29 m will be affected if 80 kmph design speed and masonry building structure are considered. This distance will be reduced to 10 m if 32 kmph scheduled speed is considered. 2 out of 13 sensitive receptors could be impacted if scheduled speed is considered, these are Near porur Lake and Aashraya Hospital.

159. With regard to the specific sensitive receptors 2 out of 13 could be exposed to induced vibration levels higher than the damage criteria during construction. The construction equipment could cause annoyance to 8 out of 13 sensitive receptors (Annexure 11).

160. During the operational phase 2 out of 13 sensitive receptors could be impacted if scheduled speed of 32 kmph is considered and if the assumptions with regard to building and foundation type are correct, these are Near porur Lake along the elevated section of corridor 4 and Aashraya Hospital, located along the underground section of corridor 4.

161. **Mitigation**. In the case of vibrations from road traffic and pile driving, very deep barriers (in excess of 10 m) were found to reduce vibration. In-ground barriers are trenches that are either left open or filled with a material (such as bentonite or concrete) that has stiffness or density significantly different from that of the surrounding soil. However, trenches may be too costly for situations involving houses. They could perhaps be justified for larger buildings with strict vibration limits, such as operating theatres of hospitals or high-tech factories with sensitive processes. An economical alternative to trenches in a residential area could be a row of lime or cement piles of diameter 0.5 m to 1 m and a depth of 15 m in the right-of-way adjacent to the road. However, the effectiveness of such pile-walls has not yet been demonstrated

162. Cast in-situ piling will be deployed at locations with sensitive receptors so as to reduce vibration and to meet the vibration thresholds. At locations where the alignment is close to sensitive receptors, the contractor shall implement:

- The detailed noise and vibration analysis (mathematical modelling) at sensitive receptors based on final engineering designs should be carried out, based on which, a set of mitigations should be prepared and shared with all lenders for review, prior to commencement of construction
- Pre-construction structural integrity inspections, including visual inspections of buildings of cultural or historical significance
- The sensitive receptors have to be isolated from heavy construction noise generated. This is possible by erecting reinforced 2 m tall GI sheet barrier around the area where heavy construction works is undertaken
- Information dissemination about the construction method, probable effects, quality control measures and precautions
- Monitoring during construction

163. Further vibration modelling will be conducted for the sensitive receptors within the vicinity based on the detailed engineering design to determine if the negative impacts can be fully mitigated through the following mitigation measures:

• Elastic pad between seat of the rail and the track slab as well as between track slab and the superstructure beneath it will reduce vibration transmitted from the track and superstructure. Indicative pictures are shown in Figure 5.4.

• Using floating slab and high resilience fasteners to reduce the vibration at the point of emission.

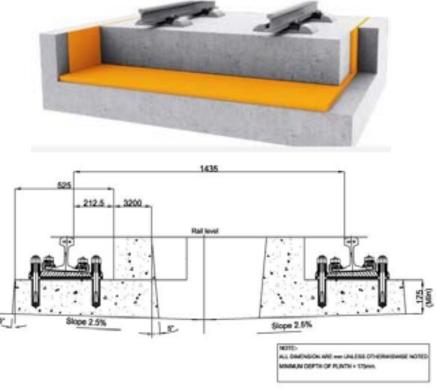


Figure 5-2: Vibration Damping Devices in Track

164. **Residual impact**. Operation of the metro will generate a certain amount of vibration. The detailed design will incorporate features to reduce the vibration levels. Detailed analysis (computer modeling) of vibration will be conducted based on the detailed engineering design and will be finalized prior to contractor's mobilization. It is expected the detailed mitigation measures will be able to reduce vibration to levels under the human annoyance threshold. However a minimal negative residual impact will remain.

5.13 Ground subsidence

165. **Impact**. Tunnel roof caving could cause ground subsidence above the tunnel resulting in settlement damage to structures on ground.

166. Proposed track depth is 18m to 20m; water table is between 1m to 10m; rock is available deeper than 20m between Kutchery Road and Thirumayilai stations, Adyar gate to Alwarpet, Kodambakkam suburban and Vadapalani and less than 20m depth at other locations on Corridor 4; soil is pervious (source: geotechnical investigations along Corridor 4 in year 2016 and scheduled groundwater monitoring by Central Groundwater Board in years 2014 to 2016).

167. During tunneling, material under pressure might come out of open borewells in the vicinity of the tunnel site resulting in ground subsidence beneath nearby structures (in case of Phase 1 Metro those within 16.5 m on either side of centerline of tunnel). Groundwater extraction adjacent the metro project could lead to subsidence under non-metro structures as well as settlement of metro tunnel and stations between Kutchery Road and Thirumayilai stations, Adyar gate to Alwarpet, Kodambakkam suburban (rock deeper than track level). Ground subsidence around

Source: Getzner Werkstoffe

tunnel sections could occur during tunneling due to ground water seeping into tunnel resulting in groundwater drawdown around the tunnel zone.

168. **Mitigation** Caving of tunnel will be prevented by placing pre-cast concrete segments in soft soils and rock bolts or arch ribs in rock. Subsidence above tunnel due to removal of material and water beneath will be prevented by such tunnel support.

169. Artesian wells and borewells in path of tunnel will be sealed. They will be permitted at least 3m on either side of the tunnel width, as in case of Phase 1 Chennai Metro. It is recommended that locations of boreholes need to be rationalized to avoid groundwater extraction near tunnel.

170. Seepage along with existing water in tunnel will be removed ('dewatering'). Similar groundwater loss could occur during construction of underground stations by cut and cover. Groundwater drawdown will also temporarily reduce availability of groundwater for domestic consumption.

171. Groundwater drawdown can be minimized by sealing joints in tunnel lining. In addition, where required adjacent structures will be given additional supports. Sides of deep excavations at stations will be supported by walls which minimize water seepage. In open areas where side support walls in excavations are feasible, such walls will help prevent caving and thereby settlement of adjacent structures; in built up areas where side walls are not feasible, adjacent structures will be provided additional supports.

172. Subsidence under nearby structures could occur due to strata disturbance and loss of bearing capacity of soil under foundations of nearby buildings: this shall be monitored and where required the structures will be provided additional support.

5.14 Occupational Health and Safety

173. **Impact**. Safety and health of metro personnel can be impacted in terms of failure of equipment or operating personnel or security in stations and on trains. Proper design of health and safety features in stations and trains can reduce this impact.

174. Estimated total population in the labour camps will be 5,784. The water requirement at camps will be 780KLD, wastewater generation 492 KLD & municipal solid waste generation 1.3 ton per day. This is tentative and will vary depending on the construction schedule during construction. Unclean water can cause health problems to residents of worker camps. Problems could arise due to cultural differences between workers from outside and local residents. Construction workers are more prone to infectious diseases and lack of sanitation facilities (water supply and human waste disposal) and insect vectors. Covid-19 poses a greater hazard with a higher risk for workers in the labour camps due to proximity of living spaces of individuals and families. Sleeping and eating spaces and public conveniences will require area much higher than are as per current norms. Further, practices of personal hygiene such as hand sanitizing and face protection need to be incorporated in the psyche of the camp residents as well as local people who operate small shops at the camp. Testing, transportation and hospital facilities of a much higher order of safety will be required.

175. The following elements impact worker safety – working at heights, excavations, electrical and mechanical; gases; machinery; equipment; blasting; formwork; piling; PPE; medical facilities; firefighting; housekeeping; segment launching; batching plant; transport; security; explosives; general safety. Covid-19 poses a hazard with a high risk for workers due to proximity of working and quality and safety inspections.

176. Underground metro systems are known to have the potential to negatively impact the health of personnel due to exposure to high levels of particulate matter in the air (especially originating from train brakes) and high noise levels.

177. Harmful electromagnetic radiation is emitted by electrical traction and rolling stock: exposure of personnel needs to be minimized; electronic equipment needs to be immunized. CMRL personnel could be impacted by the effects of electromagnetic interference, electromagnetic radiation, musculoskeletal disorders (MSDs), stress and communicable diseases such as Covid-19.

178. Electromagnetic Interference (EMI) in metro railway can disturb electronic circuits in 3 ways:

- EMI in railway infrastructure like signalling caused by rolling stock. Considering the criticality of signalling, such disturbances can cause accidents and safety of staff as well as passengers.
- EMI in environment caused by rolling stock. The railway can impact environment up to at least 10m from the track (Railway EMI impact on train operation and environment, A Morant et al, IEEE, Dec 2012)
- EMI in rolling stock caused by environment.

Mitigation. CMRL has a HSE Manual in place outlining the minimum Health and Safety 179. standards that shall be required by CMRL during construction of the Chennai metro rail project. Furthermore, the manual has been developed to give guidance and assistance to the respective Contractors in the development and production of their Site Health and Safety Plans, to satisfy the required H&S standards established by the Contract Conditions and the Employer's Requirements. The SHE Manual forms integral part of the bidding documents for the works to be undertaken. Construction works will be executed as laid down in the manual as applicable to MDB corridor 3. The applicable sections are i) Control Document; ii) Health and Safety Manual; and iii) Environmental Management Arrangements. Control comprises: Legal requirements; standards; Contractor's organization and interfaces with CMRL; procedures to identify hazards and estimate risk, hazard mitigation measures; emergency response plan; resources; arrangements for training, inspection, communication, compliance, reporting, documentation and audit, review; complaint Redressal. The Health and Safety Manual covers: Contractor organization; accidents; hazards and risks; emergency preparedness plan; signage; industrial health and welfare; works - heights, excavations, electrical and mechanical; gases; machinery; equipment; blasting; formwork; piling; PPE; medical facilities; firefighting; traffic management; housekeeping; launching; batching plant; transport; security; explosives; general safety; flooding etc.

180. Environmental Social Health and Safety (ESHS) Requirements comprising sections i), ii) and iii) above as mandated by CMRL for elevated construction are placed in Annexure 4 to EIA report. Compliance with sections i) and ii) is mandatory, section iii) is intended to provide guidance to the contractor. While complying with this SHE Manual, site-specific and construction work-specific procedures will be prepared by the Contractor and approved by CMRL. Hazards and requisite safety measures related to working at height are of primary focus on this corridor.

181. Prior to construction, necessary (temporary) living facilities for project workers will be provided by the contractor. Locations of such camps, their layout and level of facilities so as to minimize health risks will be put up for approval of CMRL, CMDA and Public Health Officer of Greater Chennai Corporation and Siruseri panchayat. As per Building & Other Construction Workers (BOCW Regulation of Employment and Conditions of Service) Act, 1996 the employer (contractor) is liable to arrange for sanitation, health care facilities of labourers free of charge. Labour camps will be in full compliance of BOCW Act. Uncontaminated water will be provided for drinking, cooking and washing, health care.

182. Guidance on occupational health, safety and environmental practices involved in construction on elevated, at-grade and underground works, with special focus as below,

- Health care awareness and clinics: Construction workers are more prone to Infectious diseases such as HIV/AIDS. It should be prevented by following actions: Counselling, community events, clinic, and coordination with local health authorities.
- **First aid facilities:** At every workplace, a readily available first-aid unit including an adequate supply of sterilized dressing materials and appliances shall be provided. Suitable transport shall be provided to facilitate taking injured and ill persons to the nearest hospital.
- **Day Crèche Facilities:** At every construction site, provision of a day crèche shall be worked out so as to enable women to leave behind their children. At construction sites where 25 or more women are ordinarily employed, accommodation shall be provided for use of children under the age of 6 years belonging to such women. Huts shall be provided with suitable and sufficient openings for light and ventilation. Size of crèches shall vary according to the number of women workers employed.
- **Shelter at Workplace:** At every workplace, shelter shall be provided free of cost, separately for use of men and women labourers. Sheds shall be maintained in proper hygienic conditions.
- **Canteen Facilities:** A cooked food canteen on a moderate scale shall be provided for the benefit of workers wherever it is considered necessary. The contractor shall conform generally to sanitary requirements of local medical, health and municipal authorities and at all times adopt such precautions as may be necessary to prevent soil pollution of the site. Mobile anaerobic toilets (bio-digester based) will be provided.

183. Waste water from cooking, bathing and washing including sewage from toilets will be discharged into municipal drains. Such waste water will be treated by municipal agencies to Environment Protection Rules (EPR) 1986 Schedule VI standards of discharge of general effluents into surface water. In view of the distributed nature of the linear construction and quantities of waste water, it is not proposed to install sewage treatment plants by CMRL for construction and operation phases.

184. Garbage bins will be provided in the camp and regularly emptied into municipal bins. Municipal solid waste will be collected and taken away and disposed by municipality.

185. The Contractor will implement Covid-19 guidelines and Operating Procedures as part of the Contract. Residents of worker camps will be sensitized about need to implement precautions and trained in social distancing, sanitizing, avoiding groups; arrangements for thermal scanners and provision of sanitisers, face masks, gloves etc will be made by contractor. Site record of covid hospitals will be maintained and fully equipped ambulances will be available to transport sick camp residents to hospitals. Daily disinfection of camps will be carried out.

186. The construction works will be undertaken in accordance with all applicable legislation and Indian statutory requirements and guidelines-OHSAS 18001-2007: Occupational Health and Safety Management System and ISO 14001-2015: Environmental Management Systems. The mandatory requirements are as follows:

187. Legal requirements; Contractor's organisation and interfaces with CMRL; safety hierarchy and requirements for H&S management, procedures to identify hazards and estimate risk, hazard mitigation measures; incident reporting and monitoring, emergency response plan; arrangements for training, inspection, communication, compliance, reporting, documentation and audit; complaint address.

188. As part of medical facilities for workers, the Manual mentions support to the HIV/AIDS control agency. Measures to minimize Covid transmission are contained as Annexure 5 in this report. This Annexure will form part of the ESHS Requirements in the contract documents so as to guarantee that the Contractor will implement Covid-19 guidelines and Operating Procedures as part of the Contract. The procedures include: thermal scanning, hand sanitization and face masking at entry and exit to/from work areas; hand gloves for those who handle material received from outside work area; social distancing at toilets and eating areas; daily disinfection of site, equipment and vehicles; site record of covid hospitals; fully equipped ambulances to transport sick workers to hospitals; signage and regular awareness sessions; staggered hours of work start and close to ensure social distancing at gates; all construction material arriving at site should be left idle for 3 days before use to ensure safe usage; non-touch garbage bins with biodegradable garbage bag for waste collection; proper disposal of garbage bags along with daily cleaning and sanitization of bins. In addition, fully equipped ambulances will be available to transport the sick to hospitals.

189. In order to safeguard CMRL personnel during operation of the metro system, the design includes installing Automatic Train Protection and Automatic Train Supervision sub-systems, a backup power arrangement in form of DG sets and a Closed Circuit TV for security and crowd control. Specifications and layout of equipment will be decided so as to minimise exposure of personnel to harmful electromagnetic radiation.

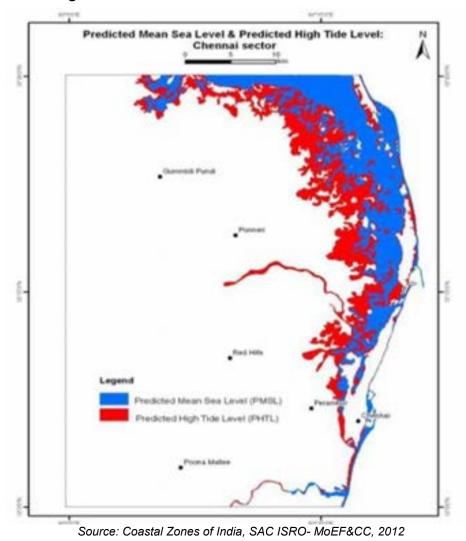
190. Stations in the underground system will be equipped with full height platform screen doors. These doors provide a physical safety barrier between passengers and personnel in the station and arriving and departing metro trains. Furthermore, these doors are an efficient physical barrier for exposure to noise and air pollutants. When the platform screen doors are open after arrival of a train, air pollutants within the tunnel will have difficulties to enter the station environment since the air inside the station platform (through AC supply) is slightly over pressured with respect to the air within the tunnel.

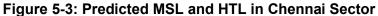
191. To reduce conducted or radiated emissions detailed specification and layouts of equipment e.g. power cables, rectifiers, transformer, E&M equipment etc. will be framed as per appropriate international standards. Electromagnetic Compatibility and maximum electromagnetic emission levels of whole railway system to the outside world measured at the railway boundary fence will comply with EN50121-2.

192. Musculoskeletal disorders (MSDs) and stress were identified by the industry as their major work related ill health issues (Position Paper on Work related stress in the rail industry, Office of Rail Regulation U K, June 2014). No such published data is available in India.

193. MSD risk can be eliminated or minimized through product design, mechanization, appropriate handling aids, risk assessments, training and better use of specialists such as ergonomists and physiotherapists.

194. Stress can be managed at three levels of intervention:

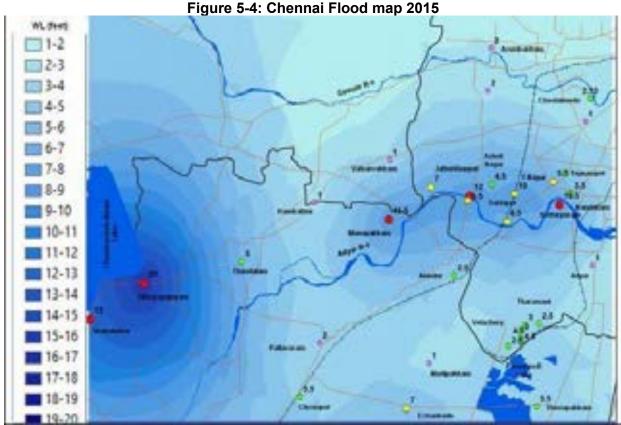

- Primary level intervention: The main priority for CMRL will be to assess and reduce the risk of harmful levels of workplace stress from occurring. This may require action at an organisational level, for example by changes to job design, task allocation, training, and supervision.
- Secondary level intervention: Good practice at the secondary level typically involves building individuals' ability to cope with stress, for example by emotional resilience training, relaxation, or mindfulness; employee assistance programmes (EAPs); 'buddying' schemes; or healthy lifestyle promotion.
- Tertiary level intervention: This focuses on recovery and rehabilitation, for example trauma focussed cognitive behavioural therapy; counselling; EAPs and staged returns to support early return to work.


195. The risk of Covid-19 will be reduced as much as possible through CMRL's operational procedures. Government of India protocols governing COVID precautions shall be fine-tuned; staff shall be trained; staff and commuters shall be informed of precautions such as social distancing, sanitizing; arrangements for stationary and hand-held thermal scanners; provision of sanitizer pedestals, vending machines of face masks and gloves etc. will be provided in stations; site record of COVID hospitals; protected ambulances at stations; daily disinfection of operating rooms, circulation spaces, equipment and vehicles.

196. Residual impact. Even with SHE manuals and procedures in place the risk of workplace accidents during construction, risk of accidents due to failure in operating systems and security and risk of exposure to electromagnetic radiation will be a continuing feature, however proven technologies will ensure that the residual impact is minimal negative. During operation safety risks can be mitigated to a large extent through proper equipment, PPE's, procedures and education, however a chance remains the procedures may not always be followed in full. Therefore, a moderate negative residual impact remains.

5.15 Public Health and Safety

197. **Impact.** Vulnerability of project to rise in mean sea level (submergence) and high tide level (degradation) on the project is indicated in Figures 5-3 and 5-4. Belt of width approx. 0.5 km of beach and developed area on alignment between Lighthouse and Kutchery Road is underground and can be subject to flooding disrupting operations.



In year 2015 Chennai was flooded due to exceptionally heavy rainfall. Flooding was

198. observed in areas adjoining Adyar river though lesser along Cooum river. Most of the alignment of Corridor 4 is not located near these rivers22and therefore flooding is not a likely impact. Figure 5-4 depicts the inundated areas.

²² Proposed Adyar gate Junction station is about 600 meters away from Adyar River, according to figure 5.2 that area had up to 3.5 feet of water during the 2015 floods.

Source: Chennai Floods, 2015 A Satellite and Field Based Assessment Study, Disaster Management Support (DMS) Division National Remote Sensing Centre (NRSC / ISRO) Hyderabad, India

199. Although Chennai is located in Moderate Seismic Zone, different parts of Chennai have variable potential for seismic hazard. Corridor 4 is located in moderately to above moderately vulnerable seismic micro zones.

200. During construction impacts on community H&S due to exposed to traffic, noise, dust and vibration disturbance and the risk of road traffic accidents are anticipated.

201. During operation accidents related to train operation like collision, derailment, fire, power outages, or operation stoppage may occur.

202. **Mitigation**. On Corridor 4, flooding gates and other adequate facilities will be made in terms of evacuation of flood water using pumps in Lighthouse stations. Disaster management plan will pay special attention to flooding.

203. Design of line structures – tunnel and viaduct – and station shall be done to facilitate robust safety and quick evacuation. Stipulation of Bureau of Indian Standards engineering codes shall be met while designing the structures while taking into account micro zonation of Chennai in terms of seismic risk.

204. In case of road closure or traffic diversion, the Contractor will ensure that information on the timing of construction works and notifications of road closure (if any) is provided via local media (radio, TV, newspaper etc.) or through the local community heads.

205. To prevent community H&S issues during construction, contractor on coordination with implemented measures such as provide the construction camps with facilities such as health care clinics, places of worship, and occasional entertainment, preparation of implementation of traffic management plan during construction, access to buildings, awareness and information sharing, and implementation of CMRL SHE Manual.

206. WHO has declared COVID-19 as a pandemic which has affected entire world including India. In view of the prevailing COVID-19 pandemic, the Contractor and workers would need to take additional measures to avoid the spread of the disease and shall follow various guidelines/guidance notes issued by the national/state government, WHO, ILO, World Bank/IFC from time to time. As described in these guidelines, the Contractor shall undertake a COVID-19 risk assessment of project area and prepare a COVID-19 Response and Management Plan (C-R&MP) and submit to CMRL and GC for approval. A brief guidance on "To Do" List prepared from these documents is provided in the Annexure 8. Furthermore, the Standard Operating Procedures (SOPs) and Guidelines for Construction Sites for COVID-19 Outbreak developed by National Real Estate Development Council will be mandatory for contractors to follow.

207. In the unlikely event of simultaneous tripping of all the input power sources or grid failure, the power supply to stations as well as to trains will be interrupted. A standby silent type DG set of adequate capacity at underground stations will sustain the following: essential lighting, signaling, and telecommunications, fire-fighting system, lift operation, and tunnel ventilation.

208. To provide a high level of safety with trains running at close headway ensuring continuous safe train separation, eliminate accidents continuous speed monitoring and automatic application of brake in case of disregard of signal / warning by the driver, and provides safety and enforces speed limit on section having permanent and temporary speed restrictions Automatic Train Protection and Automatic Train Supervision sub-systems will be installed.

209. CCTV system will provide video surveillance and recording function for the operations to monitor each station. The monitoring shall be possible both locally at each station and remotely from the operation control center.

210. In view of the potential hazards from system failure resulting to accidents, both on- site and off-site emergency measures will be implemented. All trains will have public address systems to warn the passengers of any emergency situation.

211. Detailed specification of equipment e.g. power cables, rectifiers, transformer, E&M equipment etc. shall be framed to reduce conducted or radiated emissions as per appropriate international standards. The Metro system as a complete vehicle (trains, signaling& telecommunication, traction power supply, E&M system etc.) shall comply with the Electromagnetic compatibility (EMC) requirements of international standards viz. EN50121-31, EN50123, IEC61000 series etc. EMC requirements of international standards for whole railway system to the outside world shall comply with EN50121-2.

212. **Residual impact.** Part of the underground section is within 500m from the sea and can be subject to flooding disrupting operations. Flood gates and other adequate facilities will be made in terms of evacuation of flood water using pumps in Lighthouse station. Disaster management

plan will pay special attention to flooding. With these additional measures the residual impact will be minimal negative.

213. Most of the alignment is not located near rivers and therefore flooding due to rainfall is not considered a big risk. In order to minimize the impact of potential flooding the entry structures of the metro are envisaged to be raised to 0.6 - 1 m above high flood level. With these measures in place the residual risk of flooding due to rainfall will be minimal negative.

214. Corridor 4 is located in moderately to above moderately vulnerable seismic micro zones. Design of tunnel, viaduct and station shall be done to facilitate robust safety and quicker evacuation. Stipulation of Bureau of Indian Standards engineering codes shall be met while designing the structures. Residual risk will be minimal negative.

215. Although both occupational and public health and safety risks can be mitigated to a large extent through proper equipment, ppe's, procedures and education, a chance remains the procedures may not always be followed in full. Therefore a moderate negative residual impact remains.

5.16 Physical Cultural Resources

216. No known archaeological monuments / sites are located on the project corridor. The following three heritage assets are located within 75m from the alignment.

No	Name of heritage asset	Approx. distance from road followed by the alignment (m)
1	National Shrine of St. Thomas Basilica, Santhome High Road, Santhome	110
2	Rosary Church, Rosary Church Road	1*
3	Our Lady of Light Shrine, Luz Church Road	73

Table 5.24: Heritage assets near the alignment

217. Besides these three heritage assets the underground alignment passes another 5 mosques, 8 churches and 31 temples, all located within 200 meter distance from the alignment. The elevated section of the alignment passes another 10 mosques, 37 churches and 81 temples. Details of these physical cultural resources can be found in Annexure 2.

218. **Mitigation**. The alignment will be fine-tuned, if feasible, to steer away from heritage assets on Corridor 4. Before start of civil work the contractor and CMRL will coordinate with State Archeological department to reconfirm that there is presence of buried artifacts along the metro line alignment. No piling or excavation will be allowed unless cleared by the Archeological Department.

219. Since the project involves cut & cover, and piling for piers there are possibilities that contractor may encounter artifacts during piling operation. Chance find measures are included in the EMP to minimize the impacts on historical / archeological artifacts, in case found during excavation work. CMRL will inform and coordinate with Archaeological Survey of India if any ancient remains are encountered during construction work.

220. All workers will undergo a briefing with the Archaeology Department to ensure safeguarding of heritage resource and cultural/religious practices.

221. A proof of compliance to this requirement to include the name of participants and date and location of briefing will form part of the monthly report to CMRL.

222. The contractor will comply with the FIDIC Sec. 4.24 on Fossils. Recording (including chain of custody) will be made by the contractor to be validated by the GC, and expert verification will be made by the Archaeology Department. Temporary work stoppage in the immediate area of the chance find for up to 72 hours to allow for the on-site representative of Archaeology Department to visit the site to make an assessment and provide instructions. Work in the areas adjacent to the chance find will continue as provided in the detailed design.

223. In locations where alignment is within 75m (as per the reference distance of acceptable vibration impacts) to historical/heritage structures, the contractor shall prepare a monitoring scheme prior to construction at such locations. This scheme for monitoring subsidence and vibration level at such historical / heritage sites shall be submitted to CMRL for approval. The scheme shall include:

- Monitoring requirements for vibrations at regular intervals throughout the construction period.
- Pre-construction structural integrity inspections of historical / heritage / sensitive structures in the project area, especially for any buildings the TBM will pass nearby.
- Information dissemination about the construction method, probable effects, quality • control measures, and precautions to be used.

The vibration level limits at work sites adjacent to the alignment shall conform to the 224. permitted values of PPV.

225. **Residual impact**. Three assets are located within 75 meter of the alignment. In order to reduce the risk of damage to the assets the contractor shall perform pre-construction structural integrity inspections and prepare a monitoring scheme for monitoring subsidence and vibration level for these locations prior to construction. Residual risk is expected to be minimal negative.

5.17 **Energy demand**

226. Impact. Construction employs energy intensive equipment round the clock. High illumination lighting and minor tools and equipment impose increased demand on energy consumption due to construction.

227. Stations impose significant demands on energy. In addition, traction, rolling stock and train control systems also require reliable sources of grid and standby power, high intensity energy, as well as efficient equipment. Table 5.14 presents the power demand of alignment during operation.

Table 5.25: Power Demand									
Load	2025		2035		2045		2055		
	Normal	Emergency	Normal	Emergency	Normal	Emergency	Normal	Emergency	
3 km from Kilpauk GSS-Panagal Park RSS (Chainage -255 to 7436) 7.691km									
Traction	2.45	8.39	3.62	12.41	4.40	15.10	5.36	18.38	

Table 5 25, Dower Demand

Load	2025		2035 20		2045		2055	
	Normal	Emergency	Normal	Emergency	Normal	Emergency	Normal	Emergency
Auxiliary	11.67	19.95	14.58	24.40	16.32	27.46	17.49	29.62
Total	14.12	28.34	18.20	36.81	20.72	42.56	22.85	48.00
3 .5 km from Koyambedu GSS-Avichi School RSS (Chainage -7436 to 25829) 18.38km								
Traction	5.94	8.39	8.79	12.41	10.70	15.10	13.02	18.38
Auxiliary	8.28	19.95	9.82	24.40	11.14	27.46	12.13	29.62
Total	14.22	28.34	18.61	36.81	21.84	42.56	25.15	48.00

228. **Mitigation**. The contractor shall use and maintain equipment so as to conserve energy and shall be able to demonstrate the abovementioned upon request of CMRL. Measures to conserve energy include maintenance of energy efficient tools, plant and equipment of; lamps and DG sets to comply with TNPCB norms; Promoting awareness through energy saving trainings.

229. Requirement of electrical energy for climate control, lighting and other facilities at stations will be optimized by proper use of natural day/night light and design of passenger flow inside stations and on streets outside stations. Installations for solar power will be implemented in stations where feasible. Full height platform screen doors will be implemented so as to conserve energy for ventilation and air conditioning in underground stations, which will also ensure passenger safety just as half height screen doors.

230. In accordance with the IGBC Green Mass Rapid Transit System (MRTS) norms, the following measures will be implemented to a feasible degree in the stations and depots.

- Control annual heat gain through favourable orientation and design of facades
- Site planning according to contours
- Site plan designed to preserve existing vegetation/ existing water bodies / other topographical features like boulders etc.
- Manage storm water on site through rainwater harvesting
- Mitigate heat island effect by ensuring that building surface visible to sky is shaded by trees. Ensure zero SWD post-construction by means of ground water recharge and recharge of groundwater aquifers by rainwater. The building shall be designed to incorporate low ODP materials, indoor air quality and comfort, low-VOC paints and adhesives, reduced landscape water demand, sustainable building materials and renewable energy utilization etc.
- For the utilization of renewable energy, wherever feasible, installations for solar power can be implemented on roof of elevated stations. Installation and maintenance of solar power infrastructure is proposed to be awarded to developer along with Power Purchase Agreement (PPA). The power shall be purchased by CMRL on the basis of the unit rate specified by PPA.
- Integrated with other modes of public transport, thereby enhancing connectivity

231. In conformity to other corridors in Chennai, the following design elements are proposed which increase energy efficiency and safety:

- High voltage electric traction which have ability to carry high traffic at a reduced cost with higher efficiency of operation
- Rolling Stock is of light weight stainless steel / aluminium resulting in energy efficiency and improved life thus improving resource utilization and environmental quality.

Standard Gauge rolling stock results in recurring saving in energy consumption during operation as for the same passenger carrying capacity, gross weight of a metro coach is lower.

232. Rooftop solar panels on covered part of depots are proposed. As per the Detailed Project Report of March 2019 the depot at Poonamallee Bypass could generate 4.91 GWh of electricity per year..

233. **Residual impact**.. Requirement of electricity will be optimized by proper use of natural day/night light. Full height platform screen doors will be implemented to conserve energy for ventilation and air conditioning in underground stations. Green Building features will be implemented in station design. Residual impact is considered minimal negative.

234. Energy saving features of the metro such as regenerative braking, lightweight coaches and efficient power equipment reduce the negative impact of increased energy demand. The residual impact will therefore be minimal negative and will be reduced even further when more grid electricity is produced by renewable energy sources.

5.17 Impacts due to the change in Design

235. The inclusion of integrated Grade Separator (GS) in the kattupakkam section .Tamil Nadu State Highways Department of GoTN proposed to construct a two-level Grade Separator comprising road at first level and Metro rail at Second level for a length of 2 kms at Kattupakkam. Kattupakkam Integrated Grade separator is located between P381 to P424 (48 piers) , overall length of integrated grade separator has been reduced to 1.527 Kms, which included of two stations such as Kumananchavadi and Karayanchavadi. The proposed grade separator does not additionally require any land acquisition or tree felling for the construction In the 4th Steering committee meeting of Highways and Minor ports department, it was discussed and agreed to construct integrated structure supporting highways and Metro structures. The geographical representation of the grade separator layout is shown in Fig.3.7, Fig 3.8. The GS is located in the commercial land use area that doesn't include any eco-sensitive areas such as wetlands, waterbodies etc.

236. This inclusion increases the requirement of manpower and construction materials such as cement, reinforcement steel, construction water, energy, diesel etc. The additional impact on air and noise quality is expected to be minimal since the components of grade separator are precast structures and going to integrated with the existing metro structures., During construction there may be some temporary impact such as fugitive dust emissions, road traffic. The construction materials (such as sand, earth, aggregates etc..) shall be brought from authorized source / vendor in compliant with environmental regulations of the country. The EMP covers the mitigation measures required for temporary impacts (from air, noise, traffic etc.,,) during construction stage of the project. During operation, the grade separator facilitates the reduction of the travel time, fuel consumption, noise level and vehicular emissions (especially Carbon Monoxide and NO_x) by easing the flow of traffic in the section. The positive Impacts of the grade separator outweighs the negative impacts which are temporary and minimal

5.5 Expected Benefits from Corridor 4

237. Metro rail systems have an advantage over other modes of transport because they provide higher carrying capacity, faster, smoother, and safer travel, occupy less space, and are non-polluting and energy-efficient. To summarize the benefits of a metro rail system:

- Increased Employment Opportunities During the period of construction manpower will be needed for various project activities. In post-construction phase, about 913 people will be employed for operation and maintenance of the system. In addition, more people would be indirectly employed in allied activities.
- Economy: Corridor 4 will have a moderate positive residual impact on the local economy. In operation phase about 913 people will be employed for operation and maintenance of the system. In addition, more people would be indirectly employed in allied activities. Also, the project will facilitate movement of people from different parts of Chennai. Corridor 4 will yield benefits in terms of growth in economic activity due to better accessibility, savings in fuel consumption, corresponding reduction in cost of road construction and maintenance, reduction in vehicle operating costs, savings in travel time, and improvement in quality of life and reduction in loss of productivity due to health disorders resulting from pollution.
- Mobility Safety and Reduced Accidents: The metro network increases the mobility of people at faster rate. The proposed corridor will provide more people connectivity to other parts of the city. Metro journey is safe and result in reduced accidents on roads.

6. ANALYSIS OF ALTERNATIVES

6.1 Introduction

238. This section presents the symmetrically compared feasible alternatives to Corridor 4. Alternatives such as other sources of transport (road, mono-rail, suburban rail), proposed design etc. have been considered and analyzed for its likely impacts on various environmental parameters. Additionally, an evaluation of potential environmental impacts in terms of 'with' and 'without' project situation has been considered for the justification of the project. This section also presents a discussion on how environmental parameters were assigned due importance and considered in the analysis of alternatives.

6.2 Selection of Alignment, Stations and Depot Locations

239. In May 2019 the final version of the Comprehensive Mobility Plan (CMP) for CMA was published (http://www.cmdachennai.gov.in/pdfs/ComprehensiveMobilityPlan-CMA.pdf). The ultimate goal of this CMP is to provide a long-term strategy for the desirable mobility pattern of a city's populace for the next 30 years with the help of an urban transport planning model. The objectives of the CMP are:

• To develop a long-term vision for desirable urban development in CMA;

• To illustrate a basic plan for urban development and include a list of proposed urban land use and transport measures to be implemented within a time span of 30 years;

• To ensure that the most appropriate, sustainable and cost-effective implementation program is undertaken in the urban transport sector;

• To identify feasible short-term, medium-term and long-term traffic management measures and transport infrastructure to facilitate safe and efficient movement of people for the present and future.

240. The four major elements that outline the city's vision on the mobility of people and goods in Chennai are:

• Sustainability: The transportation system of the City shall be conducive to lower consumption of fossil fuels. It shall be based on managing the travel demand itself, rather than trying to provide for whatever demand exists and allowing demand to grow in an unplanned way.

• Equity: Transportation in the City shall be accessible to all demographic sections of society. The City shall provide "Mobility for all", meaning any person above a certain age should be able to travel independently. Special attention shall be paid to school students, senior citizens, people from financially weaker sections, women - especially pregnant women, physically challenged persons.

• Convenience: Not only residents of the City, but also visitors should also be able to figure their way around the city very easily.

• Safety: Rates of fatal and serious traffic accidents should be at par with the best in the world. Two wheelers and pedestrians account to 85% of the accident victims calling for the need for improvement in road conditions and raising safety concerns

241. The transport network of city is dependent on its land use. Land use and the transport network strategy development must go hand in hand. Connectivity helps in the realization of the land use planned. The land-use transport strategy developed focuses on accessibility, connectivity, and mixed land use developments to minimize private vehicle trips, encourage transit-oriented development. In the long term, the transport strategy should be based on the

urban growth envisaged for the city. Transport network strategy, therefore, enables the city to take an urban form that best suits the geographical constraints of its location and also one that best supports the key social and economic activities of its residents.

242. The CMP observes that the city road network has a radial pattern depicting a finger-like plan radiating form the city center towards transport nodes and satellite towns. This semi-ring radial network is designated as the structure for mobility corridors, as illustrated in figure 6-1.

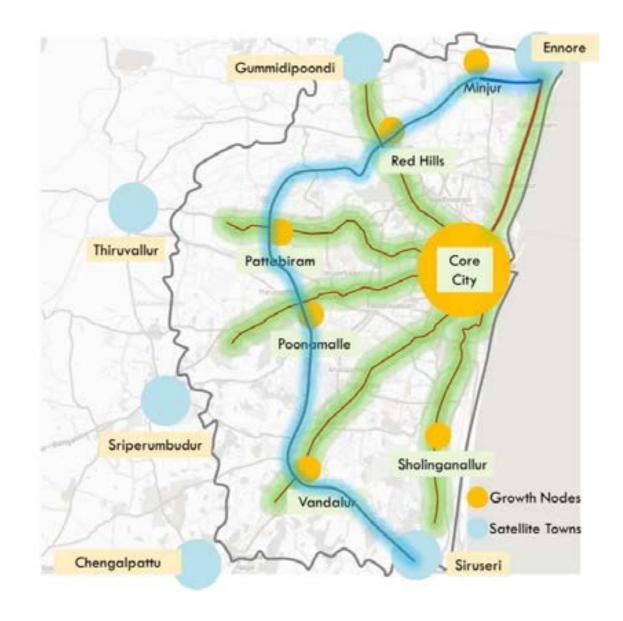


Figure 6-1: Mobility corridors in Chennai

1.

243. Transport Demand Modelling has been carried out to replicate the Chennai's "real" transportation system and forecasting the state of the system for the targeted horizon year (2048) under various scenarios. These scenarios are based on: socio-economic transitions, population projections, employment projections and landuse transitions. Considered scenarios are:

- Business as usual (do nothing)
- Business as usual (do minimum / implement committed development projects)
- Sustainable Urban Transport

244. The Transport Demand modeling has shown that in the "do noting" scenario, average congestion will increase form a V/C ratio of 0.51 in 2018 to a ratio of 1.20 in 2028 (V/C ratio greater than 0.85 indicates congestion). The average network speed will decrease from 25.4 kmph in 2018 to 10.20 kmph in 2048. In the "do minimum" scenario these numbers are slightly better (average V/C ratio of 1.10 and average speed of 12.10 kmph in 2048) but still unfavorable. The sustainable urban transport scenario on the other hand indicates an average V/C ratio of 0.74 and an average speed of 24 kmph is achievable in 2048.

245. In order to achieve these targets the CMP proposes, among others, improvements in the road network, service improvements in the exisiting bus service and mass rapid transit (MRT) options. Choices for the MRT corridors are, among others, based on:

- The mobility corridors as depicted in figure 6-1;
- Possibilities for mulit-modal integration with existing and proposed transportation networks;

• Expected pphpd, where buses are the preferred mode of tansport for a pphpd < 10,000 and where rail-based systems are preferred for a pphpd > 10,000.

246. Based on the above the CMP proposes the mass transit corridors as depicted in the figure 6-2.

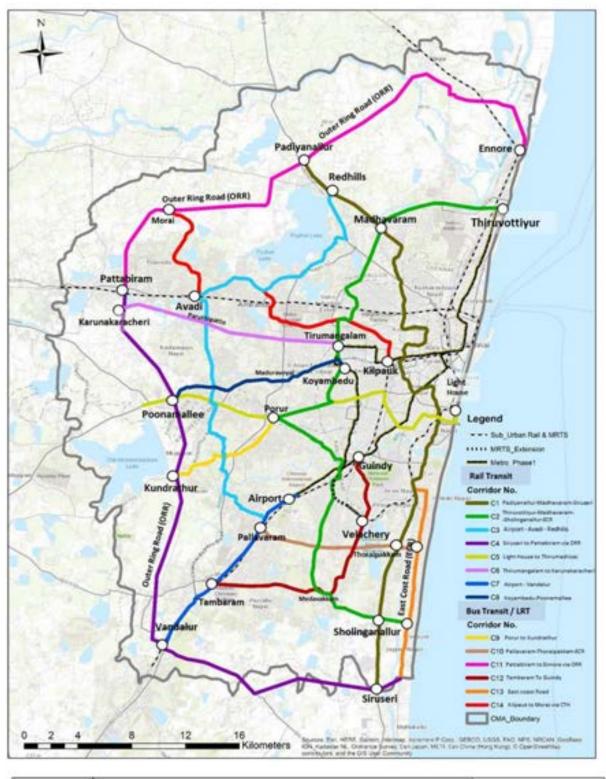


Figure 6-2: Proposed mass transit corridors in Chennai

Title	Proposed Mass Transit Corridors	Prepared by
Project	Comprehensive Mobility Plan for Chennai Metropolitan Area	Lifeer Plans Transit Company Lineted

247. Phase II metro corridor 4 broadly corresponds with the proposed light green corridor shown in figure 6-2 (C5, Lighthouse to Thirumazhisai). Since the Lighthouse – Poonamalle corridor proves to be one of the fastest growing corridors in terms of population it is justifiable to give priority to the development of corridor 4 of Chennai Metro.

248. The CMP anticipates that the proposed plans will help to achieve sustainable development goals by means of reducing private mode share, emission levels and travel time. Anticipated impacts of the proposed mass rapid transit projects are segregated into social and environmental impacts. The main impacts considered are:

- Land acquisition / Right of Way;
- Rehabilitation and resettlement;
- Improved mobility and reduction in travel time
- Increase in air pollution, noise, traffic congestion during construction phase;
- Improved air quality and reduction of GHG emission during operational phase.

249. In the Alternatives Analysis Report for Chennai Metro Rail Phase II Corridors of May 2018 a comparison has been made between different modes of transport for corridor 4. Table 6-1 presents an overview of the impacts and screening parameters that were considered.

		Level						
Factor	Criteria	\diamond	٠					
acts	System Capacity in PPHPD	Cannot accommodate future demand in horizon years	Moderate accommodation of future demand in some sections of the corridor	Adequate accommodation of future demand in all sections of the corridor				
Travel Mobility Impacts	Travel Time Savings for typical journeys	Minimal travel time saving	Moderate travel time saving	Maximum travel time saving				
	Congestion Impacts on major road links along route	Near zero impact on V/C	Moderate reduction in V/C	High reduction in V/O				
	Interchange Opportunities (at least one interchange less than 5 minutes / 500 m walk)	No interchange opportunities	Interchange with buses only	Interchange with bus and metro				
Engineering Impacts	Right of Way Required	Shared RoW	Dedicated RoW on road	Decongested RoW at- grade / elevated / underground				
	Land Acquisition Required	Maximum land acquisition required	Moderate land acquisition required	No Land Acquisition				
	Construction Period	1 to 3 years	Less than 1 year	Quick Implementation				
	Construction Capital Costs	Between Rs 10,000 Cr and Rs 20,000 Cr	Less than Rs 10,000 Cr	No Construction capital costs				
Environ- mental Impacts	Environmental Impact of Operations (reduced emissions)	Negative/Nil impact on emissions	Moderate positive impact on emissions	High positive impact on emissions				

Table 6.1: Qualitative criteria for impact screening
--

Source: CMRL

250. The results of applying the qualitative parameters to each mode is shown in table 6-2 below.

Factor	Criteria	Metro Rail	Mono Rail	LRT	BRTS	Regional Rail
ę	Transit System Capacity in PPHPD	Favourable	Moderate	٠	.	٠
ty Imp	Travel Time Savings for typical journeys	•	•			•
Travel Mobility Impacts	Congestion Impacts on major road links along route		٠	٠	٠	•
Trave	Interchange Opportunities (at least one interchange less than 5 minutes / 500 m walk)	٠	٠	۲	•	۲
Engineering Impacts	Right of Way Required	•	•	-	-	•
	Land Acquisition Required	٠	٠	٠	٠	Unfavourabl
ineeri	Construction Period	\diamond	\diamond	\diamond	\diamond	\diamond
Eng	Construction Capital Costs	\diamond	\diamond	٠	٠	\diamond
Environmental and Social Impacts	Environmental Impact of Construction (increased emissions per year of construction)	\	•	۲	۲	\diamond
Environ Social	Environmental Impact of Operations (reduced emissions	٠	•	٠	•	٠

Table 6.2: Evaluation of Alternate Modes on Qualitative criteria

Source: CMRL

251. As can be seen from table 6-2 Metro Rail is the overall most favorable option, considering the specific challenges the proposed alignment poses. For metro the corridor as proposed in the CMP is used, for mono rail, LRT and BRTS the nearest road alignment is considered. Choices between at-grade, elevated or underground are based on the available RoW and the technical difficulties that existing infrastructure is posing (such as flyovers, bridges, existing mass rapid transport infrastructure, etc.). Furthermore, while fixing the alternatives on proposed corridor, following requirements/ constraints have been kept in view:

• To remain on corridor of the existing road or Government premises/land to the extent feasible.

- To utilize the existing road Right of Way to the maximum extent in order to minimize the land acquisition and also length of diversions.
- To avoid dismantling of existing structures/buildings etc. to the extent feasible.

• To avoid private built up areas, villages, habitation and religious structures etc. to the extent feasible.

- To provide adequate clearance from existing Railway/ Highway structures.
- To satisfy the requirements of sound economic engineering practices
- To rationalize the location of proposed stations and underground ramps

252. The assessment of the environmental and social impacts of the alternate modes of transport can be found in table 6-3 below.

	Metro	BRTS	Monorail	LRT
Impact due to Project Design	Lowest as land acquisition is least	Highest land acquisition requirement	Lower than LRT but higher than metro	Almost similar to BRTS
Impact on Air Quality	Significant negative impact only during construction	Significant negative impact during construction and operations	Significant negative impact only during construction	Significant negative impact only during construction
Impact on Noise Levels	Negative impact during construction only	Negative impact during construction and maintenance	Negative impact during construction only	Negative impact during construction only
Impact due to Waste Disposal	Significant impact due to high amount of excavated soil and construction debris	Waste generated not as high as Metro	Waste generated higher than BRTS	Waste generated higher than BRTS
Impact due to Vibrations	Significant during underground and elevated construction	Significant during construction	Significant during construction	Significant during construction
Impact on Water Resources and Land	Medium impact on land and water	Medium impact on land and water	Medium impact on land and water	Medium impact on land and water

 Table 6.3: Environmental impacts of alternate modes of transport

Source: CMRL

253. When comparing the capital costs of all four modes, the metro is quite clearly the most capital intensive urban transport solution. However, when looked at life cycle economic benefits in terms of value of time, vehicle operating cost, accident reduction, pollution reduction, decongestion and reduced road stress Metro Rail is far more favorable than the other modes of transport. The analysis concludes that the metro achieves the highest Economic Internal Rate of Return (IRR) and as a result, from a financial and economic viability perspective, the metro is recommended as the preferred mode of mass transit.

7. INFORMATION DISCLOSURE, CONSULTATION AND PARTICIPATION

7.1 Consultations

254. MDBs' policies require projects to carry out meaningful public consultation on an ongoing basis. Public consultation will: (i) begin early and carry on throughout the project cycle; (ii) provide timely disclosure of relevant information, understandable and accessible to people; (iii) ensure a free and un-intimidated atmosphere without coercion; (iv) ensure gender inclusiveness tailored to the needs of disadvantaged and vulnerable groups; and (v) enable the incorporation of all relevant views of affected people, and stakeholders into project decision making, mitigation measures, the sharing of development benefits and opportunities, and implementation issues.

255. Public consultation and participation are a continuous two-way process, involving, promoting of public understanding of the processes and mechanisms through which developmental problems and needs are investigated and solved. The public consultation, as an integral part of environmental and social assessment process throughout the project preparation stage not only minimizes the risks and manages the expectation of the project but also abridges the gap between the community and the project formulators, which leads to timely completion of the project and making the project people friendly.

256. Public consultation/information is an integral part of the Chennai metro project cycle. Public consultations with the people of different sections of the society along the project alignment, shopkeepers, and influential persons of the project area were made. Potential vulnerable people like, squatters, encroachers, schedule caste, and other backward section of society were consulted to make them aware and identify adverse impacts of the project.

257. The consultation process started early in 2017. CMRL held extensive consultation with the local community to share information of potential impacts and mitigation measures etc.

258. Due to COVID-19 challenges, consultations during project implementation will be virtual wherever possible. MDB staff will be involved with efforts made for staff's virtual participation through advanced discussion and agreements on agenda items amongst project team members. Translators shall be engaged, where necessary and post consultation follow ups on targeted issues will be undertaken. Where local travel is permitted, MDB mission will seek support from relevant Resident Mission staff members to participate in public consultations on behalf of MDB project team. When virtual participation of project team or RM staff is not possible, the project team, may engage a staff consultant to attend the consultations on behalf of the project team, who will record the minutes of the meeting.

7.2 Identification of Stakeholders

259. Key stakeholders at central, state, district and local level will be consulted as part of the consultation process. This will be documented in the updated EIA prior to the contractors' mobilization.

- Ministry of Environment, Forests and Climate Change,
- Central Pollution Control Board,
- Tamil Nadu State Pollution Control Board,
- State Environmental Impact Assessment Authority
- Tamil Nadu Coastal Zone Management Authority

- State Traffic Police Department
- Municipal Corporation
- State Archaeology Department
- Central Ground Water Authority
- District Forest Office
- Indian Meteorological Department
- Non-government organizations
- Women groups
- Shopkeepers associations

7.3 Public Consultations – EIA

260. During the field surveys that were carried out between November 2016 and November 2018 while updating preliminary SIA as part of Detailed Project Report (DPR), interviews of head of individual PAFs to elicit their socio-economic characteristics were conducted in addition to consultation meetings with groups of stakeholders and community. The total number of attendees during the consultations in this period were 117, of which 15 were females and 102 were males. The opinions of the community and stakeholders were obtained during these consultations and summarized in Table 7.1.

261. The CMRL consulted numerous organizations and groups during the preparation of safeguard documents and throughout the course of the environmental and social assessment. The formulation of the GESI action plan has involved the following groups: (i) Awareness for WoMen to Advocate their Rights and Equality (AWARE), (ii) Disability Rights Alliance, (iii) Prajnya Trust, (iv) V-shesh, (v) Association for Non-traditional employment for Women (ANEW), (vi) Penn Thozhilalargal Sangam, and Garment and Fashion Workers Union, (vii) Thozi, (viii) Sahodaran, (ix) Borntowin (B2W), (x) Tamil Nadu Domestic Workers Welfare Trust.

262. All metro stations and trains shall be designed with EWCDT-responsive features to make the commute safer and more comfortable. In the light of the COVID-19 crisis, metro infrastructure will be used as a multimedia platform to disseminate information on communicable diseases and relay messages on preventing sexual harassment. The project's multimodal and land use integration initiatives will support the formulation of a comprehensive policy and plan to ensure universal access, social inclusiveness, EWCDT-responsive amenities and gender equality focused institutional capacity building.

263. The Resettlement framework and the GESI action plan for the project will also provide the mechanism for consultative and participatory approaches, and the safeguard documents provide adequate avenues for grievance redress.

Place	Date	No. of partici pants	Issue	Suggestion/opinion
Alwarpet	03.11.2016		Compensation	Adequate compensation for structures should be paid to help re- start life
			Fare	Fare should be comparable with other modes of travel
		6	Bore wells	Bore wells in station areas will be affected
			Building damage	Should be taken care
			Tenancy	After construction we want tenancy at this place a same rate
			Livelihood	Livelihood will get affected
Luz, Thirumayil ai	29.05.2017		Solve traffic issues and increase connectivity	Metro will reduce the traffic jam. The long-distance travel will be easy and metro will increase the connectivity.
		7	Old area; building may collapse due to tunnelling work	Underground track may not be suitable for Mylapore as it is a very old area with heritage buildings- temples, church etc. Many buildings/ residents are century old; therefore, there is a great risk of collapse.
			Business loss due to construction activity	If construction activities go long more than expected, then it incurred loss to commercial/ shops.
			Fare	Fare should be less.
Poonamalle e Depot	20.11.2018		Time Saving	Time will be saved in comparison with other means of transport.
			Loss of livelihood	The loss of livelihood for small enterprises is a major issue for employees or working class
			Traffic and pollution during construction of the project	There is a possibility of pollution and traffic problem during construction of the metro project.

 Table 7.1: Public Consultations at Station Locations Onsite 2016 to 2018

Place	Date	No. of partici pants	Issue	Suggestion/opinion
		8	Reduction of road pollution	Metro train will reduce the existing high level of pollution both noise and air.
		Ū	Safety and Security	The lady respondents said that the proposed metro project will be helpful for her because metro offers special a special compartment for ladies only.
			Loss of Trees and land	Loss of trees is another major concern according to the respondents. Tree plantation shall be taken care of.
			High ticket cost	The minimum metro ticket price in Chennai metro is Rs.50. The poor and middle class citizens will not be able to afford that money on a regular basis. So, they are using the bus services mostly.
Vadapalani	11.11.2016		Road congestion	Operation of metro to reduce congestion on road
			Fare	Metro should be less expensive
		10	Loss of livelihood	Being a small shop owner, our livelihoods will totally loss. There has to be adequate provision of compensation.
			Reduction in pollution	Metro will reduce the existing traffic load and reduce the level of pollution.
			Metro reduce road side accidents	Metro will reduce the traffic and reduced in road accidents.
Vadapalani	26.05.2017	7	Travel time	Travel time by metro will be lesser
		/	Congestion and Pollution	Congestion and Pollution due to road traffic will reduce

Place	Date	No. of partici pants	Issue	Suggestion/opinion
Poonamale e Bus Terminus	03.07.2018	12	Compensation	Due to metro train, other facilities and infrastructure will develop, but affected structures/people should get adequate compensation in order to re- instate their life.
Poonamall ee Bus Terminus	03.07.2018		Loss of livelihood	Being a small shop owner, our livelihoods will totally loss. There has to be adequate provision of compensation.
			Reduction in Pollution	Metro will reduce the traffic and road accidents.
		12	Construction resulting Traffic Jam	Construction activity will result traffic jam. As this place is fully commercial, metro construction may disrupt the traffic flow
			Green Cover	The metro train might reduce the green cover and it needs to be taken care of.
			Area development	Due to metro train, other facilities will come such as infrastructure development. Local economy will boost up.
lyappantha ngal Bus depot	03.07.2018		Time Save	The metro train facility in Chennai will save time to reach the destinations in comparison with other means.
			Comfortable Travel	It would be easy to reach to the destinations due to the proposed metro project.
		12	Better connectivity	Metro may improve connectivity with speedy travelling.
			Reduction in pollution and accidents on road and overall	There would be reduced pollution and no accidents while travelling in metro train
			Loss of livelihood	Local vendors located very close to the project site will be affected badly

Place	Date	No. of partici pants	Issue	Suggestion/opinion
			Fare	The metro fare should be as less as possible considering paying power of the people
			Employment	Metro will increase jobs especially for engineers

Source: DPR Corridor 4 SIA January 2019 & Comprehensive DPR March 2019

264. Public Consultations were conducted on site at station locations in 2018 and 2019 after the DPR was finalized. The outcome of these consultations is summarized in Table 7.2. Public consultations during construction and operation will form part of semi-annual monitoring reports sent by CMRL to MDBs. These consultations will focus on the impact mitigation measures being implemented and their efficacy.

Prior to the initiation of the grade separator construction, public opinion was informally gathered, revealing a consensus that the grade separator would significantly alleviate the traffic congestion at the location. This consultation addresses environmental concerns, a comprehensive assessment was undertaken to ensure minimal ecological impact, focusing on sustainable practices and necessary mitigation measures will be carried out.

Location	Date	Number of Participants	Issue	Suggestion / Opinion of Participants
Bharathidasan Road	8/9/2018	10	Adverse impacts	Loss of Livelihood, income, house/shop
			Benefits	Increase in property values, employment; decrease in travel time, congestion, accidents, GHG
Vadapalani	8/9/2018	12	Adverse impacts	Loss of Livelihood and income, house/shop, income, loss of house/shop,
			Benefits	Increase in property values, employment; decrease in travel time, accidents
Valasaravakkam	24/12/2018	8	Adverse impacts	Loss of income; migration
			Benefits	Increase in property values, decrease in travel time and GHG
Alapakkam	24/12/2018	5	Adverse impacts	Loss of customer, income, house/shop

 Table 7.2: Public Consultations at Station Locations Onsite 2018 and 2019

Location	Date	Number of Participants	Issue	Suggestion / Opinion of Participants
			Benefits	Decrease in travel time and GHG
lyyapanthangal Bus Depot	12/1/2019	7	Adverse impacts	Loss of livelihood, house/shop
			Benefits	Increase in property values, decrease in travel time, GHG
Kattupakkam	12/1/2019	11	Adverse impacts	Loss of income, migration
			Benefits	Increase in economic activity; decrease in travel time, accidents, GHG

7.4 Information Disclosure

265. Information disclosure will follow the procedure and disclosure requirements of MDBs' policies for category A projects. As per ADB's SPS 2009 and AIIB ESF 2019, the EIA shall be disclosed 120 days prior to ADB's Board Approval and AIIB's Board Approval.

266. All environmental documents are subject to public disclosure, and therefore, it is made available to the public. This EIA and the Executive Summary (in both English and Tamil) will be disclosed on CMRL and MDBs' websites. The hard copies of updated EIA is made available at CMRL office as well as at other locations accessible to stakeholders. CMRL will ensure that meaningful public consultations, particularly with project affected persons' are undertaken throughout the design, construction and operation stages.

8. GRIEVANCE REDRESS MECHANISM

267. Grievance Redress Mechanism (GRM) is an integral and important mechanism for addressing/resolving the concern and grievances in a transparent and swift manner. Grievances related to the implementation of the project, particularly regarding the environmental management plan, rehabilitation and resettlement, compensation etc. will be acknowledged, evaluated, and responded to the complainant with corrective action proposed using understandable and transparent processes that are gender responsive, culturally appropriate, and readily accessible to all segments of the affected people. Records of grievances received, corrective actions taken, and their outcomes will be properly maintained and form part of the semi-annual environmental monitoring report to MDBs.

268. Many minor concerns of peoples are addressed during public consultation process initiated at the beginning of the project. However, the most common reason for delay in implementation of projects in urban areas is grievances of people losing their land and residential and commercial structures. Resolving such cases in the Court of Law will be a very time-consuming process. Considering this and based on CMRL's past experiences of dealing with PAP grievances in phase I of the metro project, a common GRM has already been put in place in order to address social, environmental or any other grievances of project affected persons related to the investment project. Such a redress mechanism available at the project level itself will mean that the complainants do not necessarily have to directly approach a Court of Law although availability of Grievance Redress Committee (GRC) mechanism will not bar them from doing so. Although the project has one common GRM, the composition of the GRC's for social and environmental issues differ to ensure a dedicated and timely resolve of specific social or environmental grievances. Often the resettlement/social grievances will be resolved at a higher level GRC, whereas environment safeguard issues can be resolved at the working level GRC.

269. GRM will be in two layers: a) executing engineer from Project Implementation Unit (PIU) and b) GRC. The first level of interaction of GRM with the stakeholders will be the Executing Engineers from PIU to resolve ground level grievances including construction nuisances with support from contractor GRM focal. Issues should be resolved within 14 days. Those that cannot be resolved by PIU will be escalated to the 2nd level, to be examined by the GRC. Alternately complainants aggrieved by inadequacy of actions taken by the executing engineer of the PIU can escalate to the GRC.

270. The Environmental Health and Safety Expert on the CMRL PIU who is an environmental engineer will coordinate the GRC-Environment (GRC-E) which will report to MD, CMRL and Director Projects, CMRL. The other members of the GRC-E will be:

- CMRL Project Manager of the package/section
- EMP implementation teams from CMRL and GC
- EMP Manager from construction contractor
- Assisting NGO
- PAPs and representatives
- With a view to Affirmative Action to enhance women inclusivity, one-woman representative of local community from each 5km section of the alignment will be members of the Environmental and Social Grievance Redressal Committee. The representative(s) from the location(s) to which the grievance(s) pertain(s) shall be invited to deliberations of the Committee.

271. Records of the following stages will be maintained in the PIU office, on website of CMRL throughout the life of the project:

- Complaints received, including date and contact details of the complainant
- Acknowledgement of receipt of complaint by executing engineer PIU
- Actions taken by executing engineer and their efficacy
- Escalation by executing engineer or by aggrieved parties
- Records of further action and closure of complaints
- The number of grievances recorded and resolved and the outcomes.

272. Complaints and escalation by aggrieved parties can be done by paper mode as well as through email. The GRC-E will deliberate upon time limits for each of the above stages; the time limits will be placed on website of CMRL.

273. The flow chart of how environmental issues are addressed through the GRM is presented in Figure 8.1.

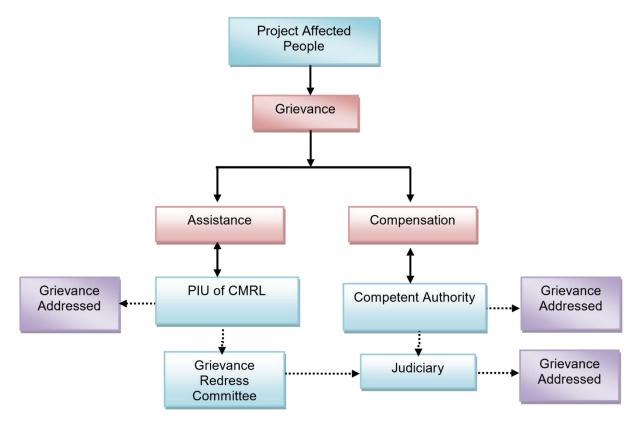


Figure 8-1: Grievance Redress Mechanism Environmental Issues

- 274. The following process is followed for consideration of various cases by GRC:
 - GRC function independently
 - All grievances are received in written form by GRCs and a separate record of the same, including contact details, is maintained
 - A separate file / processing document is created for each case, based on its category (project, location etc.) and all observations and documents related to the case are maintained in such file

- Cases related to environment pollution, noise, eligibility, entitlements, disputes etc. are promptly handled after consultation with relevant authorities
- GRCs can seek necessary record / information (such as survey details, past written communication etc.)
- Written notices are sent to the aggrieved persons and respondents to appear for hearing along with documents, and further dates are provided in case of genuine inconvenience to the party about the appointed date
- Multiple hearings are conducted as per the requirements of cases and aggrieved persons (including their representatives) and respondents are heard and are provided opportunities to submit further documents / proofs
- Site visit documents submitted by the parties are verified from appropriate sources, as may be considered necessary
- In normal circumstances (excluding those requiring information from external agencies) the entire process is carried out in a time bound manner (On an average, it takes about 1-2 months for disposal of each case in GRC)
- After due consideration of the cases, written and reasoned orders are passed under the signature of Head of concerned GRC
- Any fatality accident should be reported to GRC and MDBs immediately

275. In addition to the above GRM for addressing complaints from the local community, a separate GRM will be constituted by contractor for addressing the issues of the workers, forming part of the bidding document for CMRL to review and clear. The clauses in the tender include the following:

- Enquiries, complaints and requests for information can be expected from a wide range of individuals and organisations both private and government. The majority of complaints is likely to be received by CMRL, although the site offices are also likely to be contacted.
- The objective of complaint process is to ensure that public and agency complaints are addressed and resolved consistently and expeditiously.
- The Contractor's Project Manager will be notified immediately on receipt of complaint that may relate to environmental impacts. The Project Manager will immediately inform the Employer's Representative.
- Field investigation should determine whether the complaint has merit, and if so action should be taken to address the impact.
- The outcome of the investigation and the action taken shall be documented on a complaint Performa prepared by the Contractor and submitted for notice by the Employer's Representative in advance of the works.
- Where possible, a formal response to each complaint received shall be prepared by the Contractor within seven days in order to notify the concerned person(s) that action has been taken.
- Grievance log should be prepared and documented in the monitoring report with the resolution details.
- GRM for workers shall be established as early as possible to function no later than construction commencement.
- The GRM information and focal should be disseminated to public.

9. ENVIRONMENTAL MANAGEMENT PLAN

9.1 Introduction

276. The Environmental Management Plan (EMP) consists of a set of mitigation, monitoring and institutional measures to be taken for Corridor 4 to avoid, minimize and mitigate adverse environmental and social impacts and enhance positive impacts. The plan also includes the actions needed for the implementation of these measures. The major components of the EMP are:

- Mitigation of potentially adverse impacts;
- Environmental monitoring;
- Emergency response procedures;
- Institutional arrangements and reporting mechanism;
- Implementation Schedule;
- Training and capacity building; and
- Cost estimates.

277. The purpose of environmental monitoring is to ensure that the EMP is fully and competently implemented across all phases of the project's development, and to provide a basis for appropriate and timely corrective action when it is found not to be. The environmental monitoring process should be understood not only as a means of supervision and enforcement, but also as a vehicle for organizational learning and progress towards mainstream international best practice in construction site and facility management. Effective monitoring can also be a vital tool in forestalling conflict with the communities most likely to suffer the consequences of negative environmental impacts, as problems can be identified and corrected in a timely manner, before they grow to nuisance or dangerous levels. Environmental monitoring must continue until issuance of a Project Completion Report (PCR).

9.2 Objectives of Environmental Management Plan

- 278. The main objectives of this EMP are:
 - To ensure compliance with MDBs' applicable policies, and regulatory requirements of GoTN and Gol;
 - To formulate avoidance, mitigation measures for anticipated adverse environmental impacts during construction and operation, and ensure that socially acceptable, environmentally sound, sustainable and good practices are adopted; and
 - To stipulate monitoring and institutional requirements for ensuring safeguard compliance.

9.3 Institutional Arrangement

9.3.1 Executing Agency

279. Government of Tamil Nadu (GoTN) created a Special Purpose Vehicle (SPV) for implementing the Chennai Metro Rail Project. This SPV named as "Chennai Metro Rail Limited" was incorporated on December 03, 2007 under the Companies Act. It has now been converted into a Joint Venture of Government of India (GoI) and GoTN with equal equity holding.

280. The Department of Planning, Development and Special Initiatives, Government of Tamil Nadu, acting through the Chennai Metro Rail Limited (CMRL) will be the Executing Agency (EA) of the proposed Corridor 4 (Phase-II).

9.3.2 Implementing Agency

281. Chennai Metro Rail Limited (CMRL) is the Implementing Agency (IA) responsible for implementation of the metro rail project. Managing Director, CMRL will be in charge of the overall project activities. CMRL is accountable to the GoTN (i.e. the EA).

282. Project Implementation Unit (PIU), CMRL headed by the Project Director (PD) is responsible for the overall execution of the project and implementation of the EMP. The PIU will be assisted by General Consultant (GC). The safeguard role of GC is to assist CMRL in review of documentation and monitoring of implementation of EMP and monitoring plan during construction and operation by means of scheduled inspections, meetings and reports submitted to CMRL. The terms of reference are attached as **Annexure 6**.

9.3.3 Implementation of EMP

283. CMRL: EMP is committed by CMRL as part of its agreement with Multilateral Development Banks (MDBs). The responsibility to implement the EMP including Grievance Redressal rests with CMRL. The Environment clearances related to locations and design of the project is be secured before start of construction. Permissions/certifications required during operation of the project. Environment monitoring during operation.

284. Contractors: Permits required during construction and those directly related to construction. The EMP will be implemented by the contractors of different packages based on the contract agreement. The contractor environmental team will be headed by senior Manager assisted by qualified and trained safety professionals and environment engineers along with onsite junior field personnel. This team will be assisted by:

- electrical and mechanical engineers qualified in safety evaluation;
- environment engineer;
- traffic engineer; and
- professionals in occupational health and labour welfare.

285. The Employer Requirements for Environment, Social, Health and Safety (ESHS) have been prepared for Corridor 4; they will be issued to the Contractor as part of the contract documentation for construction.

286. CMRL and GC: Supervision and review of implementation is be the responsibility of GC. With assistance from GC, CMRL will also be responsible for reviewing and approving any specific documents/plans that have to be provided by contractors (traffic management plan, waste management plan, muck disposal plan etc.). Implementation of EMP will be continuously monitored by the ESHS team of GC and CMRL. The CMRL-GC team will be common for all sections of the project with a view to facilitate unified approach and knowledge enhancement.

287. The CMRL Core environment team and GC Environmental Specialist will be responsible for monitoring corridor 4. During construction CMRL – Assistant Manager /Environment was assigned and charged for this corridor, assisted by safety, environmental, traffic, labour welfare professionals deployed by GC and the Contractor. During operation of metro, the core

environment team will continue to monitor implementation of EMP by the metro operations contractors and EMoP by external environment monitoring agencies.

288. The CMRL's ESHS team will headed by senior Manager assisted by qualified and trained mid-level safety professionals, environment engineers, traffic engineer, labour welfare officer. The Manager ESHS for the project in CMRL will report directly to Director (Works) and Managing Director, CMRL.

289. GC will contribute,

- Specialists from fields of safety, environment, traffic engineering, occupational and community health, ecology, noise and vibration
- Onsite junior field personnel, at least one site each.
- The visits and review meetings will comprise:
 - Weekly site visits independently by CMRL and jointly with contractor;
 - o Weekly review meetings by CMRL and contractor;
 - Quarterly monitoring reports to CMRL;
 - Semi-annual monitoring reports to MDBs.
- Orientation and training of CMRL team in implementation of EMP and environmental monitoring will be undertaken at the beginning of the project.

290. MDBs: Disclosure of all latest safeguard documents on their websites. Implementation of the EMP is I be monitored half yearly by MDBs through their specialists.

291. External Monitor: An external agency is engaged by CMRL in consultation with MDBs to evaluate the environmental performance of abovementioned parties with the listed responsibilities as below. The agency will report to CMRL who in turn report it to MDBs. The terms of reference are attached as Annexure 7.

- To conduct third party monitoring of environmental compliance under the project;
- To ensure that the Project is be implemented in conformity with the policies of Gol, GoTN, as well as MDBs' policies;
- To Identify any safeguard related implementation issues and necessary corrective actions and reflect these in a time-bound corrective action plan for CMRL to implement;
- Capturing social, environmental and economic benefits and particular potential benefits to the poor and vulnerable groups in the corridor;
- Involving users and stakeholders in the monitoring process; and
- Strengthening the capacity of the CMRL to manage and replicate third-party monitoring with rail users and stakeholders.

292. The reporting line of all relevant parties is, Contractor \rightarrow PIU \rightarrow CMRL and GC \rightarrow MDBs. The external monitor will conduct independent monitoring to inform CMRL any remediation actions to ensure the safeguard compliance.

293. An EMP Matrix is presented in Table 9-3.

9.4 Development and implementation of Subplans

294. As part of the construction environmental management plan, contractors need to develop various subplans as discussed in the EMP (item 4 to 13 during pre-construction stage) and in the ESHS system requirements as described in CMRL's Health and Safety Manual (annexure 5).

These plans are aimed at good environmental management practices and serve as guide documents. These subplans will form part of construction EMP be consistent with the contractor's SHE plan and will be included in the bid documents. Table 9-1 present some of the key plans to be developed by contractor and responsible party for it's approval.

Plan		Description	Appro	ovals	
			PIU	GC	MDB ²³
1.	Work plan for securing all permits and approvals	The plan will list all necessary permits, approvals and/ or consent including the responsible authorities and the timeframe of obtaining them.	Yes	Yes	No
2.	Construction and labor camp Management Plan	The plan will provide a layout map of the construction sites and campsite and clearly show the access road, entry and exit and different facilities inside the camp. Facilities inside the camp may include contractor's office, residential quarters, toilets, health center, construction plants, storage areas etc. The plan will include information on waste management, supply of water for drinking and bathing, waste water and drainage management, traffic movement routes etc.	Yes	Yes	No
3.	Site and Camp Restoration Plan	Describes the clean-up and restoration operations to be implemented by the Contractor prior to demobilization including clearance of all temporary structures, disposal of all garbage, night soils and petroleum, oil and lubricants wastes and filling and sealing of all disposal pits or trenches.	Yes	Yes	Yes
4.	Muck Disposal Plan	The plan shall describe sources of muck generation (TBM operation for underground section, piling work for viaducts etc), type and quantity of muck generated from various sources, use of muck generated, method collection and transportation, transportation routes, disposal site location and design, approvals required for disposal sites, and treatment method. Recommendations provided in the EIA must be considered.	Yes	Yes	Yes
5.	Waste Management Plan	The plan shall describe waste streams and amounts, describe recycling/reuse methods for each material, identify the waste destinations	Yes	Yes	No

Table 9.1: Contractors'subplans and approval

Plan		Description	Appro	ovals	
			PIU	GC	MDB ²³
		and transport modes, including what materials are being segregated on site for reuse or recycling, specify responsibilities for managing and disposal of waste. Describe special measures for material use and handling. Describe communication and training to support and encourage participation from everyone on site. Recommendations provided in the EIA must be considered.			
6.	Traffic Management Plan	The plan shall be designed to ensure that traffic congestion and traffic safety impacts due to construction activities and movement of construction vehicles, haulage trucks, and equipment is minimized. The plan shall be prepared in consultation with traffic officials. The plan shall identify traffic diversion and management issues, haul road network plan, traffic schedules, traffic arrangements showing all detours/lane diversions, modifications to signaling at intersections, necessary barricades, warning/advisory signs, road signs, lighting, and other provisions to ensure that adequate and safe access is provided to motorists and other road users in the affected areas. Pre-construction access road surveys will also form part of the TMP. The plan shall also include locations for pedestrian crossings and conditions for the management of these crossings, including the use of flagmen.	Yes	Yes	Yes
7.	Occupational and Community Health and Safety Plan	Consistent with international standards (e.g., World Bank Group Environmental, Health, and Safety Guidelines, 2007) and Labor Code of India. The Plan shall address health and safety hazards associated with construction activities (e.g., excavations, tunneling etc.), use of heavy equipment, transport of materials and other hazards associated with various construction activities and shall provide links to existing government health programs. The plan will include a Covid-19 response and management plan. The document to be read together with the Camp Management Plan. Recommendations provided in the EIA must be considered.	Yes	Yes	Yes
8.	Labor and Working Conditions	This will include: policy/legal framework information (including labor and OHS requirements of national legislation, ADB SPS	Yes	Yes	Yes

Plan		Description	Appro	ovals	
			PIU	GC	MDB ²³
	Management Plan	2009), workforce induction and information on rights, child and forced labor, equal opportunity, migrant workers, promotion of local employment opportunities, labor union, worker accommodation requirements, provision for retrenchment plans, workforce grievance mechanism, security personnel (Voluntary Principles on Security and Human Rights), etc. Contractor needs to ensure that the core labor requirements are cascaded down across the entire contracting chains, including sub- contractors and suppliers of core materials. The plan shall also be in compliance with IFC Guidance Note "Workers' accommodation: processes and standards".			
9.	Code of Conduct	The Contractor shall prepare a Code of Conduct that outlines camp rules articulating acceptable behaviors of the workforce with local communities. Associated induction training will be provided to ensure rules are well understood and enforced.	Yes	Yes	Yes
10.	Emergency Response Plan	This plan shall prescribe measures to prevent, mitigate, respond to and recover from emergency events that could occur due to project activities such as accidents, spills of hazardous substances, fire, extreme weather events, and others; measures to prevent, mitigate, respond to and recover from emergency events that could occur due to project activities such as accidents during tunneling (e.g., tunnel collapse, electrocution, etc.), release of toxic gas during tunneling, spills of hazardous substances, fire, floods, and other events.	Yes	Yes	Νο
11.	Construction Vibration Management Plan	Detailing the procedures for vibration surveys, monitoring and control. Such details shall include; procedures to complete condition surveys (for all properties indicated in this EIA), Measurement locations and methods; Method statements for works likely to induce vibrations, including programs of trial construction sections to determine the likely magnitude of vibrations at defined distances from the vibration source, in sufficient detail for the contractor to develop a final method for constructing the works without excessive vibration; Description of the	Yes	Yes	Yes

Plan	I	Description	Appro	ovals	
			PIU	GC	MDB ²³
		instrumentation and equipment to be used; Copies of the instruction manuals and the laboratory calibration and test equipment certification; The resumes of the vibration monitoring technical support personnel, sufficient to define details of relevant experience; Procedures for data collection and analysis; Frequency of measurements; Means and methods of providing warnings when the specified construction vibration limits are reached; and Action plans to be implemented in the event the specified construction vibration limits are reached. The generalized plans of action shall comprise the positive measures by the Contractor to control vibrations using alternative construction methods.			
12.	Construction Water Management Plan	Plan to describe the water sources, required permits and ways to minimize water wastage	Yes	Yes	No
13.	Utility shifting and restoration plan	Plan to describe temporary or permanent diversions of utility services in order to secure that utility services remain operational during the entire construction period and after completion of project.	Yes	Yes	No

9.5 Environmental Monitoring and Reporting Program

295. Environmental Monitoring Plan (EMoP) is a companion document of the EMP. EMoP contain parameters, location, sampling and analysis methods, frequency, and compared to standards or agreed actions that will indicate non-compliances and trigger necessary corrective actions. More specifically, the objectives of the EMoP are:

- Ensure that impacts do not exceed the established legal and project specific standards
- Check the implementation of mitigation measures in the manner described in the EIA report
- Monitor implementation of the EMP
- Provide an early warning of potential environmental damage
- Check whether the proposed mitigation measures have been achieved the intended results, and or/ other environmental impacts occurred

296. The monitoring plan is adopted to monitor the performance monitoring of the project in respect to environment. A monitoring plan defining all parameters to be monitored, with tentative location, project stages for measurements, implementation and institutional responsibility for different environmental components is prepared for all stages of project and presented in Table 9.3.

297. Monitoring and Reporting Frequency for implementation of the EMP is shown in Table 9.2.

r	Table 9.2: Monitoring and Reporting for EMP and EMOP								
	Particulars	Frequency of reporting	Reporting by / Reporting to	Review by/ Monitoring by					
cons site s a) b)	ing from deployment of truction contractor from selection period Implementation of EMP and EMoP Monitoring of Implementation of EMP and EMoP Grievance Redressal	Monthly till completion of construction	 a) Contractor / GC b) GC / CMRL SH&E team, CMRL SH&E team/MD, CMRL c) CMRL SH&E team/MD, CMRL 	CMRL					
a) b)	Implementation of EMP, EMoP and Grievance Redressal and their internal (CMRL) monitoring Outcome of continuing public consultations	Semi-annually until completion of construction	All by CMRL / MDBs	MDBsTNPCB					
inter		Semiannually during construction	External Expert / CMRL	MDBs					
b)	Implementation of EMP by CMRL and EMoP by external agency Monitoring of EMoP Grievance Redressal	Semiannually during first 2 years of operation & maintenance	a) and b) • EMoP Agency / GC • GC / CMRL SH&E team • CMRL SH&E team/MD, CMRL c) CMRL SH&E team/MD, CMRL	CMRL					
b)	Implementation of EMP, EMoP and Grievance Redressal and Internal (CMRL) monitoring Outcome of continuing public consultations	Semiannually during first 2 years of operation & maintenance	CMRL / MDBs	MDBsTNPCB					
EMP	uate implementation and , EMoP, Grievance ressal and their efficacy	Annually during first 2 years of operation & maintenance	External Expert / CMRL	MDBs					

 Table 9.2: Monitoring and Reporting for EMP and EMoP

Table 9.3: Environmental Management Plan Matrix

Note: This EMP Matrix will form part of the contract document together with CMRL's SHE Manual for all contractors. This EMP has been aligned with the SHE Manual wherever possible, and in places, cross referencing has been resorted to.

SI.	Activity	Aspect /	Impact	Mitigation measures	Responsi	bility
No.		Parameter affected			Implementation	Supervision
Planr	ning and Design P	hase			I	1
1.	Land Acquisition	Social	As per DPR October 2018, permanent acquisition of 5.7 ha private land. The final size of land to acquired will be updated based on the optimization of projectdesign.	 Compensation and Resettlement benefits as well as livelihood restoration measures are under approval, governed by the following general principles, which are based on The Right to Fair Compensation and Transparency in Land Acquisition, Rehabilitation and Resettlement Act, 2013. Land Acquisition is being carried out as per the provision of GoTN and Gol policies. The affected people will be compensated and assisted as per the provisions of Resettlement Action Plan. 	CMRL	GoTN
2.	Change i nLand use	Land	Land use will be slightly changed	 CMRL developed the Comprehensive Mobility Plan for CMA in 2015 to identify the present and future mobility patterns of Chennai Metropolitan Area, including development of Corridor 4. Proper clearance/permission/consents will be sought from competent authority before construction. 	CMRL	CMDA
3.	Contractor Management	EHS	EHS accidents Reputational Risk	 Integration of EHS contractor management into broader project management, procurement, human resources, legal, and financial management. "Prevention through design": assessment of what prime contractor does versus what subcontractors do; contractor prequalification (when, if, and for what); use of information technology tools (identification cards and tracking and reporting systems for personnel andtraining). Prime contractor will be responsible for EHS practices of the subcontractor including human resource policy which complies with applicable labour legislations, including 	Contractor / GC	CMRL

SI.			Impact	Mitigation measures	Responsil	bility
No.		Parameter affected			Implementation	Supervision
				 decisions on material supplies and equipment given environmentally friendly priorities, and prepare subcontract agreements accordingly. 4. Contractor management incorporates "adaptivemanagement" to monitor and adapt over time; integration with sustainable procurement approach or concepts. 5. Building culture and commitment by demonstrating the importance of EHS management to the president or director of project- implementing agency and president ordirector of subcontractor; including EHS aspects in routine senior management project contractor meetings and reports, reflecting both criticisms or suggestions andpraise; designating responsibilities of EHS staff (for example, work stoppage); requiring strong and consistent training and participation of managers; acknowledging managers' participation in on-site supervision and resolution of issues; and providing awards, recognition, and incentives. 6. Training and quality control plans. 		
4.	Contractor Preparatory Works (Upon issuance of Notice t oProceed)	EHS	Non- compliance withcontract conditions and regulatory requirements.	1. The Contractor shall complete the following activities no later than 30 days upon issuance of Notice to proceed, appoint contractor's Safety, Health and Environmental Officer (SHEO); (b) SHEO will engage GC-Environment Specialist to discuss EMP, seek clarification and recommend corresponding revisions if necessary; (c) SHEO will agree with GC the monthly monitoring template and deadlines for submission; (d) SHEO will submit for GC's approval all necessary subplans as listed in the EIA section 9.4 and in CMRL's Health and Safety Manual (Volume 1, section 4) The plans will include a work plan to secure all permits and approvals needed to be secured during construction stage will include but are not limited to: i) operation of crushers and hot mix plants, ii) transport and storage of hazardous materials (e.g. fuel, lubricants, explosives), iii) waste disposal sites and disposal management plan, iv) temporary storage location, iv) water use, and v) emission compliance of all	Contractor / GC	CMRL

SI.	Activity	Aspect /	Impact	Mitigation measures	Responsi	bility
No.		Parameter affected			Implementation	Supervision
				vehicles. Arrangements to link with government health programs on hygiene, sanitation, and prevention of communicable diseases will also be included in the action plan; (e) SHEO will submit for GC's approval ofthe construction camp layout and management plan before its establishment; and(f) SHEO will update EIA (in consultation with GC, in case of design changes) and also prepare site-specific EMPs.		
5.	Labour Management	Labour	Labour right	 Compliance with Gol labor legislation, ratified International Labour Organization conventions. Prohibition of child labor, including prohibition of personsunder 18 years old from working in hazardous conditions(which includes construction activities) and from working at night; medical examinations required to determine thatpersons above 18 years old are fit to work. Elimination of discrimination with respect to employment and occupation, to be defined as any distinction, exclusion, or preference based on race, gender, religion,political opinion, trade union affiliation, national extraction, or social origin. Human resource policy or plans that establish (a) the rights and responsibilities of project company employeesand any contractor employee working in the project regarding remuneration, working conditions, benefits, disciplinary and termination procedures, occupational safety and health, promotion procedures, and training and (b) the rights, responsibilities, and requirements in contractor or subcontractor agreements related to workerrights. Grievance Redress Mechanism for workers should be established as early as possible to function no later than construction commencement. There will be provision for group accidental insurance for the workers. Contractor has to prepare a Code of Conduct that outlines camp rules articulating acceptable behaviors of the workforce with local communities. Associated induction training will be provided to ensure rules are well understood and enforced. 	Contractor	GC / CMRL

SI. No.	Activity	Aspect / Parameter	Impact	Mitigation measures	Responsi
NO.		affected			Implementation
		Health and Safety	Accidents and illness	 Prepare the Health and Safety Plan for each site and assign a safety officer to monitor the compliance. Make mandatory the use of safety gears (helmets, safetybelts, masks, gloves, Ear plugs/ muffs and boot) by workers depending on nature of work. Necessary planning and safety approach will be made for rescue during emergency. Use of dust controls (exhaust ventilation) for dust control Workers will be provided with first aid and health facilitiesat the site. There should have facility to deal with medical aspects of HIV/AIDS treatment with specialized services. GC to conduct Health and Safety Audit. 	Contractor
			COVID-19 response	 Taking cognizance of situation at time of mobilisation, the Contractor shall undertake a COVID-19 risk assessment of project area and prepare a COVID-19 Response and Management Plan (C-R&MP) and submitto CMRL and GC for approval. The preparation of C-R&MP shall consider guidance of GoI, especially the Standard Operating Procedures and Guidelines for Construction Sites for COVID-19 Outbreak, other guidelines of WHO, International LabourOrganisation, International Financial Corporation and World Bank's interim guidance note 	Contractor

etc. The key points on COVID-19 Response and Management

1. Consultation and coordination with relevant authorities toprepare

the documents to obtain clearance, permission and consents.

consents to be incorporated into the site-specific EMPs, with

dedicated officers to maintain the regulatory compliance tracker.

2. Conditions set in CRZ clearance, other permission and

3. The contractor shall submit a weekly monitoring and progress

measures is at Annexure 8.

report to CMRL and GC.

Responsibility

Supervision

GC / CMRL

GC / CMRI

GoTN Forest

/TNCRZMA/

TNSPCB

Dept

CMRL

Contractor

6.

Obtaining

Clearance,

Permission

Consents

and

Regulatory

Compliance

Delay of obtaining CRZ

clearance, Tree felling

information, Consents to

establish labour camps,

pre-casting and material

yards, depots, establish and operate hot mix plant, crushers, batching plant, DG sets etc. muck/waste

disposal.

SI.	Activity	Aspect /	Impact	Mitigation measures	Responsib	ility
No.		Parameter affected			Implementation	Supervision
7.	Site Clearanceand Demolition	Tree felling	About 837 trees will be affected at alignments, stations and depot area. Additionally, in some areas, pruning will be required. Ecological Impacts on Panagal park	 CMRL and Contractor need to conduct a final tree inventory survey(number, type, height) with the finaldesigns of alignment and station. Trees with conservation value should be transplanted. Plan to avoid cutting patrimonial trees, including adjustments in projectdesign to minimize effect on such trees. Revisit the works in public parks or green spaces and potential tree removal, especially involving patrimonial trees of special significance, so minimize the impacts as much as possible. If unavoidable, implementation of acceptable plans for transplanting (to the extent technically and economically viable) or replacing such trees and for their short-term maintenance and care. Adequate coordination with applicable government regulatory authorities. As alignment passes through built land use, green belt development along elevated sections not feasible. Compensatory plantation of 12 saplings for every tree felled will be done in sites to be identified. CMRL to allocate sufficient tree replantation budget. Stakeholder communication to avoid or minimize public concerns or protests. Exploration of restoration options for Panagal park enhancements, to offset negative impacts, accelerate ecosystem recovery and promote the health and longevity of the Panagal Park. Contractor and CMRL will work out an ecological restoration plan with a process of assisting the recovery of the ecosystem that will have been degraded, damaged or destroyed due to the construction impacts. Active restoration actions may include fencing and signing sensitive areas during construction, which will minimize construction impacts. Active restoration actions and include soil decompaction, revegetation, removal formal or informal trails out of sensitive area. Definition of adequate budget and contingencies as well as financial resources to cover all related costs. This will be finalized before work on relevant section is commenced between CMRL and Contractor.<td>CMRL / Contractor</td><td>Forest Dept. GoTN and CMDA, GCMC</td>	CMRL / Contractor	Forest Dept. GoTN and CMDA, GCMC

SI.	Activity	Aspect /	Impact	Mitigation measures	Responsibility	
No.		Parameter affected			Implementation	Supervision
		Noise	Noise will be generated theuse of hand tools such asjackhammers, sledgehammers and picks etc.	 The procedure of demolition will be conducted as per the demolition plan prepared by the Contractor in consultation with CMRL. The existing structures should be demolished one after another cautiously. 	Contractor	GC / CMRL
		Physical Cultural Resources	Historic and Cultural ValueLoss	 Contractor to conduct pre-construction structural integrity inspections if there are known or a significant likelihood of archeological and/or culturally valuable sites or finds in the project's direct area of influence. Prepare a monitoring scheme prior to construction basedon the above inspections, with a focus at locations whereTunnel Boring Machine will pass close to or under, to prevent the construction delay in case structural damageoccurs during tunneling. Compliance with applicable legislation (permits and procedures) and good international practice. Adaptive management in site-specific EMP during final design, including site locations (stations, emergency exits, ventilation shafts, and construction staging areas). Chance finds procedure to be prepared by Contractor and reviewed by GC/CMRL before submitting to all lenders. 	Contractor	GC / CMRL / CMDA
		Biodiversity	Potential Habitat Loss	1.	Contractor / GC/ CMRL	TNCRZMA

SI.	Activity	Aspect /	Impact	Mitigation measures	Responsil	oility
No.		Parameter affected			Implementation	Supervision
				 Gol legislation, IFC/WB guidelines and international bestpractices should be integratedly followed. Assessment of actual and potential disturbance effectsof project activities and develop the Biodiversity Management Plan (BMP) to ensure no net loss of any target species including Olive Ridley Turtle. The BMPwill outline the actions required by the contractor to conserve or enhance biodiversity during site works particularly during piling and construction work. The BMPwill be reviewed by lenders prior to contractor's mobilization. 		
8.	Severance of utilities	Social EHS	The proposed alignments will cross drains and utility services such as sewer, storm water drains, water and wastewater pipes, roadside lights, telephone cables, electricity power lines, electric poles, natural gas lines and traffic signals etc.	 Assets and utilities will be maintained without affecting and damages by shifting temporary/ permanently where it is necessary. Based on utility maps and network information, CMRL and Contractor in collaboration with utility owners oversees an investigation of existing utility supplyinfrastructure using trial pits or mix of 3D imaging and trial pits where pits pose safety hazards in built areas. CMRL and Contractor to conduct on-site inspections anda topographic survey. Even when utilities are far enough below the surface, to avoid damage from construction, they may need to be diverted so that their maintenance will not affect the safe and efficient operations of the train system once construction is completed. Utility owners will be involved in providing any new utilities from ground movement and surface settlement. For gas pipeline, Contractor will conduct the hazardous operation study to ensure the smooth and safe shifting. Utility shifting plan will be developed by CMRL and Contractor in coordination with concern authorities and shifting of utilities will be done as per agreed utility 	CMRL / Contractor	CMRL / CMWSSB, TANGEDCO, Telecom companies

SI.	Activity	Aspect /	Impac	Mitigation measures	Responsi	bility
No.		Parameter affected	t		Implementation	Supervision
				shifting plan prior to construction commenced. The plan will include required EHS management measures, supervision and monitoring of implementation, and final report and confirmation that construction works will be properly closed (for example, all waste will be removedor re-pavement will be completed as required).		
9.	Noise and Vibration Impacts Related Design	Environment al Nuisance	Noise and vibration from construction and train operation	 The detailed noise and vibration analysis (mathematical modeling) at sensitive receptors based on final engineering designs should be carried out, based onwhich, a set of mitigations should be prepared and shared with all lenders for review, prior to commencement of construction. Additional assessments of vibration, such as visual inspections of buildings and baseline monitoring in areaswith sensitive buildings of cultural or historicalsignificance. Ballast less track structure is supported on two layers of rubber pads to reduce noise and vibrations. In addition, baffle wall as parapets will be constructed up to the rail level so as reduce sound levels. Noise at source will be controlled or reduced by incorporating suitable feature in the design of structures and layout of machines and by use of resilient mounting and dampers etc. 	Contractor	GC / CMRL
10.	Coordinate with the Traffic Department on Traffic Management Plan	Land Occupational safety Community safety	Nuisance from traffic congestion	 The Contractor shall develop detailed and robust traffic management plans consistent with the Indian Roads Congress (IRC) on Traffic Management in work zones (IRC:SP:55-2014), prior to mobilization for respective sections with site- or station- specific plans and measures to minimize the overall impact on traffic throughout the construction and operation periods. At congested sections, the temporary traffic coordinators will be engaged by CMRL to facilitate the trafficmanagement. At the minimum, the traffic management plan will have 	Contractor	GC/ CMRL/ Traffic Police

SI.	Activity	Aspect /	Impact	Mitigation measures	Responsil	nsibility	
No.		Parameter affected			Implementation	Supervision	
				 the following components: construction traffic, ensuring access to properties, accommodating pedestrians, parking, access by construction vehicles, faulty traffic lights and problem interchanges, use of public roads, parking provision during construction, use of residential streets and traffic diversion due to temporary road closures, and construction and use of temporary access roads. 4. Strengthening impact and risk prevention measures, such as establishing construction site works to minimize the entrance and exit of vehicles at stations during peak traffic. 5. The logistics should be considered to manage transport materials from storage areas outside of the dense urban core to worksites and to return excavated soil and other materials to disposal locations. If needed, construction traffic may be confined to certain routes (based on infrastructure capacity) or restricted to certain off -peak hours (that is, to reduce noise pollution at night or to avoid commuting and school hours during the day). 6. Any diversions of traffic will cause considerable confusion for pedestrians and drivers as they rearrange their itineraries, hence, to minimize the effects of the diversion or reorganization, it is necessary to conduct communication campaigns and disseminate appropriate information to urban residents and taxi and bus drivers inadvance of disruptions. Efforts will be given to divertraffic to roads wide enough to accommodate extra traffic. Compliance with scheduled deadlines for the detour is essential. If necessary, bus service and other public and private transport services in the area should be improved to meet residents' transportation needs. 7. Incorporation of community safety considerations intoplan design, especially at locations such as Kuchery Road where buildings are close to the construction site. 8. CMRL and local authorities continue to play an oversight role in approving these plans during construction, evaluating their cumulative impact with other			

SI.	Activity	Aspect /	Impact	Mitigation measures	Responsi	bility
No.		Parameter affected			Implementation	Supervision
				8.		
11.	Construction method, construction material and sites selection	Environment	Pollution and nuisance	 Contractor is committed to use environmentally friendly construction methods and materials, including cement, asphalt, and base materials etc. Construction material shall be sourced from legalized and approved quarries. Energy saving technologies will be embedded into the Project design wherever possible. For instance, solarpanels, rainwater harvesting. Bureau of EnergyEfficiency (BEE) certified/ Energy efficient LED lights, automatic signaling, etc., Update of plan based on final contractor-defined estimated volumes and timing for groundwater pumping with intension of minimizing the groundwater consumption. The primary objective shall be to avoid extraction of groundwater for construction. However use of groundwater which has been generated by dewatering of excavations can be used in construction activities. In those instances where extraction of groundwater becomes unavoidable, contractor shall, withconsent of CMRL, resort to such extraction. In such instances contractor-defined estimated volumes and timing for groundwater pumping with intention of minimizing the groundwater consumption. Procedures for minimizing waste segregation, reuse, temporary storage, recycling, donation, and disposal. Selection of waste disposal service providers (transport, recycling, and disposal) based on EHS criteria (includingcompliance with all regulatory requirements, nodocumented EHS issues related to materials at operation or site facilities, and agreement to provide 	Contractor	GC / CMRL

SI.	Activity	Aspect /	Impact	Mitigation measures	Responsi	bility
No.		Parameter affected			Implementation	Supervision
				 access for site visits to discuss EHS management). 7. Final selection of disposal or reuse sites for extracted soils from construction and assessment and determination of truck routes from project sites to disposal or reuse site. 8. Focus will be placed on reuse of the extracted soil for enhancement of green space, waste recycle, and storm water runoff. 9. Construction yards with aggregate crushing and screening, precasting, material and fuel storage andready-mix concrete plants will be located away from habituated or ecologically sensitive areas. Locations will be decided by CMRL and cleared by MDBs before construction commencement in consultation with Municipal Corporation/Municipalities and CMDA. 10. The muck disposal sites shall be identified by Contractor and will be decided by CMRL after approval of the Muck disposal Plan and before start of constructionin consultation with TNPCB, Municipal Corporation/Municipalities and CMDA, to ensure a safe distance from residential areas, water bodies and ecologically sensitive locations as to avoid disrupting natural drainage. The muck shall be filled in the dumpingsite in layers and compacted mechanically. Suitable slopes will be maintained on the stockpile. Once thefilling is complete, it will be protected by low walls, provided with a layer of good earth on the top and covered with vegetation. 		
12.	Climate Designs	Health and Safety	Natural disasters generated health and safety accidents Maintenance Cost	 Belt of width approx. 0.5 km of beach and developed area on alignment between Lighthouse and KutcheryRoad is underground and can be subject to floodingdisrupting operations. On Corridor 4, flooding gates will be installed, and adequate facilities will be made in terms of evacuation of flood water using pumps in Lighthouse, Foreshore Road and any other stations with flooding 	Contractor	GC / CMRL

SI.	Activity	Aspect /	Impact	Mitigation measures	Responsi	bility
No.		Parameter affected			Implementation	Supervision
				 risks. Disaster management plan will pay special attention to flooding and other natural disaster to facilitate robust safety and quicker evacuation, to adapt the disruption of road level access to stations due to rise in mean sea level. 2. Other climate adaptation designs will be embedded inthe final design, such as (a) improving adaptability to seasonal thermal variations in the stations through the use of large open spaces for unrestricted air movement, cross-ventilation and ensuring that enclosed areas are well ventilated; (b) designing for better adaptability torising sea level/high tide/heavy flooding through the use of higher plinth levels and check valves for sewer lines inflood-prone areas and the use of resilient materials that can get wet and then dry out with minimal damage; and (c) rainwater harvesting through gutters and pipes to either harvesting pits or for groundwater recharge. 3. Climate change mitigation measures will be considered, such as solar panels on station buildings and roofs to reduce the extensive use of grid-generated electricitysupplied to the station for operation and maintenance. 		
13.	Site-specific Environmental Baseline Collection and Assessment	Environment	Benchmark of assessing project impacts	 Prior to mobilization, contractor to collect a full set of baseline data of air, water (surface and ground), noise, soil quality. Additional investigations in areas identified as havingcontaminated soil or groundwater to define the degree and extent of contamination and alternatives for soil and groundwater disposal. Assessment of potentially contaminated soil at site locations where soil work and excavations will be performed to examine the site situation. If there is a reasonable likelihood of contamination, then a specific management plan thatincludes (a) monitoring during construction consisting of visual inspections, on-site and in-situ monitoring to detect and confirm levels of contamination (and 	Contractor	GC / CMRL

SI.	Activity	Aspect /	•	Mitigation measures	Responsibility	
No.		Parameter affected			Implementation	Supervision
				 supplemented as needed by laboratory analysis), (b) on-site temporary storage and treatment, (c) final disposal (both for water and soil), and (d) worker health and safety procedures. 3. Assessment and site-specific measures for controllingnoise, dust, and illumination during construction (for example, when working 24 hours a day). 4. Confirmation of potential uses of groundwater and pumping impacts (for example, settlement or subsidence). Efforts on minimizing the groundwater consumption. 5. Contractor to prepare site-specific EMPs for CMRL to approve before mobilization. 6. Based on detailed construction work plan and associated occupational health and safety risks, strengthening the contractor health and safety management system in site-specific EMPs. 7. CMRL and GC to provide EMP orientation to contractor. 		
14.	Documents Review and Information Disclosure	Environment	Unanticipated impacts management	 With the assistance of GC, CMRL will review the above said data collections, surveys and pre-construction plans prepared by Contractor. CMRL will submit to all lenders to review the documents and disclose in a timely and meaningful manner prior to construction. 	CMRL	GoTN
15.	Establishment of Grievance Redress Mechanism	EHS	Complaints not resolved in time	 Grievance Redress Mechanism for workers and project affected people should be established as early as possible to function no later than ground work commencement. The Grievance Redress Mechanism information and focal should be disseminated to public. 	CMRL	GoTN
16.	Community Liaison	Social	Complaints	 To ensure that Grievance Redress Mechanism to function effectively for affected people on construction nuisance at ground level with grievance log welldocumented. 	Contractor	GC/ CMRL

SI.	Activity	Aspect /	Impact	Mitigation measures	Responsil	bility
No.		Parameter affected			Implementation	Supervision
				2. Contractor to develop a community communication plan per the construction plan, including important measures to reduce community risk, such as fence and related protection around work sites (including strength and visual protection), education and awareness signs and information, and placement of safety risks (explosive andflammable materials, generators).		
Cons	truction Phase			I	<u> </u>	
17.	Construction Monitoring	ESH	Breach of legislation, EIA, EMP, Contracts Accidents	 Contractor to collect and monitor the Ambientenvironmental data of air, water (surface and ground), noise& vibration, soil quality and submit monitoring reports to GC / CMRL on monthly basis. GC / CMRL to review the data compared to baseline data and urge Contractor to take immediate actions over any project generated pollution / contamination. GC to submit monitoring reports on quarterly basis to CMRL. If any unanticipated EHS impacts arise during construction, implementation or operation of the Project that were not considered in the EIA / EMP, Contractor and GC to promptly inform CMRL of the occurrence of such risks or impacts, with detailed description of the event and proposed corrective action plan. CMRL will report to all lenders accordingly. CMRL to engage qualified and experienced third party monitor to verify information produced through the Project monitoring process, and facilitate the carrying outof any verification activities by such third party monitor. CMRL to submit the semi-annual monitoring reports (GC's and third party's) using the agreed the template to all lenders. CMRL to report all lenders any actual or potential breach of compliance with the measures and requirements set forth in the EMP promptly after becoming aware of the 	Contractor / GC / CMRL	TNSPCB

SI.	Activity	Aspect /	Impact	Mitigation measures	Responsil	oility
No.		Parameter affected			Implementation	Supervision
		Biodiversity	Breach of legislation and BMP	 Apart from the abovementioned measures for EHS monitoring, CMRL to ensure the BMP implementation monitoring and wildlife monitoring. If any wildlife species are found in the construction site, they will be carefully transferred to safe locations within the Coastal Zone or Marsh under the guidance of the biodiversity expert and the local forestry/wildlife agency. Monitor noise level to minimize the impacts, for instance,use of rotary drilling rigs which generates less noise in comparison to impact hammer. The Construction MethodStatement will follow the Good International Industry Practice. Monitoring habitat enhancement to deliver net benefit to any Critical Habitat species. 	Contractor / GC / CMRL	Forest Department GoTN /CMRL
18.	Community Liaison	Social	Complaints	 To ensure that ongoing timely consultations / communications with communities are provided on the progress of the project together with feedbacks on the environmental management performance of the project. Grievance Redress Mechanism for affected people should function effectively with grievance log welldocumented. 	Contractor	GC/ CMRL

SI.	Activity	Aspect /	Impact	Mitigation measures	Responsit	bility
No.		Parameter affected			Implementation	Supervision
				 Contractor will provide a minimum of two (2) weeks notification to directly affected residents, businesses andother relevant groups of the intended construction commencement date. In providing a mechanism for communication between the contractor and the community and informing the public of construction details (timing, expected impacts), CMRL will undertake consultations. Adaptive management that monitors, adjusts, or adds measures to reflect actual community risks. Important measures to reduce community risk, such as fence and related protection around work sites (includingstrength and visual protection), education and awareness signs and information, and placement of safety risks (explosive and flammable materials, generators). 		
19.	Truck and Driver Management	Environment Social	Community disruptionAccidents Reputational risk	 Contractor's transport vehicles and other equipment shall conform to emission standards. Control, inspection, and documentation of trucks prior to leaving site, including removal of soil on tires. Contractorwill provide a wash pit or a wheel washing and/or vehiclecleaning facility at the exits from construction depots andbatching plants. At such facility, high-pressure water jets will be directed at the wheels of vehicles to remove all spoil and dirt. Definition of allowable routes, speeds, and times (day or week). Driver requirements and controls, including prework medical (and blood tests) and physical inspections, ongoing monitoring (of visual and alcohol or drug use), driver training, daily total allowable work time, and allowable deviations. Driver contracts with clearly specified requirements and remedies for noncompliance. Use of electronic monitoring (GPS), driver training, and 	Contractor	GC / CMRL

SI.	Activity	Aspect /	Impact	Mitigation measures	Responsibility		
No.		Parameter affected			Implementation	Supervision	
				 stops. 7. Procedure for truck maintenance, including selection of service providers considering environmental aspects, application of low-Sulphur fuel, no idling of trucks, routine maintenance (including assurance of proper engine operations related to emissions and noise), and disposal of used oil and other fluids, batteries, and tires etc. 			
20.	Leveling o fSite	Land	Surface leveling will alter the soil texture and compactness, which will affect the infiltration and soil ecology. Also leveling will involve alteration of natural drainage	 Interim drainage system will be installed prior to construction. Where feasible, infiltration losses could be countered by installing Rainwater Harvesting pits away from construction site. 	Contractor	GC/ CMRL	
21.	Mechanical piling	Noise	During mechanical piling operations, noise will be generated which may go up to 88-90 dB (A) at a distance of 5m	 At sensitive locations, auger piling will be carried out in place of mechanical (by driven) piling which will generateless noise than mechanical piling (around 70-75 dB(A)). Also 2m high barricade of GI sheet will be installed on allsides of piling operations. This could effectively cut downnoise levels by 10-15 dB (A). Piling operations will be restricted during day time hours only. Efforts should be made to keep the noise levels under control by appropriate noise attenuation and adopting employee safety measures. Use of low-noise equipment and ensuring good maintenance, and trying to avoid using high-noise equipment simultaneously at the same section. Wherever baseline noise already exceeds the standards,only 3 dB of noise increase is allowed. Information dissemination to local residents and shop owners about the nature and duration of intended activities including the construction method, probable effects, quality control measures and precautions prior to 	Contractor	GC/ CMRL	

SI.	Activity	Aspect /	Impact	Mitigation measures		Responsit	bility
No.		Parameter affected				Implementation	Supervision
				6. 7.	commencement and kept updated as to changes in the management and mitigation plan. Enclose especially noisy activities if above the noise limits and employ transportable noise screens between noise sources and identified noise sensitive areas for theduration of noisy construction activities. Monitoring required during construction, including field observations and measurements.		
		Air	Construction will result into fugitive dust generation.		Fugitive dust could be controlled using water sprinkling. Water sprinkling to be carried out by Contract at regular interval (to be mutually decided by the contractor and CMRL). Every vehicle should be washed to remove any dusty materials from its body and wheels before leaving the construction sites. Imposition of speed controls for vehicles on unpaved siteroads. Ten kilometers per hour is the recommended limit.	Contractor	GC/ CMRL
		Waste	Soil and surface/ground water pollution	1.	Bentonite slurries used in construction should be reconditioned and reused wherever practicable. The disposal of residual used bentonite slurry shouldfollow the	Contractor	GC/ CMRL
					international good practice. Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal.		
				4.			
		Aquatic Ecosystem	Construction near the lighthouse (Marina Beach)	1.	Turbidity curtains will be used during pile driving activities if any to reduce the potential for increases in suspended sediment.		
			and Porur Lake area may result in accidental release of construction materials (concrete , fuel,chemical etc.,)Construction activities may also cause excessive siltation inside the river. These impacts will in turn	3.	season to minimize construction duration inside the water. Silt fencing will be installed along the banks of the waterbodies wherever necessary. The construction wastes generated near the eco sensitive		
			affect the aquatic species, as well as water birds.	6.	locations shall be disposed promptly as per standards. Site specific EMP focusing eco-sensitive areas and sensitive receptors shall be prepared and implemented.		

		7.	Water samples shall be collected from the water bodies involved and water quality tests shall be carried out on monthly basis to monitor the quality of surface water.		
Vibration	Pile driving for viaduct piers and buildings and tunnel driving generate vibrations	3.	Cast-in-situ piling will be deployed at locations with sensitive receptors so as to reduce vibration. At locations where the alignment is close to sensitive receptors, the contractor shall implement the pre-construction structural integrity inspections. Contractor to ensure that vibration levels at historically and culturally sensitive Structures, and Structures in poor state condition will not exceed 2.0 mm/s. Information dissemination to local residents and shopowners about the nature and duration of intended activities including the construction method, probable effects, quality control measures and precautions prior tocommencement and kept updated as to changes in the management and mitigation plan. Monitoring during construction including field observations and measurements.	Contractor	GC/ CMRL
Physical Cultural Resources	Historic and Cultural Value Loss Conflicts with community	3. 4.	Before start of piling and tunneling, Contractor and CMRL will coordinate with State Archeological department to reconfirm that there is presence of buried artifacts along the metro line alignment. No piling or tunneling will be allowed unless cleared by the Archeological Department. Archeological monitoring during construction stage, including specialists in field with authority to stop work. All workers will undergo a briefing with the Archaeology Department to ensure safeguarding of heritage resource and cultural/religious practices. A proof of compliance to this requirement to include the name of participants and date and location of briefing willform part of the monthly report to CMRL. Archeological rescue and protection in case of chance finds, follow specific measures (reporting, monitoring) recommended by UNESCO.	Contractor	GC/ CMRL
Health & Safety	Noise and vibration generated during piling will affect the health and safety of the workers Accidents	1. 2.	Auger piling methods will be used to reduce the impacts of noise. 2m tall screens of GI sheets will be installed between source (pile driver) and receptors (workers & nearby populations). To reduce the harmful effects, personnel working at high noise levels would be provided with noise protective	Contractor	GC/ CMRL

SI.	Activity	Aspect /	Impact		Mitigation measures	Responsi	bility
No.		Parameter affected				Implementation	Supervision
				4.	gears such as ear mufflers, sound barriers, job rotations per occupational exposure limits etc. Oversight of project safety is needed to ensure proper support and lining of excavated sections to avoid collapse. Where a site boundary adjoins a road, streets or other areas accessible to the public, hoarding should be provided along the entire length except for a site entrance or exit. Procedure to receive, evaluate, and compensate (if applicable) damages due to construction and establishment of financial resources to cover this expense.		
22.	Diaphragm Wall Construction	Air	Construction of diaphragm wall will result into fugitive dust generation.	1. 2. 3.	Fugitive dust could be controlled using water sprinkling. Water sprinkling to be carried out by Contract at regular interval (to be mutually decided by the contractor and CMRL). Every vehicle should be washed to remove any dusty materials from its body and wheels before leaving the construction sites. Imposition of speed controls for vehicles on unpaved siteroads. Ten kilometers per hour is the recommended limit.	Contractor	GC/ CMRL
		Waste	Soil and surface/ground water pollution	3.	Bentonite slurries used in diaphragm wall construction should be reconditioned and reused wherever practicable. The disposal of residual used bentonite slurry shouldfollow the international good practice. Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuseor recycling of materials and their proper disposal. Nomination of an approved person, such as a site manager, to be responsible for good site practices,	Contractor	GC/ CMRL

SI.	Activity	Aspect /	Impact	Mitigation measures	Responsi	bility
No.		Parameter affected			Implementation	Supervision
				arrangements for collection and effective disposal to an appropriate facility, of all wastes generated at the site.		
		Health and Safety	Accidents	 To specify the number and length of shifts for each worker. Oversight of project safety is needed to ensure proper support and lining of excavated sections to avoid collapse. Tunnels have to be properly lit, drained, and ventilated toprovide visibility, dry working conditions, and breathable air free of dust even in confined spaces. Where a site boundary adjoins a road, streets or other areas accessible to the public, hoarding should be provided along the entire length except for a site entrance or exit. 	Contractor	GC/ CMRL
23.	Excavation (The quantum ofsoil excavated soil will beabout 12.31 lakh cubic meter)	Air	Excavation will result into fugitive dust generation.	 Fugitive dust could be controlled using water sprinkling. Water sprinkling to be carried out by Contract at regular interval (to be mutually decided by the contractor and CMRL). Imposition of speed controls for vehicles on unpaved siteroads. Ten kilometers per hour is the recommended limit. Every vehicle should be washed to remove any dusty materials from its body and wheels before leaving the construction sites. Excavation machinery will be topped up by low-Sulphur fuel. 	Contractor	GC/ CMRL
		Noise and Vibration	Nuisance	 Efforts should be made to keep the noise levels under control by appropriate noise attenuation and adopting employee safety measures. Use of low-noise equipment and ensuring good maintenance, and trying to avoid using high-noise equipment simultaneously at the same section. 	Contractor	GC/ CMRL

SI.	Activity	Aspect /	Impact		Mitigation measures	Responsi	bility
No.		Parameter affected				Implementation	Supervision
				5. 6.	Wherever baseline noise already exceeds the standards,only 3dB of noise increase is allowed. Information dissemination to local residents and shop owners about the nature and duration of intended activities including the construction method, probable effects, quality control measures and precautions prior tocommencement and kept updated as to changes in the management and mitigation plan. Enclose especially noisy activities if above the noiselimits and employ transportable noise screens between noise sources and identified noise sensitive areas for the duration of noisy construction activities. Monitoring required during construction, including field observations and measurements. Provide timely notification of residents about tunneling works will limit the nuisance of noise and vibration due toTunnel Boring Machine (TBM) operation. Contractor to ensure that vibration levels at historically and culturally sensitive Structures, and Structures in poor state condition will not exceed 2.0 mm/s.		
		Surface water	Dumping of construction waste like concrete, bricks, waste material etc. cause surface water pollution.	1.	Proper drainage systems using contour information will be constructed around active and & large construction sites. The wastewater should be discharged aftersedimentation in tanks. To avoid water pollution and soil erosion due to flooding, earthwork will be limited during monsoon season.	Contractor	GC/ CMRL
		Groundwater	Dewatering (if done) will adversely affect the groundwater regime.		Dewatering will be done only when required Groundwater will be collected in sedimentation tanks andreused in non-potable uses. Refer to SHE (Addendum tothis EIA report). This water will be treated to meet CPCB standards before discharge. Groundwater monitoring, including groundwater quality	Contractor	GC/ CMRL

SI.	Activity	Aspect /	Impac		Mitigation measures	Responsibility		
No.		Parameter affected	L L			Implementation	Supervision	
					and aquifer status.			
		Soil	Excavation will adversely affect the soil		Soil erosion by runoff will be controlled by installing proper drainage systems using contour information It is suggested to avoid bringing soil from outside the project boundary and to use the excavated mounds for filling low lying area where it is necessary. The topsoil should be preserved (by storing it at appropriate places) so that same can be restored after completion of work.	Contractor	GC/ CMRL	
		Subsidence	Ground subsidence under existing structures during tunneling due to unanticipated weak pockets of substratum and unanticipated degree of groundwater drawdown, raising safety issues and possible damage to structures	3.	Plan showing location of construction site and affected structures. Groundwater extraction adjacent the metro project could lead to subsidence under non-metro structures as wellas settlement of metro tunnel and stations between Kutchery Road and Thirumayilai stations, Adyar gate to Alwarpet, Kodambakkam suburban (rock deeper thantrack level). At abovesaid locations, the bore wells need to be rationalized to avoid groundwater extraction near tunnel. Groundwater drawdown can be minimized by sealingjoints in tunnel lining. In addition, where requiredadjacent structures will be given additional supports. Sides of deep excavations at stations will be supported by walls which minimize water seepage. In open areas where side support walls in excavations are feasible, such walls will help prevent caving and thereby settlement of adjacent structures; in built up areas where side walls are not feasible, adjacent structures will be provided additional supports. Caving of tunnel will be prevented by placing pre-cast concrete segments in soft soils and rock bolts or arch	Contractor	GC / CMRL	

SI.	Activity	Aspect /	Impac	Mitigation measures	Responsil	oility
No.		Parameter affected	t		Implementation	Supervision
				 ribs in rock. Subsidence above tunnel due to removal of material and water beneath will be prevented by such tunnel supports. 5. Monitoring records which include but not limited to, groundwater drawdown records from borewells, vibrationrecords, geotagged photographs with date. 6. Real-time monitoring of structures above tunnelingoperations and adjustments of TBM operation if required. 7. Record sheet showing type, size and identification number of structure, time of occurrence, type of equipment in use before and when the damage was first noticed, the type of minor repair executed, number of occupants present and evacuated, time of evacuation, status of adjacent structure, type of rehabilitation implemented on each affected structure, date of resumption of construction activities, date of return of occupants. 		
		Physical Cultural Resources	Historic and cultural value loss Conflicts with community	 Before start of excavation, Contractor and CMRL willcoordinate with State Archeological department to reconfirm that there is presence of buried artifacts along the metro line alignment. No excavation will be allowed unless cleared by the Archeological Department. Archeological monitoring during construction stage, including specialists in field with authority to stop work. All workers will undergo a briefing with the Archaeology Department to ensure safeguarding of heritage resource and cultural/religious practices. A proof of compliance to this requirement to include the name of participants and date and location of briefing willform part of the monthly report to CMRL. Archeological rescue and protection in case of chance finds, follow specific measures (reporting, monitoring)recommended by UNESCO. 	Contractor	GC/ CMRL

SI.	Activity	Aspect /	Impact		Mitigation measures	Responsibility	
No.		Parameter affected				Implementation	Supervision
		Health and Safety	Accidents	1. 2. 3. 4.	To specify the number and length of shifts for each worker. Oversight of project safety is needed to ensure proper support and lining of excavated sections to avoid collapse. Tunnels have to be properly lit, drained, and ventilated toprovide visibility, dry working conditions, and breathable air free of dust even in confined spaces. Where a site boundary adjoins roads, streets or other areas accessible to the public, hoarding should be provided along the entire length except for a site entrance or exit.	Contractor	GC/ CMRL
		Aesthetics	Loss of aesthetics value due to excavation and related activities.	1. 2.	The excavation sites will be barricaded on all sides usingGI sheets. Hauling will be carried out in non-peak hours. Aesthetic value of the site will be restored aftercompletion of the works.	Contractor	GC/ CMRL
24.	Blasting	Aesthetics	Blasting will raise aestheticsissues among local citizen	1. 2.	Rock is found in lower part of tunnel or beneath track level and so blasting is not anticipated. Good housekeeping practice should be adopted. In the unforeseen event that blasting is required, a site- specific EMP will be prepared by Contractor and approved by CMRL before blasting commencement.	Contractor	GC / CMRL
25.	Hauling o fexcavated material	Air	During transportation of excavated material, fugitive dust will be generated from two sources, (1) from re- suspension of dust from road surface, (2) from the movement of air, against the excavated material being hauled	1. 2. 3. 4. 5.	The traffic management plan will be stringently implemented with regular monitoring and inspections. The trucks/dumpers carrying the excavated material willbe covered using tarpaulin/similar covering materials. Sprinkling of water should be carried out. Truck tires will be washed to excess remove soil clingingto it. Contractor will provide a wash pit or a wheel washing and/or vehicle cleaning facility at the exits from construction depots and batching plants. At such facility, high-pressure water jets will be directed at the wheels of vehicles to remove all spoil and dirt. Water for sprinkling and tire washing will be sourced	Contractor	GC/ CMRL/ TNSPCB/ Traffic Police

SI.	Activity	Aspect /	Impa ct	Mitigation measures	Responsibility		
No.		Parameter affected			Implementation	Supervision	
				from treated effluent from ETPs located nearby or seawater or surface runoff. Groundwater will not be usedin view of status in Chennai.6. Haul roads will be kept in good state of maintenance.			
		Noise	Dumper trucks carrying excavated material will result into high noise (typically in excess of 85 dB (A) at one m distance, or 57 dB (A) at 10 m distance). The adverse impacts of noise will be most intense in the residential / urban areas.	 The routing, timing and logistics of the haul truck movement should be planned to have minimal impactson noise level. The route selection will avoid any sensitive receptors. Efforts should be made to keep the noise levels under control by appropriate noise attenuation and adopting employee safety measures. Wherever baseline noise already exceeds the standards, only 3dB of noise increase is allowed. Information dissemination to local residents and shop owners about the nature and duration of intended activities including the construction method, probable effects, quality control measures and precautions prior tocommencement and kept updated as to changes in the management and mitigation plan. Enclose especially noisy activities if above the noiselimits and employ transportable noise screens between noise sources and identified noise sensitive areas for the duration of noisy construction activities. Monitoring required during construction, including field observations and measurements. 	Contractor	GC/ CMRL	
		Social	Incessant movement of trucks could create social issues. This will have higher occurrences near depots.	 The local community has to be taken into confidence before the construction commences. Their advice must be taken and incorporated in decision making. Grievance Redress Mechanism for affected people should function effectively with grievance log welldocumented. 	Contractor	GC/ CMRL	
		Health &Safety	The movement of trucks will increase the traffic risk of the commuters.	1. The routing, timing and logistics of the haul truck movement should be planned to have minimal impact on occupational and community health and safety.	Contractor	GC/ CMRL	

SI.	Activity	Aspect /	Impact		Mitigation measures	Responsi	bility
No.		Parameter affected				Implementation	Supervision
26.	Dumping o fexcavated materials	Air	The dumping operation of excavated material will generate fugitive dust in the nearby areas	1. 2. 3. 4.	Site of dumping shall be selected by Contractor inconsultation with CMRL and authorities. The disposal plan will be stringently implemented withsite monitoring and inspections. It will be located outside of urban habitation. Sprinkling of water should be carried out.	Contractor	CMRL /CMDA/ GCMC /TNSPCB
		Soil	Dumping may increase the height of the land and affect the natural drainage pattern of the area	1. 2. 3.	The dumping shall be done in pre-designated low lying areas which are to be identified by Contractor in consultation with CMDA, TNPCB, and CMRL for thisspecific purpose. The disposal plan will be stringently implemented with regular monitoring and inspections. Field inspections, monitoring, and documentation of dumping excavated materials.	Contractor	GC/ CMRL
27.	Traffic diversion	Air	The under construction areas will be restricted for human and vehicular movements. This will result in detouring of vehicles and/or pedestrians, on the project line which passes through busy urban areas. This may also result into traffic congestion and air pollution from stagnated vehicles in urban areas. Primary pollutants will be Nox, CO, NMHC, and VOCs.	1. 2. 3.	Permission from Chennai Traffic Police will be sought before commencement of work. Detours will be properly planned and enacted during non-peak hours only, if possible. Traffic marshals will be posted near such detours. Proper signage has to be posted informing motorists about detours following IRC norms. Adaptive management with field inspections and monitoring during plan implementation and adjustments, as needed, to reflect actual traffic congestion or related issues The Contractor will discuss and coordinate the implementation of the traffic re-routing scheme particularly at station area when it starts the cut and cover activities and the hauling and disposal of excavated materials to the project sites.	Contractor	GC/ CMRL / Traffic Police

SI.	Activity	Aspect /	Impact		Mitigation measures	Responsi	bility
No.		Parameter affected				Implementation	Supervision
		Noise	Barricading & detouring may result into traffic congestion in the urban areas. This will result into (a) noise from vehicular movement and (b) honking noise due to congestion.		Permission from Traffic police will be sought before commencement of work. Detours will be properly planned and enacted during non-peak hours only, if possible. Traffic marshals could be posted near busyintersections, to oversee the smooth flow of traffic. Detour route selection to avoid sensitive receptors tonoise. Adaptive management with field inspections and monitoring during plan implementation and adjustments, as needed, to reflect actual traffic congestion or related issues.	Contractor	GC/ CMRL
		Social	Traffic diversion (especially For public transport) will create inconvenience	1. 2. 3.	Implement the traffic management plan. Plans will be made to spare traffic diversion during peak hours (morning and evening peaks). Also separatearrangements for bus, auto and taxi parking bays will be made. Street furniture for pedestrians will be provided wherever possible. Real-time communication to public prior to site-specific work (for example, via signs, radio, and newspaper) and during key periods of traffic interference or peak traffic. Adaptive management with field inspections and monitoring during plan implementation and adjustments, as needed, to reflect actual traffic congestion or related issues.	Contractor	GC/ CMRL
		Resource consumption	Detouring will increase the road length to be travelled by a car, thus, increasing the overall fuel consumption.	1.	The detour will be planned to be optimum in terms of road length. The faster completion of works will also tendto reduce enhanced fuel consumption.	Contractor	GC/ CMRL
28.	Restricted pedestrian movement	Social	Restricted pedestrian movement will cause social uproar, esp. in people living near metro stations	1. 2.	Safe passage for pedestrians with proper sunshade / fall protection and signage will be planned. Public consensus will be built. Grievance Redress Mechanism for affected people should function effectively with grievance log well documented.	Contractor	GC/ CMRL

SI.	Activity	Aspect /	Impact	Mitigation measures	Responsi	bility
No.		Parameter affected			Implementation	Supervision
		Health &Safety	Movement though constricted space may cause potential health & safety issues amongst pedestrians	 Safe passage for pedestrians with proper fall protectionand signage will be planned. 	Contractor	GC/ CMRL
29.	Muck generation & disposal (incl. spent Bentonite &drill fluid andslurry)	Surface water	Muck generated incl. spent Bentonite & slurry from drilling operations will drain with surface runoff and pollute nearby water bodies	 Muck disposal plan will be stringently implemented with regular monitoring and inspections. The construction sites will be provided with garland drains with intercepting pits to trap silt & muck. Muck will be stored in lined tanks / ponds (if such area is available). Or mechanically dewatered if such area is unavailable. After screening & detention, supernatant liquid from such tanks should be discharged into drainage lines adhering to CPCB standards. Such tank/ ponds could be covered during monsoon to control runoff. The temporary muck storage areas will be maintained by the Contractor at all times until the excavate is re-utilizedfor backfilling or disposed of as directed by Employer. Dust control activities will continue even during any work stoppage Transportation of muck will be scheduled by time and route to minimize air pollution in habitat areas. 	Contractor	GC/ CMRL
		Groundwater	Muck, spent bentonite & drill fluids may settle down from pond / tanks and will affect groundwater	 The tanks/ ponds holding muck will be lined to prevent infiltration into groundwater. Groundwater quality monitoring. 	Contractor	GC/ CMRL
		Aesthetics	Muck generation will createan aesthetic issue	1. The construction site will be covered from all sides toreduce visual impacts.	Contractor	GC/ CMRL

98				
SI. No.	Activity	Aspect / Parameter affected	Impact	
30.	Raft foundation	Soil	Construction of raft foundation will generate concrete spoils. This will	1. Concr in pr

No.		Parameter affected			Implementation	Supervision
30.	Raft foundation	Soil	Construction of raft foundation will generate concrete spoils. This will have adverse effects on soil	 Concrete spoils will be collected manually and will bedisposed in proposed disposal grounds. 	Contractor	GC/ CMRL
31.	Steel structure preparation	Soil	Steel structure preparation will create steel scraps	 Steel scrap will be collected, sorted by diameter and soldto scrap dealers on later date. 	Contractor	GC/ CMRL
		Health &safety	Bar bending & other activities (including Working at heights) might pose a H&S threat to workers	 Workers will be provided appropriate hand gloves and personal protective equipment (PPE). Skilled workers working at height or doing hot work willbe required to seek permission from site 	Contractor	GC/ CMRL
32.	Stacking & warehousing of raw material	Surface water	Washed out raw material could pose serious threat to surface water bodies	1. Small dikes and garlanding drains along the periphery of the yard and ploy boundary could be constructed. This will control runoff and washing out of finer material.	Contractor	GC/ CMRL
	material	Soil	Spillage of materials / mix products on the ground could pollute soil	 Proper care will be taken. Such spills will be cleared by scraping and disposing the products as road sub-grade material. 	Contractor	GC/ CMRL
		Health &Safety	Fine products like cement/ silt/ sand could cause harm to respiratory system.	 Cement and sand will be stacked under tarpaulin and secured by GI sheet barricading (working & wind break). Shorter work shift and daily medical checkups of workerswill be implemented. Dust filters atop cement silos, wet suppression for aggregate crushing and screening will be employed. 	Contractor	GC/ CMRL
		Aesthetics	Stacking of raw material will cause aesthetic issues for residential areas located nearby	 The height of walls between the residential area and RMyard / construction area will be raised using GI sheets. 	Contractor	GC/ CMRL

Mitigation measures

Responsibility

SI.	Activity	Aspect / Parameter affected	Impact	Mitigation measures	Responsibility	
No.					Implementation	Supervision
33.	RCC pouring (using concrete pump)	Noise	RCC pouring using concrete pump will generate low frequency rumbling noise. This will be more perceived and irritating in residential areas.	 Timing of using RCC pumps will be specified. RCC pumps will be covered from all sides. Bends and excessive head will be avoided. Wherever baseline noise already exceeds the standards,only 3dB of noise increase is allowed. 	Contractor	GC/ CMRL
		Soil	Spillage from concrete pouring may contaminate soil	 The spoils from pouring concrete will be collected andreused as sub-grade material in road constriction. 	Contractor	GC/ CMRL
		Aesthetics	Spoils from concrete pouring will create unpleasant looking visuals	 After each pouring cycle, the spoils will be manually collected and reused as sub-grade material in road constriction. 	Contractor	GC/ CMRL
34.	Setting o fconcrete (using needle vibrator)	Noise	Needle vibrators generate low frequency noise when dipped in concrete and high frequency noise when raised. Sound level vary between 82-93 dB (A).	 If the consistency of concrete could be altered, the need for use of vibrator (esp. in low temperature & low thickness casting) could be reduced. Damping could be used to reduce high frequency noise, and thereby reducing the noise levels. Workers should be provided with suitable PPEs. Wherever baseline noise already exceeds the standards, only 3dB of noise increase is allowed per IFC/WB guideline. 	Contractor	GC/ CMRL
		Soil	During setting, spillage fromcast could take place.	 The spoils from pouring concrete will be collected andreused as sub-grade material in road construction. 	Contractor	GC/ CMRL
35.	Curing of concrete (use of water)	Surface water	Curing water will drain to the low lying areas and pollute water courses	 Garland drainage is proposed to be constructed around the construction yard. This will intercept the runoff generated from site. Rainwater harvesting (as a compensatory measure) will be practiced. 	Contractor	GC/ CMRL
		Groundwater	Curing water will drain to the low lying areas and pollute water courses	 In view of low groundwater levels and proximity of seacoast, use of groundwater will not be resorted to. 	Contractor	GC/ CMRL

200

SI.	Activity	Aspect /	Impact	Mitigation measures	Responsi	bility
No.		Parameter affected			Implementation	Supervision
		Aesthetics	Curing will create water impounding and may lead to vector propagation	 Garlanding drain will be constructed around the construction area. The curing water impounded will be reused for curing. 	Contractor	GC/ CMRL
36.	Use of Crane & Launchers	Noise	Operation of launchers and crane will generate noise which in times may go up to 85-90 dB (A). Legris & Poulin ²⁰ has found that the average daily noise exposure was 145ignali. 84 to 99 dB (A) for heavy equipment, and 74 to 97 dB (A) for the crane operators.	 The sensitive receptors (workers & external parties, if applicable) have to be isolated from heavy construction noise generated. This is possible by erecting reinforced2 m tall GI sheet barrier around the area where heavy construction works is undertaken. Workers working inside or near construction equipment should be provided with proper PPEs like ear plugs / muffs complying with IS 4869. Wherever baseline noise already exceeds the standards,only 3dB of noise increase is allowed. Information dissemination to local residents and shop owners about the nature and duration of intended activities including the construction method, probable effects, quality control measures and precautions prior tocommencement and kept updated as to changes in the management and mitigation plan. Enclose especially noisy activities if above the noiselimits and employ transportable noise screens between noise sources and identified noise sensitive areas for the duration of noisy construction activities. 	Contractor	GC/ CMRL
		Health &Safety	Cranes and launchers are amajor safety concern.	 As per SHE, operation of launchers and cranes shouldbe only done under the strict supervision of a qualified engineer and a safety supervisor. Only qualified & trained crane/ launcher operators should be allowed. Proper examination of crane, launchers, labours& operators should take place before commencement of work. 	Contractor	GC/ CMRL

²⁰ Legris, M., and P. Poulin: Noise exposure profile among heavy equipment operators, associated labourers and crane operators. Am. Ind. Hyg. Assoc. J, pp.774-778, 1998.

SI.	Activity	Aspect / Parameter affected	neter	Mitigation measures	Responsibility	
No.					Implementation	Supervision
37.	Construction of labour camp(s) and associated environmental issues	Surface water	Sewage from labour camps may be discharged into open slopes thus contaminating surface water	 Labour camps will be constructed in semi urban / urban set-ups. Thus, sewage and other discharges from the labour camps will be discharged in public sewers orseptic tanks should be provided where access to public sewers is not possible. 	Contractor	GC/ CMRL
		Groundwater	Surface water on flat terrain could percolate and contaminate groundwater.	 Contractor to collect the groundwater baseline date priorto construction. Disposal in compliance with applicable regulatoryrequirements. Groundwater quality monitoring. Water abstracted must be measured/ recorded periodically. After Construction, Contractor will conduct groundwater analysis and be obliged to reinstate the used sites no worse than the conditions of pre-construction. 	Contractor	GC/ CMRL
		Soil	Solid waste generated from the labour camps will cause soil pollution	 Contractor to collect the soil baseline date prior to construction. Municipal solid waste will be collected and taken away and disposed by municipality. Solid waste will have to be disposed in compliance with Municipal Solid Waste (Management & Handling) Rules, 2000, as amended to date. After Construction, Contractor will conduct soil analysis and be obliged to reinstate the used sites no worse than the conditions of pre-construction. 	Contractor	GC/ CMRL
		Social	Influx of non-local labours will create a social issue	 Mixing of skilled non-local labours with local unskilled people will reduce social frictions. To avoid labor influx risk, sensitizing of local community and the non-local workers separately as well as jointlywill be done regularly. 	Contractor	GC/ CMRL
		Health &safety	Living in congested condition, make-shift temporary arrangement; the labours are prone to diseases.	 Regular counselling, medical checkups and treatment at separate clinics, coordination with local health authoritieswill be conducted. Per Building & Other Construction Workers (BOCW 	Contractor	GC/ CMRL

SI.	Activity	Aspect /	Impact	Mitigation measures	Responsibility	
No.		Parameter affected			Implementation	Supervision
				Regulation of Employment and Conditions of Service) Act, 1996 the employer (contractor) is liable to arrange for sanitation, health care facilities of labours, free of charge. Labour camps will be in full compliance of BOCW Act.		
		Resources	Labours will consume resources like wood for cooking	 Liquid petroleum Gas cylinders will be made availablefree of cost to the labourers by the Contractor. Labour camps shall be provided with canteen facility. 	Contractor	GC/ CMRL
38.	Loading /unloading of construction material	Air	Loading & unloading of construction material will generate fugitive dust	 The traffic management plan will be stringently implemented with regular monitoring and inspections. The trucks/dumpers carrying the material will be covered using tarpaulin/similar covering materials. Fugitive dust could be controlled using water sprinkling. Contractors should carry out water sprinkling. Truck tires will be washed to excess remove soil clingingto it. Contractor will provide a wash pit or a wheel washing and/or vehicle cleaning facility at the exits from construction depots and batching plants. At such facility, high-pressure water jets will be directed at the wheels of vehicles to remove all spoil and dirt. 	Contractor	GC/ CMRL
		Noise	Loading & unloading of construction material will generate noise	 The RM storage yard will be separately built and enclosed from all sides. This will reduce noise generation at site. Concrete preparation will only take place in casting yards(away from habitation). Wherever baseline noise already exceeds the standards, only 3dB(A) of noise increase is allowed Information dissemination to local residents and shop owners about the nature and duration of intended activities including the construction method, probable effects, quality control measures and precautions prior to commencement and kept updated as to changes in the management and mitigation plan. 	Contractor	GC/ CMRL

SI.	Activity	Aspect / Parameter affected	Impact	Mitigation measures	Responsi	oility
No.					Implementation	Supervision
				 Enclose especially noisy activities if above the noise limits and employ transportable noise screens between noise sources and identified noise sensitive areas for the duration of noisy construction activities. 		
		Health & safety	Fugitive dust and noise generation will have potential health & Safety implications.	 Cement and sand will be stacked under tarpaulin and secured by GI sheet barricading (working & wind break). Shorter work shifts and regular health checkups will be implemented. The RM storage yard will be separately built and enclosed from all sides. The worker will be provided with suitable PPEs. Also they will be trained and encouraged in using PPEs. 	Contractor	GC/ CMRL
39.	Use of batching plant	Air	Loading & unloading of construction material into batching plant will generate fugitive dust	 High GI sheet screens and water sprinkling will be employed. Batching plant / casting yard shall be barricaded and made as a compulsory PPE zone. This will effectively reduce the fugitive dust generation. 	Contractor	GC/ CMRL
		Noise	Operation of batching plantwill generate noise	 GI sheet barricading around batching area and worker PPE like ear muffs will be used. Batching plant / casting yard shall be barricaded and made as a compulsory PPE zone. This will reduce the impacts of noise generation. Wherever baseline noise already exceeds the standards,only 3dB of noise increase is allowed. 	Contractor	GC/ CMRL
		Soil and Groundwater	Runoff of waste can contaminate soil and groundwater	 Contractor to collect baseline soil and groundwater quality data prior to operate the plants. Municipal water will be used. In view of fragile groundwater status, extraction will be avoided. The construction sites will be provided with drains with intercepting pits in which the cement and sand will settle.After screening & detention, liquid will be discharged into 	Contractor	GC/ CMRL

SI.	Activity	Aspect /	Impact	Mitigation measures	Responsi	bility
No.		Parameter affected			Implementation	Supervision
				 drainage lines. Disposal in compliance with applicable regulatory requirements. 4. Soil and Groundwater quality monitoring. 5. After Construction, Contractor will conduct soil and groundwater analysis and be obliged to reinstate theused sites no worse than the conditions of pre-construction. 		
		Hazardous waste	Health impacts and soil and groundwater pollution from hazardous water at batching/casting yards	 The use and storage of hazardous materials at the casting yard and batching plant should adhere to TNPCBrequirements. The transport, handling and storage of hazardous waste will be done in accordance with the provisions of Hazardous Chemicals (Management & Handling) Rules. Hazardous wastes from construction activity and equipment are labeled, recorded, stored in impermeable containment and for periods not exceeding mandated periods and in a manner suitable for handling storage and transport. The contractor shall maintain a record of sale, transfer, storage of hazardous waste and make these recordsavailable for inspection. The contractor shall get Authorized Recyclers to transport and dispose Hazardous Waste. Proper collection and storage facilities will be provided especially for hazardous waste. 	Contractor	GC/ CMRL

SI.	Activity	Aspect /	Impact	Mitigation measures	Responsi	bility
No.		Parameter affected			Implementation	Supervision
		Resources	KVA, assuming PF = 0.8) energy. In most cases the Contractor has used DG	 If power from the grid is used, permission from power supply company must be obtained by the Contractor. DG sets, if used, should: (a) conform to height of stack norms as per CPCB rules; (b) conform to emission norms as per E (P) Act, 1986; (c) noise level at 1 m distance from enclosure should not be >75 dB(A). The required permissions from local Environmental Authorities/Pollution Control Board/ CEIG or any other relevant Authority shall be obtained by the Contractor forusing DG sets for power supply. Diesel storage if done beyond threshold limit (1000 L) permission should be obtained. Diesel should be stored on pukka platforms and spillages should be avoided. Refer to Activity 42 "Use of DG sets" and Activity 44 "Storage of Diesel" for further measures. 	Contractor	GC/ CMRL
40.	Casting o fsegments and I-beams	Groundwater	Casting will require use of water	 Chennai Metropolitan Water Supply and Sewerage Board /Municipal water will be used. In view of fragile groundwater status, extraction will be avoided. The construction sites will be provided with drains with intercepting pits in which the cement and sand will settle.After screening & detention, liquid will be discharged intodrainage lines. Disposal in compliance with applicable regulatory requirements. Groundwater quality monitoring. 	Contractor	GC/ CMRL
		Resources	Casting (incl. operation of gantry and hydraulic pre- stressing units) will consume lot of energy	 Pre-stressing and casting are basic requirements. However, most of the power should be drawn from approved lines, not from DG sets. 	Contractor	GC/ CMRL
41.	Curing of segments & I- beams	Groundwater	Curing will require asignificant amount of water	 Wastages from curing could be collected separately and reused if possible. Stagnation of water (and resultant vector propagation) should be avoided. Groundwater quality monitoring. Disposal in compliance with applicable regulatory 	Contractor	GC/ CMRL

SI.	Activity	Aspect /	Impact	Mitigation measures	Responsibility	
No.		Parameter affected			Implementation	Supervision
				requirements 4. Groundwater will not be used. Water will be sourced from municipal supply or treated effluent from ETPs or treated surface runoff.		
42.	Hauling of segments to site	Air	During transportation of segments, fugitive dust will be generated from re- suspension of dust from road surface. Plus, there will be air emission from trucks	 The traffic management plan will be stringently implemented with regular monitoring and inspections. The trucks/dumpers carrying the excavated material willbe covered using tarpaulin/similar covering materials. Sprinkling of water should be carried out. Truck tires will be washed to excess remove soil clingingto it. Contractor will provide a wash pit or a wheel washing and/or vehicle cleaning facility at the exits from construction depots and batching plants. At such facility, high-pressure water jets will be directed at the wheels of vehicles to remove all spoil and dirt. Haul roads will be kept in good state of maintenance. 	Contractor	GC/ CMRL
		Noise	Trucks carrying segments will result into high noise (typically in excess of 85 dB(A) at1 m distance, or 57 dB(A) at 10 m distance). The adverse impacts of noise will be most intense in the residential/urban areas	 The routing, timing and logistics of the haul truck movement should be planned to have minimal impactson noise level. The route selection will avoid any sensitive receptors. Efforts should be made to keep the noise levels under control by appropriate noise attenuation and adopting employee safety measures. Wherever baseline noise already exceeds the standards,only 3dB of noise increase is allowed Information dissemination to local residents and shop owners about the nature and duration of intended activities including the construction method, probable effects, quality control measures and precautions prior tocommencement and kept updated as to changes in the management and mitigation plan. Enclose especially noisy activities if above the noise limits and employ transportable noise screens between noise sources and identified noise sensitive areas for the 	Contractor	GC/ CMRL

SI.	Activity	Aspect /		Mitigation measures	Responsi	bility
No.		Parameter affected			Implementation	Supervision
				duration of noisy construction activities. 6. Monitoring required during construction, including fieldobservations and measurements.		
		Social	Incessant movement of trucks could create social issues	 The local community has to be taken into confidence. Their advice has to be taken and incorporated in decision making. 	Contractor	GC/ CMRL
		Health &safety	The movement of trucks will increase the traffic risk of the commuters	1. The routing, timing and logistics of the haul truck movement will be planned to have minimal impacts on occupational and community health and safety.	Contractor	GC/ CMRL
		Aesthetics	Movement of trucks willcreate an aesthetic problem	 Proper housekeeping activities have to be undertakennear the casting yard and nearby areas. 	Contractor	GC/ CMRL
43.	Use of DG sets	Air	Emission of NO _x , SO _x , CO, PM ₁₀ , PM _{2.5} from DG sets will create air pollution problems	 Primary power source will be power distribution company, DG sets will be used only for power back-ups for stations. The required permissions from local Environmental Authorities/Pollution Control Board/ CEIG or any other relevant Authority shall be obtained by the Contractor if using DG sets for power supply. DG sets compliant with CPCB norms will be used. Specification no. GSR 520(E) dt. 1-7-2003 for DG sets rating < 800 KW, and GSR 489(E) dt. 09-07-2002 for DG sets > 800 KW under E (P)Rules, 1986. Stack height of DG sets will be as per CPCB requirement [stack ht. = 0.2*(rating in kVA)0.5] Stack monitoring will be conducted monthly of the criteria pollutants. Compliance monitoring will be done to the regularly and check the monitoring instruments. Fuels used for DG will be High Speed Diesel with low- sulfur content. 	Contractor	GC/ CMRL

SI. No.	Activity	Aspect /	Impact	Mitigation measures	Responsibility	
		Parameter affected			Implementation	Supervision
		Noise &Vibration	Noise & vibration will be generated from the use of DG sets	 DG sets compliant with CPCB norms will be used. Wherever baseline noise already exceeds the standards,only 3dB of noise increase is allowed Monitoring required during construction, including field observations and measurements. DG sets will be enclosed type, with noise level approx. 75dB (A) at a distance of 1m in compliance with GSR371(E) dt. 17-05-2002. Noise will be controlled using acoustic enclosure. The DG sets will be mounted on damping skids, which will reduce the vibration generated from DG sets. 	Contractor	GC/ CMRL
		Resources	DG sets will consume Diesel (and in effect reduce the levels of a non- renewable resource)	 DG sets should always be use as a power back up, and not the primary sources of power. This should be made mandatory for all Contractors. Refer to Activity 44 "Storage of Diesel" for further measures. 	Contractor	GC/ CMRL
		Aesthetics	Operation of DG sets will cause an aesthetic issue	 Enclosures will be used to keep them off from public views. PM content of DG sets smoke will be as pert the CPCB norms, thus the DG will emit dark smokes only during start-up & shut- down (b) Noise will be controlled using acoustic enclosure. 	Contractor	GC/ CMRL
44.	All Construction Activities	Environment	Construction and Demolition (C&D) waste results from land clearing, excavation, construction, demolition, remodeling and repair of structures, roads and utilities	 Records of movement and loading/unloading of C&Dwaste and records of waste loaded by vendors. C&D waste will be reused/recycled as it has the potentialto save natural resources (stone, river sand, soil etc.) and energy. C&D waste generated from metro construction has potential use after processing and grading. The contractor will segregate and temporarily store the C&D waste till the vendor takes it away for recycling and disposal at authorized facilities. Contractor will adhere with the C&D Waste Management 	Contractor	GC/ CMRL

SI.	Activity	Aspect /	Impact	Mitigation measures	Responsi	bility
No.		Parameter affected			Implementation	Supervision
				Rules.		
		Occupational Health and Safety	Accidents All parties' reputation	 Worker safety is important on all construction projects. It is important to consider the effects of staffing on worker safety and to provide appropriate training in safety awareness for all labor. For underground construction, it is very important to conduct a fatigue assessment and to specify the numberand length of shifts for each worker. Oversight of project safety is needed to ensure that tunneling is completed in suitable soil and drainage conditions and with proper support and lining of excavated sections to avoid collapse. Apart from the stringent inspection, tunnels have to be properly lit, drained, and ventilated to provide visibility, dry working conditions, and breathable air free of dust even in confined spaces. The use of hearing protection should be enforced actively when the equivalent sound level over 8 hours reaches 85 dB(A), the peak sound levels reach 140 dB(C), or the average maximum sound level reaches 110dB(A). Hearing protective devices provided should be capable of reducing sound levels at the ear to at least85 dB(A). 	Contractor	GC/ CMRL
45.	Storage o fDiesel	Groundwater	Diesel spillage (from underground or above ground storage facility) will affect groundwater quality adversely	 Before it percolates into the groundwater, contaminated runoff water can be run through adsorbents such asbentonite to remove the diesel. The diesel will be quickly collected into steel trays and disposed to authorized recyclers. All bulk diesel tanks shall be properly supported in an elevated position to facilitate gravity discharge. They 	Contractor	GC/ CMRL

SI.	Activity	Aspect /	Impact	Mitigation measures	Responsibility	
No.		Parameter affected			Implementation	Supervision
				 shall stand within a bund constructed to contain a volume of 110% of the volume of the tank. There shallbe no breaches in the bund wall, no material shall be stored within the bund and rain water collecting in the bund shall be regularly removed to prevent build-up. 3. Spillage will be controlled using methods mentioned in the environmental contingency plan. 4. Groundwater quality monitoring. 		
		Health & safety	Storage of Diesel will attract the provisions of Hazardous Chemicals (Management & Handling) Rules and Petroleum Rules; as amended to date. It could cause serious damage to health & safety of workers / property if ignited	 Proper onsite emergency plan will be prepared and will be approved through CMRL. If the diesel storage crosses the threshold limits permissions, proper fire protection norms have to beundertaken as per National Building Code, 2005 (if building)/ Oil Industry Safety Directorate Standard 117 (ifinstallation). 	Contractor	GC/ CMRL
46.	Cleanup Operations, Restoration and Rehabilitation	Environment	Aesthetics	1. The clean-up and restoration operations are to be implemented by the Contractor prior to demobilization. All spaces excavated and not occupied by the foundationor other permanent works shall be refilled with earth up to surface of surrounding ground.	Contractor	GC/ CMRL
47.	Construction of Grade Separator	Air	Emission of NO _x , SO _x , CO, PM ₁₀ , PM _{2.5} from Vehicles due traffic stagnation will create air pollution problems. Fugitive dust emission due to construction activities such as handling of excavate/subgrade /gravel for construction of ramps etc.	Chennai Traffic Police.		GC/ CMRL

SI.	Activity	Aspect /	Impact	Mitigation measures	Responsibility	
No.		Parameter affected			Implementation	Supervision
				 Water for sprinkling and tire washing will be sourced from surface runoff, wastewater from construction sites, construction yards and seawater; use of municipal treated water shall be minimized. Groundwater will not be used in view of status in Chennai. Access roads will be kept in good state of maintenance. 		
		Noise	Dumper trucks carrying excavated material will result into high noise (typically in excess of 85 dB (A) at one m distance, or 57 dB (A) at 10 m distance). The adverse impacts of noise will be most intense in the residential / urban areas.	appropriate noise attenuation and adopting employee safety measures.		GC/ CMRL
		Resource	Increase in requirement of construction raw materials such as aggregates, gravel, cement, water etc.	 The construction raw materials will be procured from TNPCB authorized vendors. Reuse of construction materials will be encouraged wherever possible. Sustainable and eco-friendly products will be preferred. Ground water extraction for construction use will be avoided. The municipal treated water will be procured from the CMWSSB for construction use. 		GC/ CMRL

SI.	Activity	Aspect /	Impact		Mitigation measures	Responsi	bility
No.		Parameter affected	Parameter affected			Implementation	Supervision
Opera	ational Phase						
	Operation of metro trains		from contact between wheel and rail including noise from contact between the brake pad and wheel, followed by engine noise and	1.	To minimize operation stage impacts measures such as Ballast less track structure is supported on two layers of rubber pads to reduce noise and vibrations. In addition, baffle wall as parapets will be constructed up to the rail level so as reduce sound levels. Noise at source will be controlled or reduced by incorporating suitable feature in the design of structures and layout of machines and by use of resilient mounting and dampers etc.	CMRL	GoTN
	aerodynamic noise.	2.	In addition to the above mitigation measures, the roughness of running surfaces will be reduced through regular maintenance of wheels and tracks and will be considered for replacing traditional jointed track with continuously welded rail. Also, noise controls at the source will be installed for improved sound-proofing and other noise reducing features will be installed such as engine enclosures and shielding of wheels with vehicle-mounted shrouds.				
			3.	Considering that the train generate a rolling noise of approx. 85 dB(A) at a ht. of approx. 8-12 m, the additional noise level will be approx. 55 - 60 dB(A) at a ht. of 1.5 m on ground. The noise level will be further reduced due to directivity, and conversion of frictional energy. The noise level at the bottom of the line will be insignificant and could be marginally different from ambient (traffic) noise. Since the rakes will be air conditioned and enclosed from all side, the impacts of noise on the travelers will be nominal.			
				4. 5.	Noise barriers will be installed at locations based on finaldesign noise prediction analysis. Wherever baseline noise already exceeds the standards,only 3dB of noise increase is allowed. If baseline noise is below the CPCB and IFC-EHS standards, the construction noise has to meet these standards that is, construction noise level has to be less than level prescribed in these standards.		
				6.	The mitigations suggested based on the detailed noise and vibration analysis carried out prior to commencement of construction, should be strictly followed.		
		Health and Safety	Accidents Reputational risks	1.	Detailed specification of equipment e.g. power cables, rectifiers, transformer, E&M equipment etc. shall be framed to reduce conducted or radiated emissions as per appropriate international standards. The Metro system as a complete vehicle (trains, signaling & telecommunication, traction power supply,E&M system etc.) shall comply with the Electromagnetic compatibility (EMC) requirements of international standards viz. EN50121-3-1, EN50123, IEC61000 series etc. EMC requirements of international standards for whole railway system to the outside world shall comply with EN50121-2.	CMRL	GoTN

SI.	Activity	Aspect /	Impact	Mitigation measures	Responsib	oility
No.		Parameter affected			Implementation	Supervision
				 stations will sustain the following: essential lighting, signaling, and telecommunications, fire-fighting system, lift operation, and tunnel ventilation. 4. Automatic Train Protection and Automatic TrainSupervision subsystems will be installed to provide a high level of safety. 5. CCTV system will be installed for local and centralized monitor of operation. 6. In view of the potential hazards from system failure resulting to accidents, both on- site and off-site emergency measures will be implemented. All trains will have public address systems to warn the passengers of any emergency. 7. Emergency team, ambulance, contact number andhospital should be available. Emergency response plan should be implemented during operation periods. 		

SI.	Activity	Aspect /	Impac	Mitigation measures	Responsi	bility
No.		Parameter affected	τ		Implementation	Supervision
			Operating Personnel Health risks	 Operating staff such as drivers and Control Centre staff shall be administered regular medical checkups for musculo-skeletal disorders, fatigue, eye strain. Well designed workstations, lighting in Control Centre. Emotional resilience training, counselling for recovery and rehabilitation 		GoTN
			Severely contagious diseases such as Covid can impact health of staff thereby affecting operations; can cause economic loss to the country and loss of reputation to the project	1. Chennai Metro Covid SOP shall be implemented; staff shall be trained; staff and commuters shall be informed of precautions such as social distancing, sanitizing; arrangements for stationary and hand-held thermal scanners; provision of sanitizer pedestals, vending machines of face masks and gloves etc shall be provided in stations; site record of covid hospitals; daily disinfection of operating rooms, circulation spaces, equipment and vehicles; protected ambulances at stations.		GoTN
		Aesthetics	Metro rail will increase the aesthetics of Chennai	1. A proper housekeeping routine will be followed toenhance the aesthetics of metro rail station & depot.	CMRL	GoTN
48.	Maintenance of trains inDepot	Resources	Train washing will consumewater and energy	 To save water resource, rainwater harvesting structures will be constructed at Depot to receive runoff from sloping roof of the depot as well as recharge of ground water in uncovered land area. Rooftop solar panels on covered part of depots are proposed. As per Ministry of renewable Energy template,5% of rooftop area of depot can generate 3.51 lakh kWh per year in Poonamallee Bypass depot. DG sets will be used as a standby power. If used, referto Activity 50 "Use of DG sets" for further measures. 	CMRL	GoTN

SI.	Activity	Aspect /	Impact	Mitigation measures	Responsi	bility
No.		Parameter affected			Implementation	Supervision
		Surface /ground water Soil contamination	The wastewater discharges from workshops will have high oil & grease, high COD & TSS content	 No direct discharge to the municipal sewer system, the Sewage Treatment Plant (STP) and Effluent Treatment Plant (ETP) are planned at Depot. The wastewater will be pretreated to meet regulatory requirements before being disposed in municipal sewer system. Sewage will be generated from depot which could be treated in compliance with TNPCB regulations up to the level so that it could be used for horticulture and non-drinking purposes in the Depot. Oil spilled in Depot should be trapped in oil and grease trap and disposed to authorized collectors so as to avoid any underground/ surface water contamination. Oil that is mixed in water shall be removed in the ETP. The solid waste generated from the Depot will be taken by the cleaning contractor weekly and disposed to the municipal waste disposal sites. 	CMRL	GoTN
49.	Track repair	Environment	Spill accidents	1. CMRL to ensure no illegal disposal of solid waste or wastewater.	CMRL	GoTN
50.	Use of DGsets	Air	Emission from DG sets willcreate air pollution problems	1. DG sets compliant with CPCB norms will be used.	CMRL	GoTN
		Noise	Noise & vibration will be generated from the use of DG sets	 DG sets compliant with CPCB norms will be used. Noise enclosures will be used. Wherever baseline noise already exceeds the standards,only 3dB of noise increase is allowed. If baseline noise is below the CPCB and IFC-EHS standards, the construction noise has to meet these standards that is, construction noise level has to be less than level prescribed in these standards. 	CMRL	GoTN
		Groundwater	Diesel spillage (from underground or above ground storage facility) will affect groundwater quality adversely	 Diesel should be stored in designated sites prior to final relocation. Oil that is mixed in water will be removed in the ETP. 	CMRL	GoTN
		Health &safety	Storage of Diesel will attractthe provisions of Hazardous	1. Diesel should be stored in designated sites prior to finaldisposal.	CMRL	GoTN

SI.	Activity	Aspect /	Impact	Mitigation measures	Responsi	bility
No.		Parameter affected			Implementation	Supervision
			Chemicals (Management & Handling) Rules and Petroleum Rules; as amended to date. It could cause serious damage to health & safety of workers / property if ignited	 Fire fighter is equipped at storage site. Proper onsite emergency plan will be prepared by GCand will be approved through CMRL. 		
		Resources	DG sets will consume Diesel (and in effect reduce the levels of a non- renewable resource)	 DG sets compliant with CPCB norms will be used onlyas backup. 	CMRL	GoTN
		Aesthetics	Operation of DG sets will cause an aesthetic issue	1. Enclosures will be used.	CMRL	GoTN
51.	Development of feeder routes CMRL	Social	Along with Metro routes, metro feeder routes will be developed. This will have a positive impact in terms of enhanced connectivity and inclusion in the social mainstream	 CMRL will work with bus operators to implement metro feeder routes along major arterial and sub-arterial routesto reduce travel time to the nearest station. Better qualitycoaches & comfortable rides should be planned to enhance acceptability. 	CMRL / GoTN	GoTN
		Health &safety	Better & frequent transport system will reduce risk of traffic accidents	1. The new feeder routes should (a) follow proper timetable; (b) should have frequent services during the morning & evening peak;(c) should have a limited carrying capacity. The feeder buses should arrive and depart from designated bus bays or similar structures. Proper arrangements for road crossing should be established. The appointed personnel should assist passengers to reach their destinations. An easily accessible grievance redressal system should be established by CMRL.	CMRL	GoTN

SI.	Activity	Aspect / Impact		Mitigation measures	Responsibility	
No.	. Parameter affected			Implementation	Supervision	
		Aesthetics	Better designed coaches will enhance ride pleasure and aesthetics	 The buses should be properly maintained from time totime in order to enhance the aesthetic value. 	CMRL	GoTN
52.	Generation of employment	Social	The proposed project will result into generation of employment		CMRL	GoTN

53.	Ancillary development along metro route	Land	Ancillary developments will take place along with metro corridor	 Provision for increased density of development along project corridor is available through existing byelaws as well as new ToD norms. Mixed land use of ToD tends to reduce non-work trip length and its higher density promotes increased use of metro for work trips on long distances. Implementation of increased densities is decided by State Government and managed by CMDA inaccordance with demand. 	CMRL	GoTN
		Social	Ancillary development along the metro alignment will have positive effect on the social environment	1. There should be positive participation of the common people in the ancillary development process. An open, transparent & people-centric outlook has to be adopted.	CMRL	GoTN
54.	Operation of Integrated Grade separator in Kattupakkam	Traffic	Reduced Congestion: Grade separators, such as overpasses or underpasses, help separate conflicting streams of traffic, reducing congestion at intersections. Smooth Traffic Flow: With the elimination of traffic signals and intersections, vehicles can move more smoothly through the area, leading to improved travel times.	 Robust traffic management plans consistent with the Indian Roads Congress (IRC) on Traffic Management in work zones (IRC:SP:55-2014), prior to mobilization for respective sections with site- or station-specific plans and measures to minimize the overall impact on traffic throughout the construction and operation periods. All necessary provisions as per standards shall be ensured. 	TamilnaduHighways dept (TNHD)	TamilnaduHig hways dept(TNHD)
		Air	ReductionofFugitiveemissions(CarbonMonoxide)fromVehiclesdue to traffic decongestion	 Fugitive dust could be controlled using water sprinkling. Water sprinkling to be carried out at regular interval . Ambient Air Quality monitoring shall be carried out near by work area. Green nets or cover shall be provided 	TamilnaduHighways dept (TNHD)	TamilnaduHig hways dept(TNHD)
		Noise	Noise from the vehicle	 All necessary provisions as per standards shall be ensured. Provision of Noise barriers wherever necessary. 	TamilnaduHighways dept (TNHD)	TamilnaduHig hways dept(TNHD)
		Aesthetics	Better designed g r a d e separators can integrate into the urban landscape, contributing to aesthetically pleasing and well-planned cityscapes.	 Thoughtful designed grade separator will enhance the aesthetic value. 	CMRL	GoTN

Environmental Features	Aspect to be Monitored	Standard to be complied with	Time and Frequency of Monitoring	Location	Estimated cost (USD)
Pre-Construction					
Air	Emission of dust and particulate matter as $PM_{2.5}$ and PM_{10} , NO_x and SO_x , CO	Gol and WHO/IFC whichever stringent	Once, 24 hours continuously	Each station, batching plant and casting yard, Muck disposal site	4,667
Water (Surface and Ground)	DO, Turbidity, Conductivity, pH, Heavy metals, E.Coli, TSS, Oil and Grease, VOCs and Volatile Chlorinated Hydrocarbons (groundwater only)and TDS	Gol and WHO/IFC whichever stringent	Once, 3 samples each location	Groundwater at batching plant and casting yard, Muck disposal site, construction camps and 30 excavation sites Surface water at wherever waterbody located within 100m from sites	11,400
Soil	pH, Sulphate (SO ₃), Chloride, ORP, water Soluble salts EC, Organic Matter (Oil), Heavy metals, Poly-Aromatic Hydrocarbons (PAH), Moisture Content	Gol and WHO/IFC whichever stringent	Once, 3 samples each location	At batching plant and casting yard, Muckdisposal site, construction camps and 30 excavation sites	11,100
Noise, vibration b) Building condition survey	Noise levels in dB(A) Vibration PPV mm/s Building condition survey	Gol and WHO/IFC whichever stringent FTA Guideline Standards or any other internally recognized standards	 a) Once Hourly basis for 24 hours (noise and vibration) b) Vibration: Once, X, Y and Z axis with a high accuracy triaxial sensor. Frequency range from 1to 315Hz. Hourly basis for24 hours b) Building Condition Survey: height 	a) At key structure locations b) Key sections of line	a) 6,800 b) 178,091

Environmental	Aspect to be Monitored	Standard to be	Time and Frequency of	Location	Estimated
Features	-	complied with	Monitoring		cost (USD)

			measurements, crack survey, detailed photographic records etc.		
Sub-total		Construct			212,058
		Construct			100.000
Air	Emission of dust and particulate matter as PM _{2.5} and PM ₁₀ , NO _x and SO _x ,CO	Gol and WHO/IFC whichever stringent	24 hours continuously every month	For each station until civil works completed batching plant and casting yard, Muck disposal site throughout construction phase	163,200
Water (Surface and Ground)	DO, Turbidity, Conductivity, pH, Heavy metals, TN, TP, E.Coli, TSS, Oil and Grease,VOCs (groundwater only) and TDS	Gol and WHO/IFC whichever stringent	Quarterly, 3 samples each location	Groundwater at batching plant and casting yard, Muck disposal site, construction camps throughout construction phase, and excavation sites stations until civil works completed Surface water at wherever waterbody located within 100m from sites	132,000
Soil	PH, Sulphate (SO ₃), Chloride, ORP, water Soluble salts EC, Organic Matter (Oil), Heavy metals, PAH, Moisture Content	Gol and WHO/IFC whichever stringent	Quarterly, 3 samples each location	At batching plant and casting yard, Muckdisposal site, construction camps throughout construction phase 30 excavation sites-once during construction, once post-construction	30,000

Environmental Features	Aspect to be Monitored	Standard to be complied with	Time and Frequency of Monitoring	Location	Estimated cost (USD)
Noise, and Vibration Subsidence	a) Noise levels in dB(A) b) Vibration PPV mm/s c) Deformation monitoring	Gol and WHO/IFC whichever stringent FTA Guideline Standards or any other internally recognized standards	 a) Monthly or when complaint is received Hourly basis for 24 hrs (noise) b) Continuous monitoring when the TBM is within 10meters from the structure (vibration) c) Subsidence: building conditions, crack sensors, tilt sensors, continuous height measurement etc. 	At key structure locations	a) and b)12,960 c) To be included by Construction contractor in his bid
Occupational and Community Health and Safety	As specified in project ESHS plan prepared by Contractor Sub-section F of Section VII and Part D of PCC	IFC General and Sector EHS Guidelines or any other international recognized guidelines	Weekly	Project Site	NA
Sub-total					338,160
A :		Operatio			40.500
Air	Emission from DG sets (PM ₁₀ , PM _{2.5} NO _x and SO _x), Odor	Gol and WHO/IFC whichever stringent	At least 2 times in a year for the first year, annually for another 2 years	Ventilations of UG Stations, DG sets of all stations and Depot	16,533
Groundwater	DO, Turbidity, Conductivity, pH, Heavy metals, TP, TN, E.Coli, TSS, Oil and Grease, VOCs and TDS	Gol and WHO/IFC whichever stringent	At least 2 times in a year for the first year, annually for another 2 years	Groundwater at Station locations and depot	12,400
Noise	Noise levels in dB(A)	Gol and WHO/IFC whichever stringent	At least 2 times in a year for the first year, annually for another 2 years	Alignment, Stations, Depot	3,733
Vibration	PPV mm/s	FTA Guideline Standards or any other internally recognized	At least 2 times in a years for the first year, annually for another 2 years	At key structure locations	16,000

Environmental Features	Aspect to be Monitored	Standard to be complied with	Time and Frequency of Monitoring	Location	Estimated cost (USD)
		standards			
Occupational Health and Safety	As specified in project EMP and CMRL's SHE Manual	IFC General and Sector EHS Guidelines or any other international recognized guidelines	Monthly for 3 years	Station and Depot	20,000 *
Sub-total					68,666
Grand total					

During construction:

Noise: 2 construction yards on Bypass and Santhome Basilica and 4 locations between Saraswathi school to Government Hospital;

Vibration: 3 receptors from underground section namely St Thomas Basilica, Rosary Church and Our Lady of Light Shrine which are all heritage structures; and Baseline Building Condition Survey from Foreshore Estate station to Thirumayilai station and Bharathidasan Road station to Panagal Park station.

During operation:

Occupational Health and Safety safeguards during operation are not spelt out in the SHE document. Based on experience on other railways, health issues relevant to Chennai metro can be as follows: a) Musculo-skeletal disorders and fatigue, eye strain due to Display Screens impacting drivers, train controllers and ticketing staff: Well-designed workstations, lighting, posture advice and regular health checkups. b) Stress impacting drivers and Train controllers: Risk assessment, changes to job design, task allocation, training, and supervision; emotional resilience training; counselling for recovery and rehabilitation.

* Lumpsum provision Group Insurance premium excluding surgeries and loss of life or limb: Rs five lakh per year

9.6 Emergency Preparedness and Response System

298. An Emergency Preparedness and Response System has been prepared as shown in Table 9.4.

Emergency	Community	Response procedure	Equipment and	Responsibilities	Training need	Accident and
Situations	or		resources			emergency records
	individuals					
	impacted					
Damage to utilities:	Community	• The potential for disruption of	For gas utilities	Notification:	 Mock drills 	 Utility location and
		utilities during line construction is	 Fire engines to 	Contractor to CMRL	• Use of	diversion plans
Damage to one of	In case of	low as long as proper pre-dig	dispense water and	and utility agency	extinguishers,	Record sheet
the utilities water	live gas	verification procedures are	foam	CMRL to utility	fire suits,	showing type, size and
supply, sewage,	lines, the	followed. Disruption could range	 Portable 	agency	breathing	identification number of

Table 9.5: Emergency Preparedness and Response System

Emergency Situations	Community or individuals impacted	Response procedure	Equipment and resources	Responsibilities	Training need	Accident and emergency records
gas pipelines; electric and telecommunication cables while other utilities are being diverted due to lack of clarity in their location or unexpectedly poor state of their maintenance Damage while additional geotechnical investigations are in progress or during pile driving/in-situ casting.	project workforce could also be impacted	from cable or phone outage to customers, to explosion in gas line with potential risk to human health and life. • Contact utility to clear utility related safety hazard (like deactivating the utility). • Seek assistance of the utility to assess damage • Coordinate with un-impacted utilities. • Vital services and infrastructure recovery activities.	extinguishers • Fire protection suits • Breathing apparatus, helmets, goggles and face shield, first aid kits, stretchers, torches, ladders, emergency lighting on standby power > For water and sewage utilities • Quick water sealants	Remedial Action by: utility agency	apparatus, first aid kits, water sealants	utility, time of occurrence, time of notifying utility agency, status of other utility lines at the locations, time of repair and resumption of construction activities • Geotagged photographs with date
Ground subsidence due to unanticipated degree of groundwater drawdown	Community	The base document available with the ER Team shows the location of structures which are atrisk of subsidence as assessed atstart of construction.	• Helmets, first aid kits, stretchers, torches, ladders, emergency lighting on standby power, tents	Notification: Contractor to CMRL Remedial Action by: Contractor	 Mock drills Use of first aid kits 	 Plan showing location of construction site and affected structures Groundwater drawdown records from borewells
Ground subsidence under existing structures during tunneling due to unanticipated weak pockets of substratum	Community	occupants of structures affected as well as those in their proximity to safer locations. Arrange for their temporary relocation till the structures are rehabilitated.		Notification: Contractor to CMRL Remedial Action by: Contractor		 Vibration records Record sheet showing type, size and identification number of structure, time of occurrence, type of equipment in use

Emergency Situations	Community or individuals impacted	Response procedure	Equipment and resources	Responsibilities	Training need	Accident and emergency records
Collapse or severe degree of damage to existing structures due to unanticipated vibration during construction	Community	 The base document available with the ER Team shows the location of structures which are at risk of damage due to vibration as assessed at start of construction. In case of those structures where damage is expected to be major especially due to age or condition of building, move occupants affected as well as those in their proximity to safer locations before work is started atthose locations. Arrange for their temporary relocation till the structures are rehabilitated. In the event of minor damage to non-structural elements of the buildings, the same will be repaired. In case of unforeseen damage endangering structural soundness, move occupants of structures affected as well as those in their proximity to safer locations. Arrange for their temporation the structures affected as well as those in their proximity to safer locations. Arrange for their temporation the structures affected as well as those in their proximity to safer locations. Arrange for their temporation the structures are rehabilitated. 		Notification: Contractor to CMRL Remedial Action by: Contractor	Mock drills	before and when the damage was first noticed, the type of minor repair executed, number of occupants present and evacuated, time of evacuation, status of adjacent structures, type of rehabilitation implemented on each affected structure, date of resumption of construction activities, date of return of occupants • Geotagged photographs with date
Premature activation of blasting, collapse	Project workforce			Notification: Contractor to CMRL	Mock drillsAir quality	• Record sheet showing location and time of occurrence,

Emergency Situations	Community or individuals impacted	Response procedure	Equipment and resources	Responsibilities	Training need	Accident and emergency records
of weak rock strata				Remedial Action by: Contractor	monitoring • First Aid • Use of Breathing apparatus, fire suit	type and configurationof explosive, number of personnel present and evacuated • Geotagged photographs with date
Fire and explosion of flammable gases, flooding during underground works	Project workforce	 The source of fire and explosions could be fuel stored underground or gas pockets. Use fire water and foam to combat fires of oil. Immediately cool the construction equipment and any gas containers to avoid explosion. Headcount Search and Rescue Administer first aid Gas monitoring Block tunnel to prevent unauthorized personnel from entering the tunnel to facilitate rescue and reduce exposure to secondary explosions. Lay ventilation ducts and send fresh air to reduce gas concentration. Grouting, foam injection for gassy outburst and water inflow. 	 Emergency Lighting on standby Power Emergency Equipment and Rescue Equipment Breathing apparatus Gas detector Fire Proximity suit First Aid Kit Stretchers Torches and Ladders Ambulance Standby non- sparking ventilation fans to evacuate gases and smoke from the underground works. Standby high power pumps to evacuate flood water from the underground works 	Notification: Contractor to CMRL and Fire Department, Police, hospitals and Tamil Nadu Pollution Control Board Remedial Action by: Contractor	• Water seal • Evacuation • Search and Rescue	 Plan of construction yards and sites showing designated men assembly areas, Emergency Vehicle parking areas androads Air and gas sample test reports Record sheet showing location and time of occurrence, number of personnel present and evacuated Geotagged photographs with date

Emergency Situations	Community or individuals impacted	Response procedure	Equipment and resources	Responsibilities	Training need	Accident and emergency records
			 Quick water sealants Safety Equipment Gum Boots Safety Helmets Rubber Hand Gloves Goggles and face shield Wind Direction Indicator Ropes and harnesses Depending on the number of workers underground, one or two rescue teams – one at jobsite and one near the site. 			
Fire accidents at electric installations, fuel storage and fueling facilities	Community and project workforce	 Transformer or Substation fire requires equipment be deenergised. Use fire water and foam to combat fires of oil. Immediately cool theequipment and any containers to avoid explosion. Follow designated standoff distance and stand down period. Administer first aid 	 Fire engines to dispense waterand foam Portable extinguishers Fire protection suits Breathing apparatus, helmets, goggles and face shield, 	Notification: Contractor to CMRL and Fire Department, Police, hospitals and Tamil Nadu Pollution Control Board Remedial Action by: Contractor	 Mock drills First Aid Use of fire extinguishers, fire suits, breathing apparatus Evacuation Search and Rescue 	 Fuel and vapour sample test reports Maintenance reports of electric and fuel installations Record sheet showing location and time of occurrence, number of personnel present and evacuated Geotagged

Emergency Situations	Community or individuals impacted	Response procedure	Equipment and resources	Responsibilities	Training need	Accident and emergency records
			first aid kits, stretchers, torches, ladders, Emergency lighting on standby power			photographs with date
Road accident hazard due to leakage of hazardous waste such as waste fuels, lubricants during transport by vendors	Community and project workforce	 Even if grievous hurt and loss of life to workers and community and property is not caused, if incident occurred in public area posing a hazard, notify Police and alert Pollution Control Board. Control the leak/flow Arrange for sampling of any water pollution or potential pollution 	stretchers, torches, ladders, emergency lighting	Notification: Contractor to CMRL • CMRL to Traffic Police and Tamil Nadu Pollution Control Board. Remedial Action by: Contractor	 Mock drills First Aid Use of fire extinguishers, fire suits, breathing apparatus 	 Waste identification report Record sheet showing location and time of occurrence, number of personnel present and evacuated Geotagged photographs with date
Air pollution due to leakage and fire of flammable gases from muck disposal site slope failure of muck stack at disposal site	Community and project workforce	 Even if grievous hurt and loss of life to workers and community and property is not caused, if incident occurred in public area posing a hazard, notify Police and alert Pollution Control Board. Use fire water 	 Portable 	Notification: Contractor to CMRL and Fire Department CMRL to Tamil Nadu Pollution Control Board Remedial Action by: Contractor	Mock drills	 Gas sample test reports Record sheet showing location and time of occurrence, number of personnel present and evacuated Geotagged photographs with date
Failed launching of pre-cast girders or	Community and project	Administer first aidOrganise lifting equipment and	Lifting equipment and gas	Notification: Contractor to CMRL	Mock drillsFirst Aid	Structural drawings of failed elements

Emergency Situations	Community or individuals impacted	Response procedure	Equipment and resources	Responsibilities	Training need	Accident and emergency records
segments	workforce	 gas cutters Even if grievous hurt and loss of life to workers and community and property is not caused, but if collapse occurred in public area posing a hazard, notify Police. 	cutters • First aid kits, stretchers, torches, ladders, emergency lighting on standby power	CMRL to Police and district labour Commissioner Remedial Action by: Contractor	• Search and Rescue	Record sheet showing location and time of occurrence, type of lifting equipment used, number of personnel present and evacuated Geotagged photographs with date
Collapse of temporary works such as scaffolding and excavation support	Community and project workforce	In case of injured worker suspended from his harness, wait for trained emergency personnel.		Notification: Contractor to CMRL CMRL to Police and district labour Commissioner Remedial Action by: Contractor	Mock drillsFirst Aid	 Structural drawings of failed temporary works Record sheet showing location and time of occurrence, number of personnel affected Geotagged photographs with date
Health and safety impacts due to failure of ventilation in underground station	Metro Passengers and employees	 Notify Operational Control Centre (OCC) and suspend boarding and alighting in affected station; let trains pass through. Administer first aid Close entry of passengers into affected stations Evacuate passengers. 	 Standby non-sparking ventilation fans to ventilate Breathing apparatus for vulnerable passengers Maintenance equipment, spares and personnel 	Notification: CMRL to Emergency Action Committee Remedial Action by: CMRL	 Mock drills First Aid Use of breathing apparatus Evacuation 	 Ventilation system readings Ventilation system maintenance reports Record sheet showing location and time of occurrence, number of persons affected Geotagged photographs with date
Service disruption and unplanned congestion due to failure of platform	Metro Passengers	• As soon as duration of failure approaches disruption period allowed in station design, notify OCC and suspend boarding and	Maintenance equipment, spares and personnel	Notification: CMRL to Emergency Action Committee	Mock drills	 PSD and rolling stock usage log PSD and rolling stock maintenance

Emergency Situations	Community or individuals impacted	Response procedure	Equipment and resources	Responsibilities	Training need	Accident and emergency records
screen doors or rolling stock doors		 alighting at affected station close entry of passengers into affected stations Trains arriving in affected duration will pass without stopping Affected trains will passthrough to maintenance depot for attention 		Remedial Action by: CMRL		reports • Record sheet showing location and time of occurrence, number of services affected • Geotagged photographs with date
Service disruption and unplanned congestion due to failure of traction power supply or signaling during operation of the Metrorail	Metro Passengers	 In case of traction power failure, affected trains reach nearest station on battery. In case of signalling failure, stop affected trains at nearest station. Suspend operation of trains bound to pass through affected stations or section; stop trains at stations outside affected section Close entry of passengers into affected stations 	Maintenance equipment, spares and personnel	Notification: CMRL to Emergency Action Committee Remedial Action by: CMRL	Mock drills	 TPS and S&T log TPS and S&T maintenance reports Record sheet showing location and time of occurrence, number of services affected Geotagged photographs with date
Unplanned congestion in stations due to failure of general power through grid supply for lighting, communication etc	Metro Passengers	 As soon as standby supply is activated, notify OCC and suspend boarding and alighting in affected station; let trains pass through. Close entry of passengers into affected stations Switch on battery-powered high-power lamps which have been fixed to stations structure Use portable hailers to address passengers and employees Use portable lamps to locate 	 Handheld 2 way radios and hailing loudspeakers Portable handheld lamps Maintenance equipment, spares and personnel 	Notification: CMRL to Emergency Action Committee Remedial Action by: CMRL	Mock drills	 Standby system maintenance reports Record sheet showing location and time of occurrence Geotagged photographs with date

Emergency Situations	Community or individuals impacted	Response procedure	Equipment and resources	Responsibilities	Training need	Accident and emergency records
		and evacuate passengers and employees.				
Fire in underground section		 In case of manual or semi- automatic ventilation systems, operator to activate ventilation upon detection of fire In case of fire in station: Suspend operation of trains bound to pass through affected stations or section: stop trains at stations upstream and downstream of affected station. Render First Aid Close entry of passengers into affected station In case of fire in train: Drive the train on fire to the platform of the next station without stopping at intermediate sections to evacuate the passengers and carry out fire- fighting activities there. Once notified by the driver of the train on fire, the OCC will direct the train in front of the train on fire to proceed to the next station and the train running behind the train on fire to stop. Trains running on the opposite track will also be directed not to access or stop at the station where the train on fire stops at the station or the station is burning, 	• Breathing apparatus, gas detectors, helmets, goggles and face shield, first aid kits, stretchers, torches,		 Mock drills First Aid Use of fire suits, breathing apparatus Evacuation Search and Rescue 	Record sheet showing location and time of occurrence, number of services affected Geotagged photographs with date

Emergency Situations	Community or individuals impacted	Response procedure	Equipment and resources	Responsibilities	Training need	Accident and emergency records
		 the train dispatcher shall direct other trains not to approach this station. In case evacuation becomes necessary while train is in tunnel, passengers will be asked to exit through side doors onto the inspection gallery in the tunnel. 				
Flooding of underground stations due to unanticipated sea level rise or failure of pumping equipment	Metro Passengers	 At times of extreme sea level rise based on alerts from meteorological department, deploy trained rescue teams at vulnerable stations As soon as flooding is imminent, notify Operation Control Centre to suspend operation of trains bound to pass through affected stations or section; stop trains at stations outside affected section Administer first aid Notify nearby hospitals for ambulances Evacuate trains which have been stopped Close entry of passengers into affected stations Switch on battery-powered high-power lamps which have been fixed to stations structure Disconnect grid and standby DG power supply with turnstiles in default open mode. Use portable hailers to address 	 Trained rescue teams at vulnerable stations Inflatable life jackets Portable lamps and hailers 2 way radios Battery-powered high-power lamps fixed to station structure 	Notification: CMRL to Emergency Action Committee, Police, State Government Remedial Action by: CMRL	 Mock drills First Aid Use of breathing apparatus, life jackets Evacuation Search and Rescue 	 Maintenance records of pumps Record sheet showing location and time of occurrence, number of services affected Geotagged photographs with date

Emergency Situations	Community or individuals impacted	Response procedure	Equipment and resources	Responsibilities	Training need	Accident and emergency records
		 passengers and employees Use portable lamps to locate and evacuate passengers and employees. 				
Service disruption, Grievous hurt, loss of life due to natural disasters such as unanticipated earthquakes	Community and Metro Passengers	 Notify Operation Control Centre to suspend operation of trains bound to pass through affected stations or section; stop trains at stations outside affected section Administer first aid Notify nearby hospitals for ambulances and to standby Evacuate trains which have been stopped Close entry of passengers into affected stations Switch on battery-powered high-power lamps which have been fixed to station structure Disconnect grid and standby DG power supply with turnstiles in default open mode. Use portable hailers to address passengers and employees Use portable lamps to locate and evacuate passengers and employees. 	 Trained rescue teams Emergency battery fixed lighting Hand torches First Aid Kits Safety helmets Ropes and safety harnesses Stretchers Ladders Ambulance Rail-cum-road Vehicles 	Notification: CMRL to Emergency Action Committee, hospitals, Police, State Government, Commissioner Metro Rail Safety (CMRS) * Remedial Action by: CMRL	 Mock drills First Aid Evacuation Search and Rescue 	 Magnitude and epicenter of earthquake Seismic design adopted in design of structures Record sheet showing location and time of occurrence, number of persons affected Geotagged photographs with date
Unplanned congestion in stations due to terrorism or sabotage or law and order	Community, Metro Passengers and employees	• Notify Operation Control Centre to suspend operation of trains bound to pass through affected stations or section; stop trains at stations outside affected	First Aid KitsStretchersAmbulance	Notification:CMRLtoEmergencyActionCommittee,hospitals,Police,State Government		• Record sheet showing location and time of occurrence, number of persons affected

Emergency Situations	Community or individuals impacted	Response procedure	Equipment and resources	Responsibilities	Training need	Accident and emergency records
situations on Metro project or outside Metro project Grievous hurt, loss of life and property due to terrorism or sabotage or law and order		 section Administer first aid Notify nearby hospitals for ambulances and to standby Evacuate trains which have been stopped Close entry of passengers into affected stations 		Remedial Action by: CMRL Notification: CMRL to Emergency Action Committee, hospitals, Police,	 Mock drills First Aid Evacuation Search and 	Geotagged photographs with date
situations on Metro project				State Government, CMRS* Remedial Action by: CMRL	Rescue	
Acts of suicide or murder or hurt	Perpetrators and victims	 Notify OCC and suspend operation of trains on affected platform; stop trains at stations outside affected section Administer first aid Notify nearby hospitals for ambulance and to standby 	First Aid KitsStretchersAmbulance	CMRL to Emergency Action Committee, hospitals, Police, State Government, CMRS* Remedial Action by: CMRL	 Mock drills First Aid Evacuation 	

* Metro Railway (Operations and Maintenance) Act, 2002 requires reporting of a) collision or derailment of trains or b) accidents attended orusually attended by loss of life or grievous hurt

9.7 Training and Capacity Building Programs

299. CMRL's current capacity in monitoring of metro projects in adequate. However it is proposed to conduct a training program for CMRL as well as general consultant and contractors environmental, health and safety officials particularly on MDBs' monitoring and reporting requirements. External monitor will undertake training and capacity building activities. Training modules will be discussed and confirmed by CMRL and MDBs. A budget has been allocated in the EMP for the same.

300. Environmental Safeguards Specialist has been added to PIU: he will supervise work on all MDB corridors. The CMRL core Environment Safeguards team will be responsible for all corridors: it will be supported during construction by 2 junior CMRL environmental engineers who are assigned and charged to each corridor, assisted by safety, environmental, traffic, labour welfare professionals deployed by GC. During operation of metro, the core team will continue to monitor implementation of EMP by the metro operations contractors and EMOP by external environment monitoring agenciès.

9.8 Environmental Management Budget and Resources

301. The cost of all compensation and rehabilitations works will be an integrated part of the overall project cost, which will be borne by the project. The preliminary estimated cost of the environmental and social management plan is estimated as below. This cost estimate is exclusive of land acquisition and resettlement& resettlement cost.

SI. No.	Item/Particular	Cost (INR million)
1	Rainwater Harvesting for operation on elevated section and depot	44.841
2	Noise barriers for operation on elevated sections including sensitive receptors and residential areas	374.592
3	Air, Noise, vibration, Water, Soil monitoring during construction and operation *	46.416
4	Environment Division	9.780
5	Tree Plantation	10.130
6	Sewage Treatment Plant for operation	3.379
7	Effluent Treatment Plant for operation	4.500
8	Training and capacity building	5.594
9	Rooftop Solar Plant on stations and depot	84.397
10	Covid measures	30.000
	Total	613.629 (USD 8.25 million)

Table 9.6: Cost of EMP and EMoP Implementation*

* Does not include cost of monitoring of building condition survey during construction and ecological monitoring. The Noise barriers will be part of civil work cost. Adequate budget for tree transplantation and mitigation measures other than those in Table 9-5 will be allotted by CMRL

*Noise modelling report recommends the provision of barriers at sensitive receptors, although noise forecast at sample locations for operation is not more than 3 dBA above baseline levels. As these receptors are located all along the elevated section, budgetary provision has been estimated here for the entire elevated length.

SN.	Misc. Utilities, road works, Topographic Surveys, Geotechnical Investigations, Barrricading, Tree Cutting and replanting, other civil works such as signages, Environmental protection and traffic management	Unit	Rate	Quantity	Cost (INR million) without taxes
1.	Civil works	R.km	4.68	27.085	126.69
2.	Electrical works	R.km	3.69	27.085	100.06
	Sub Total				226.75

Source: DPR-Phase II

10. CONCLUSION AND RECOMMENDATION

302. The alignment of the proposed Chennai Metro Corridor 4 and depot area are carefully selected to avoid most of the sites having historical/cultural significance. Three religious structures/ churches shall have vibration impact, however appropriate management measures have been given in the EMP for mitigating the same. Some impacts are anticipated due to cutting of about 707 along the project alignment and 187 trees at Poonamalle depot /361 trees were translocated and 42 nos trees translocated in Poonamalle depot for which compensatory afforestation in the ratio of 1:12 has been proposed. Nearly 1.56 km length of alignment traverses through CRZ area (18,344.91 sq.m of area in CRZ II and 220.9 sq. m of area in CRZ IV-B), for which CRZ clearance shall be obtained and the given conditions in the clearance shall be strictly adhered to. Ecological restoration plan has been suggested for Panagal Park. Other necessary clearance/ NOCs/ permissions for construction shall be obtained by the contractor under the supervision of the GC and CMRL.

303. The alterations in length, design, and alignment of the project do not result in noteworthy adverse effects. Additionally, these modifications contribute to the smooth flow of vehicular traffic while operating the metro, will be achieved through the implementation of an integrated grade separator at Kattupakkam.

304. Significant adverse impacts of `medium to high` risk and `likely to definite` likelihood are a) social impacts due to involuntary resettlement, b) loss of trees, c) utility diversion, d) air, noise, vibration, muck and waste disposal, labour safety, water demand, ground subsidence due to construction; and e) noise, vibration and ground subsidence due to operation. Measures to mitigate adverse impacts have been recommended In the EMP, which shall also forms part of the bid document. Further noise and vibration study will be conducted based on the detailed engineering design, in order to inform the incremental impacts and suggest the mitigations. This will be completed as part of the supplementary study of this EIA by contractors' mobilization.

305. Benefits include reduced air pollution and road accident, increased benefits to economy and commuters on metro and road. Major roads along the proposed alignments are forecast to function beyond respective design service volume in year 2035 in absence of the project lines. BRT has significantly lower unit life cycle cost but road right of way is not adequate to operate BRT on Corridor 4. Therefore continuity of Metro is required. Requirement of acquisition of property was minimized by fine-tuning of locations and footprint of stations.

306. Public consultations highlighted opinions of participants on benefits of Metro in terms of easing connectivity, pollution, congestion, accidents and travel on roads and safe travel for women; and apprehensions about impact of tunneling on existing buildings and loss of green cover; suggestions for moderate metro fare compensation for impacted shops and other properties. Public consultations during construction and operation will form part of periodic reports sent by CMRL to MDBs. These consultations will focus on the efficacy of mitigation measures being implemented.

307. Grievance Redress Mechanism will be developed to assist the citizens, users of the Metro and other stakeholders communicate their queries, complaints and suggestions in connection with implementation of EMP and EMoP. GRM for both workers and communities will be instituted during pre-construction phase to continue through different phases.

308. Institutional arrangement, EMP, reporting and record keeping, emergency response and environment monitoring plan have been developed. Budgetary cost estimate to implement the EMP and EMoP has been prepared.

309. Best available technology and best management practices are built-in to the project design. All project components will be implemented and monitored in line with the MDBs' applicable policies and standards. A semi-annual environmental and social monitoring report will be submitted to MDBs and will be disclosed publicly at the MDBs' websites. Environmental and social benefits of the project and long-term investment program objectives outweigh the temporary negative impacts.

Updated Environmental Impact Assessment

April 2024 Revision 1

India: Chennai Metro Rail Investment Project Corridor 4

Annexure 1

Prepared by the Chennai Metro Rail Limited (CMRL) for the Asian Development Bank.

Annexure 1: Detailed Analysis Reports

Environmental Baseline

POLLUCARE® Modulises for posturises	TEST REPORT BL & NABET, Certified ISO 9001-2	(Laboratory Serv #16G - 6152, Theth Phas Kamarajar Road, Ayapuki Chemnal - 600 027. Phi I +93 44 2682 3390 / Email: Jab@polikurareni Web : www.polikurareni	e 1 & 8, lum, •92 75977 96831 8.com
Report No	T POE0/38/44305	Report Cube	1 09.12 2019
ULR No Tassed in	 U.R. TCH461900011367 M/s Chennal Hetro Rall United OHII, Deput, Admin Building, Pocoanalee High Road, Keyambedu, Chenvas - 600 107 		
Sampling Method Sampled by Sample Collected Date Name of the Sensitive Receptors Sample Description Sample Coadition Category of Area Distance from the outer most proposed tracks (m)	1 IS 9989 - 1981 (AA 2008) 1 Laboratory 1 BL1L 2019 1 Queens Mary College 1 Noise Monitoring 1 Fit for Analysis 2 Sector 20ne 9 45.7	LHS/RHS Type of Sensitive Receptors Latitude Longitude Sample Reference No Sample Reference No Sample Received On Test Commerced On	1 LHS 2 College LHPC240, 47N 8 071644, 577 9 CEU-40, 1019 12 19 19, 11, 2019 19, 11, 2019 19, 11, 2019
Sampling Location	Light House Station - Fore shore I	Test Completed On Istate Road	: 19.11.2019
		-	
Time	Day Time Readings in dB(A)	Night T Readings in	And the plan is play a second s
06:00 - 07:00	41.8		1999
87:00 - 66:00	42.5		
08:00 - 09:00	\$5.9		
09:00 - 10:00	\$6.4		
10.00 - 11.00	57.1 55.8		
12:00 - 13:00	943		
13:00 - 14:00	53.7		
14:00 - 15:00	52.9		
15:00 - 16:00	51.6		
10:00 - 17:00	54.1		
17:00 - 18:00	55.0		
18 00 - 19:00	812		
19:00 - 20:00 20:00 - 21:00	45.5		
21:00 - 22:00	42.8		
22.00 - 23.00	41.8	36.5	
23-00 - 00.09		93	
00.00 - 91.00		34.1	
01:00 - 02:00		84	
02:00 - 03:00		110	
03:00 - 04:00		30.5	
04:00 - 05:00	-	34.8	
05.00 + 06:00	Min	41.0	
	Max	57.1	
Bay Time	Log	\$3.5	
	Day Linit	50 dB	And particular in the second se
	Min	33.5	- 1
Night Time	Max	36.5	and the second se
19 90 (10 10 10 10 10 10 10 10 10 10 10 10 10 1		the second se	
Night Time Note: OFCB Antions: An Quality Standards is report of Noise in S	Leg Night Limit	58.1 40 dB	(
Verified By		Authorised Name King Desgnation: Tech	

POLLUCARE	TEST REPORT	(Laboratory Serv # HIG 6152, Thit8 Phose Kamardiar Road, Apopula Chernal - 600 077. Ph19144 2682 3150 / + Email: lab@polwarrindi Web : www.golbuarrindi	ri & IL am, 91,73977 96831 A.com
Accredited by NAE	L & NABET, Certified ISO 9001:20		
aport No	PERVIE-N-4106	Report Date	: 09.12.2039
ILR No socied to	 (ILE-TC2446190003127# H/'s Chennai Hotor Rall Limited CHR, Depot, Admin Building, Ponamaliter High Ruid, Koyambedu, Chennai - 600 107 		
ampling Method Simpled by ample Collected Date Tame of the Sensitive Receptors ample Consolition ample Consolition alogary of Area Islance from the outer most proposed tracks (m) ampling Location	i 15 1999 - 1991 (KA 2008) f Laboratory i 18.13 2019 i St. Thomas Hount church i Noise Honitoring i Fit for Analysis i Silence Zone i 1.0 i Light House Station - Fore shoo	LHS/RHS Type of Sensitive Receptors Sample Reference No Sample Received On Test Commenced On Test Completed On Estate Road	: D45 : Oweth : PCELN-H020-12-19 : 19.11.2019 : 19.11.2019 : 19.11.2019
0 <u>-</u> 200	Day Time	Night Tir	ne
Time	Readings in dB(A)	Readings in	(A)0b
06:00 - 07:00 07:00 - 08:00	42.9		
05:00 - 09:00	47.8		
09:00 - 10:00	46.3		
10:00 - 11:00	48.1		
11:00 - 12:00	47.5		
12:00 - 13:00	49.4		
14:00 - 15:00	45.4		
15:09 - 14:00	41.9		
16:00 - 17:00	45.6		
17:00 - 18:00	47.5	-	
18:00 - 19:00	43.7		
19:00 - 20:00 20:00 - 21:00	41.8		
21.00 - 22.00	39.2	100000	
22:00 - 23:00		35.5	
23.03 - 00:00		30.3	
00.00 - 01/00		30.9	
01:00 - 02:00 02:00 - 03:00		30.7	
63:00 - 04:00		31.6	
04:09 - 05:00		31.9	2
05:00 - 06:00	1	31.4	
	Min	39.2	
Day Time	Max	49.4	
	Day Limit	50 db(/	0
	Min	30.3	
Night Time	Max	31.5	
	Leg	31.4	
ute: CrCR Antibert Ar Quality Standards in respect of Rome in L-P_L evolution by	Right Levit		Gratory nah G

POLLUCARE	TEST REPORT	POLLUCARE ENGIN (Laboratory Servic) #100 - 6152, TNHB Phase 14 Kamarajar Road, Apipakkan Chennai - 600 077, Ph. 1+91 44 2682 3190 / +91 Final: lab@polucareixda.co	es Division) 4 II. 73977 96835
seeution for pollution	BL & NABET. Certified ISO 9001:2015	Web : www.pollutareinida.c & ISO 14001.2015	am
Report No	: POD/TR-N-4107	Report Date	: 09.52.2019
ULR No	UUN-TCTM6190003128P M/s Chemisi Metro Kall Linited ONL Dept, Admin Building, Pooranalite High Road, Koyambedu, Chemisi - 600 107		
Sampling Method	15 9989 - 1961 (RA 2008)	LHS/RHS	106
Sampled by	1 Laboratory	Type of Sensitive Receptors	: School
Sample Collected Date	19.11.2019	Latitude	1390204.6'N
Name of the Senaltive Receptors Sample Description	St. Bede's Angle Indian Hr. Sec. School		80*16'41.6'6
Sample Condition	 Noise Monitoring Fit for Analysis 	Sample Reference No Sample Received On	: PCE1/N-N021-12-19 30.11.2019
Category of Area	: Silence Zone	Test Commenced On	30.11.3019
Distance from the outer most proposed tracks (m)	71.16	Test Completed On	30.11.3019
Sampling Location	Light House Station - Pare share Est	late Road	0.0000000000000000000000000000000000000
12.111	Day Time	Night Tim	
Time	Readings in (B(A)	Readings in d	
06:00 - 07:00	53.8		
07:00 - 08:00	55.5		
08:00 - 09:00	\$9.7		
09:00 - 10:00	40.9		
30:00 - 11:00	59.8		
11:00 - 12:00	58.3		
12:00 - 13:00	56.6		
13:00 - 14:00	55.3		
14:00 - 15:00	52,9		
15:00 - 16:00 16:00 - 17:00	55.8		
17:00 - 18:00	57.7		
18:00 - 19:00	\$2.8		
19:00 - 20:00	49.7	0.000	
20.00 - 21.00	48.6	1.0 PT 17	
21:00 - 22:00	42.8		
22:00 - 23:00		36.5	
23:00 - 00:00		38.3	
00:00 - 01:00		32.4	
01:00 - 02:00		33.1	
02:00 - 03:00		34.2	
63:00 - 04:00		34.1	
01/00 - 05/00		32.1	
05:00 + 06:00		31.4	
	Min	42.8	
Day Time	Hax	60.9	
	Day Limit	50 cB(A)	
	Min	31.4	
	Max	38.3	
Night Time	Leg	39.2	
	Night Limit	48 (8)(A)	
Nader. CPCB Archaers Air Quality Samdarch in respect of house in S JuP II. Architicad By	Hence Zone Daylow 50 (H)(4) & high Time 40 (*** End al Report *** Page 5 of 1	n(4) Authorizant - Name Kristva Designation: Technic	

Note: LThe text results are dely to the sample submitted for text. 2.Any Correction of the text report in full or part shall invalidate the report. 3. Sample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by clear. A Periotable samples will be discarded inmediately after reporting. 5. Under no circumstances lab accepts any liability or loss/damage caused by use or misuse of text report after involving or issued of text report.

P@LLUCARE*	TEST REPORT	POLLUCARE ENG (Laboratory Servi # 110 - 6332, Thirle Phase Karrangar Road, Appella Chennal - 600 077, Ph. + 93 44 2682 3350 / + Email: 16/8 pollutareinda	ices Division) 14 II, III, 17 73977 96831 1099
Accredited by NAB	L& NABET, Certified ISO 9001:2	Web : www.pollucareleida 015 & ISO 14001:2015	LCOM
Report No	: PCEL/TR-N-4100	Report Date	09.12.2019
ULR No	ULR-TC7446190003129F		1721103110
Insued to	M/s Chennal Metro Rail Limits CNRL Depox, Admin Buiding, Pomanalier High Road, Koyambedu, Chenral - 600 137	ed	
Sampling Method	1 IS 9989 - 1981 (RA 2008)	LHS/RHS	1 LHS
Sampled by	Laboratory	Type of Sensitive Receptors	: Church
Sample Collected Date	: 19.11.2019	Latitude	1 13402.00 2.M
Name of the Sensitive Receptors Sample Description	Sonthome Cathedral Church	Longitude Sample Reference No.	: 60°16'40.2°E : PCELIN N022-12-19
Sample Condition	 Noise Monitoring F6 for Anilysis 	Sample Reference No Sample Received On	20.11.2019
Category of Area	1 Stence Zone	Test Commenced On	20.11.2019
Distance from the outer most proposed tracks (m) Sampling Location	: 6.32 : Foreshore Estate Road - Kutch	Test Completed On	: 20.11.2019
	Oay Tiese	Night Tir	
Time	Readings in dB(A)	Readings in	dB(A)
05:00 - 07:00	41.6	1	
07:00 - 08:00	46.3		
68:50 - 09:50	46.5		
09:00 - 10:00	49.2		
10:00 - 11:00	47.3		
12:00 - 13:00	47.6		
13:00 - 14:00	48.4		
14:00 - 15:00	48.1		
15.00 - 16:00	48.4		
16:00 - 17:00	46.3		
17:00 - 18:00	45.3		
38:00 - 19:00	48.5	the second second	
19:00 - 20:00	48.5	ALC: DOLLARS	
20:00 - 21:00	47.3		
21:00 - 22:00 - 23:00	49.6	36.1	
23:00 - 00:00		31.4	
00:00 + 01:00	-	11.5	
01:00 - 02:00	-	21.5	
02:00 - 03:00		32.4	
03:00 - 04:00		38.3	
64:00 - 05:00		32.5	
05:00 - 06:00		31.9	
	Min	41.6	
Day Time	Hax	49.6	
11114-1120-2	Day Limit	47.5 50 dB(A	
	Min	31.1	/
	Max	36.1	
Night Time	Leg	32.7	
	Night Limit	40 ±9(A)
Nete: CPCB Ambient Air Quality Standards in majerit of Naise in	Night Limit	40 tib(A)
North State		Authoriseden Name: Kitole Designation: Techni	
	2. Any Correction of the test report in		

POLLUCARE ENGINEERS INDIA PVT.LTD.,

(Laboratory Services Division) #103 - 6152, TNH9 Praze 1.6 8, Kamarajar Road, Appaklam, Chennal - 600.077 Ph : +91.44.2682.1150 / +91.73977.96831 Email: Ub@policiamindia.com Web : aww.polikicamindia.com

TEST REPORT

P@LLUCARE

Accredited by NABL & NABET, Certified ISO 9001:2015 & ISO 14001:2015

Aport No	: PGEU/TR-N-4129	Report Date	1 09.12.2019
LR No	: UAR-TC7446190003130F		
seed to	 M/s Chennal Metro Rail Limit CHRL Depot, Admin Building, Poonamalee High Road, Koyambedu, Chennal - 600 107 	ted	
ampling Method		1.000 1.00100	1.1.1
ampled by	 IS 9989 ~ 1981 (RA 2008) Laboratory 	LHS/RHS Type of Sensitive Receptors	Durch
ample Collected Bate	20.11.2029	Latitude	12'02'02.6'N
tame of the Sensitive Roceptors	Rosary Church	Longitude	- 80°16'31.7'E
ample Description	Noise Monitoring	Sample Reference No	POEL99-M023-12-15
ample Condition	Fit for Analysis	Sample Received On	21.41.2019
alogory of Area	Sitence Zone	Test Commenced On	21.11.2019
istance from the outer most proposed tracks (m)	: 1.0	Test Completed On	21.11.2019
angling Location	Foreshore Estate Road - Kets	serv kord	
Time	Day Time	Night Tir	
Time	Readings in dB(A)	Roadings in a	(A)Bt
04:00 - 07:00	45.9	0.000.0024-01	2.6100
07.00 - 08:00	46.1		
08:00 - 09:00	48.2		
09/00 - 10:00	46.2		
10:00 - 11:00	41.6		
11/00 - 12:00	42.8		
12:00 - 13:00	47.6		
13:00 - 14:00	44.0		
14:00 - 15:00	43.6		
15:00 - 16:00	42.2		
16:00 - 17:00	41.5		
17:00 - 18:00	41.6		
18:00 - 19:00	42.8		
19:00 - 20:00	40.9		
20:00 - 21:00	49.3		
21:00 - 22:00	40.0		
22:00 - 23:00 23:00 - 00:00		30.1	
00:00 - 01:00		29.3	
01:00 - 02:00		301	
02:00 - 03:00		32.1	
03:00 - 04:00	-	30.2	
04:00 - 05:00	-	284	
05:00 - 06:00		30.4	
	Hin	40.0	
	Max	48.2	
Day Time	Leg	44.3	
	Day Limit	50 dB(A)	
	Min	19.3	
		the second se	
Night Time		and the second se	
	Night Limit	40 dB(A)	1
Night Time ere: O'CE Anthens Ar Quelty Stoctarts in respect of Nosc in 3 Lifed by prifted by	the second se	Grand	Millery m G

Note: 1.The text results are only to the sample submitted for text. 2. Any Correction of the text report in full or part shall invalidate the report. 3. Sample will be retained for 25 days from the date of reporting except in case of regulatory samples or specifically instructed by clear. A.Pertshabe samples will be discarded immediately after reporting. 5 Under no circumstances lab accepts any kability or loss/damage caused by use or misuse of text report after involving or issued of text report.

Repo Repo Limited (b 107 LIRE) Type LIRE) Sam Sam Test Test	ort Date (/RHS e of Seesilive Receptors bude gitude spie Reference No spie Received On	: 09.12.2019 : DHS : School : DHSCOLENN : SCHOOLENN : SCHOOLENN : SCHOOLENN
Limited G. 107 LHS/ Type Laft c. School Long Sam Test Yest	(/RHS e of Sensitive Receptors tude gitude spie Received Co t Commenced On	: LHS School : LPO203.PN
G 107 LHS, Type LAR LAR LAR Sam Sam Test Test Test	e of Sensitive Receptors Eude gitude nple Received Ca L Commenced On	50%aal 13*02*03.8*%
G 107 LHS, Type LAR LAR LAR Sam Sam Test Test Test	e of Sensitive Receptors Eude gitude nple Received Ca L Commenced On	50%aal 13*02*03.8*%
Type Latit c. School Long Sam Sam Test Test	e of Sensitive Receptors Eude gitude nple Received Ca L Commenced On	50%aal 13*02*03.8*%
Latit sc. School Long Sam Sam Test Yest	tude gitude spie Reference No spie Received On t Commenced On	: 13*02/03.8*%
c. School Long Sam Sam Test Test	gitude sple Reference No sple Received On t Commenced On	and the second se
Sam Sam Test Test	sple Reference No sple Received On I Commenced On	- mar. the hard of
Sam Test Test	sple Received On I Commenced On	PCEUM-N024-12-19
Test		21.11.2019
		1 21.11.2019
Nath Read	Completed On	21.11.2019
	Night Tim	
(A)	Readings in d	
M.M.		and a
_		
1		
	37.8	
	314	
	33.8	
	33.1	
	32.1	
	33.4	
	34.6	
	43.9	
	65.6	
	59.6 50 dB(A)	-
	50 00(A) 31.2	
	33.9	
	40 dB(A)	
Mayle Time 40 dB(A)	Gendo	They
	a 5 May 12 Three 42 AB(A)	40 dB(A) 5 Marin Time 40 dB(A) 5 ***

POEV7R-N-4111 ULIA TCPH4600003532F N/A Chennal Metro Rail Lini CH51, Dept, Admin Building, Posnamalike High Roat, Koyambelu, Chennel - 600 157	Report Date	09.12.2019
CMFL Depor, Admin Building, Poonamalike High Road,	ted	
1 15 9989 - 1981 (RA 2008) 2 Laborstory 2 21.11.2019 1 Moise Monitoring 2 Fit for Analysis 3 Silence Zone 2 4 Kutchory Baad - Thiosmayila	Latitude Longitude Sample Reference Na Sample Received On Test Commenced On Test Completed On	: UP5 : Mosque : 13702706.97N : 607102706.97N : 60710276 57E : PCEQNE46025-12-15 : 22.11.2019 : 23.11.2019 : 22.11.2019
1		
Readings in db(A)		
41.2		00.260
43.2		
47.1		
48.2		
45.9		
44.3		
	-	
the second se		
	35.0	
	33.4	
His		
Leg	46.2	
Day Limit	50 d8(A)
Hin		
Max		
Night Limit	33.5 40 db(
	E Laboratory 2.1.1.2019 Phojeod Jamail Phojeod Jamail Rione Monitoring Fris Tre Analysis Silesce Zone - Cory Time Readings in (B(A) 41.2 43.2 44.5 45.6 47.3 46.3 47.3 46.3 47.3 46.2 47.3 46.3 47.3 46.2 47.9 44.3 46.2 47.9 44.3 46.2 47.9 44.3 46.2 47.9 44.3 46.2 47.9 44.3 46.2 47.9 44.3 46.2 47.9 44.3 46.2 47.9 44.3 46.2 47.9 44.3 46.2 47.9 44.3 46.6 47.3 46.6 47.3 46.6 47.3 46.6 47.3 46.6 47.3 46.6 47.3 46.6 47.3 46.6 47.3 46.6 47.3 46.6 47.9 47.9 46.6 47.9 47.9 46.6 47.9 47	Laboratory Type of Sensitive Receptors 121.11.2010 Latitude Photosof Jamail Longitude Noise Monitoring Sample Reference No Sitesce Zone Test Convenenced On Sitesce Zone Test Completed On Extributy Read - Thisamaryllal Hetro Readings in (B(A) Readings in (B(A) Readings in (B(A) 41.2 43.2 43.2 44.5 45.5 47.3 45.3 45.3 45.3 45.3 45.4 31.4 45.5 31.4 45.6 31.4 45.6 31.4 45.6 31.4 45.6 31.4 45.6 31.4 45.6 31.5 45.6 31.5 45.6 31.5 45.6 31.5 45.6 31.5 45.6 31.5 45.6 31.5 10.5 31.5 11.6 31.5 12.7 31.5 13.7 31.5 14.8 31.5 14.9 31.5 15.9 31.5 16.1 31.5 17.5 31.5

P@LLUCARE®	TEST REPORT	POLLUCARE ENGINEERS INDIA P (Laboratory Services Division) # HIG - 6152, TRIHE Phase I & IL, Kamarajar Road, Ayapakkam, Chernal - 600 077, Ph. : +01 44 2682 3190 / +91 73977 96831 Email: Isb@policemindia.com		
solution for pollution	ABL & NABET, Centred ISO 9001.20	Web : www.pollucareinida.co 15 & ISO 14001 2015	**	
Report No	1 POIS/TR-N-4112	Report Date	1 09.12.2019	
ULR No Issued to	ULR-TC7445380033339 M/S Chansal Metro Rail Limited Orie, Depor, Admis Building, Ponsmalier High Raid, Koysnibeds, Chennel - 660 107			
Sampling Method Sampled by Sample Collected Date Name of the Senaltive Receptors Sample Description Sample Condition Category of Area Distance from the outer most proposed tracks (m) Sampling Location	: 15 9999 - 1992 (RA 2008) : Liborisory 21.11.2019 : Summa Horspe : Noise Monitoring : Hi for Analysis : Sitence Zone : 11.87 : Matchery Read - Thirumapilal Hetro	LHS/RHS Type of Sensitive Receptors Latitude Longitude Sample Reference No Sample Reference To Test Completed On Test Completed On	1045 190204.81% 804611.41% 90564.81% 10264.8026.12.11 12.11.2019 12.11.2019 12.21.12019	
-	Day Time	Night Time		
Time	Readings in db(A)	Readings in dB(A)		
05:00 - 07:00	41.6			
08:00 - 09:00	42.9			
09:00 - 10:00	43.6			
10:00 - 11:00	43.9			
11:00 - 12:00	61.8			
12:00 - 13:00	45.2			
14:00 - 15:00	45.1			
15:00 - 16:00	44.3			
16:00 - 17:00	43.2			
17:00 - 18:00	45.3			
18:00 - 19:00	41.2			
19:00 - 20:00 25:00 - 21:00	41.8			
21/00 - 22/00	40.1			
22:00 - 23:00		36.7		
23:00 + 00:00		16.2		
00:00 - 01:00		302		
01/00 - 02/00 02/00 - 03/00		11.8		
03:00 - 04:00	-	343		
04:00 - 05:00		34.6		
05:00 - 06:00		34.5		
Day Time	Min	40.1	1 H 2 C 4 H 2 H 2 H 2 C 4 H 2	
	Max	46.2		
	Davident	43.7 50 d8(A)		
	Day Limit Min	30.00(A)		
Night Time	Max	36.2		
reget verse	Leg	34.6		
Nation 1903 Architect Als Quality Standards in respect of Nation in	Night Limit Siene Zore Devine St (K(L) & Night Time K) *** End of Report *** Page 1 of 1	Grank	atin	
The test results are only to the sample submitted for te		Desgration: Techno	ы мызри	

I/TRIN-413 I/TRIN-413 Cherval Motos Rail Limited Is Deput, Admin Building, namater High Road, anisterio, Chernal - 603 307 r899 – 1481: (XA 2008) Orielony 13.2019 Church Se Monitoring to Analysis not Zoni K3	Latitude Longitude Sample Reference No Sample Received On	: UIS : Ohudi : Dhudi : Dhudi
Chervnal Metro Rail Liwited Is, Depot, Admin Building, namader High Road, anistedu, Chernai - 603 307 r899 – 1981: (XA 2008) oritory 11.2019 Church ise Monitoring Ior Analysis net Zone 13	Type of Sensitive Receptors Latitude Longitude Sample Reference No Sample Received On	: Church : 13°02'17.6"N : 80°13'44.7"E : PCLUN-N027-12-10
oratory 11.2019 COwarch lae Monoitorbag for Analysis nee Zone 13	Type of Sensitive Receptors Latitude Longitude Sample Reference No Sample Received On	: Church : 13°02'17.6"N : 80°13'44.7"E : PCLUN-N027-12-10
ramaeilai Metro - Alwarpet		23.11.2019 23.11.2019 23.11.2019 23.11.2019
Day Time	Alight Tim	
Readings in dB(A)		
40.6		
and the provide state of the second state of t		
41.4		
45.6		
485		
45.8		
46.9		
	-	
43.0		
42.0		
41.9	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
367	22.3	
	31.6	
	30.2	
	11.8	
	30.2	
	45.2	
Day Limit		
Hin	30.3	
Night Link	40 db(A)	
	Readings in dB(A) 0.6 04.3 05.6 04.1 05.6 04.1 07.2 048.5 05.8 05.9 046.7 046.5	Readings in dB(A) Readings in d 40.5 44.3 45.8 47.4 45.6 46.1 47.2 45.5 45.8 47.4 45.6 46.1 47.2 45.5 45.8 45.8 45.9 45.9 45.9 45.9 45.9 45.9 45.9 45.9 45.9 45.9 45.9 45.9 45.9 45.9 45.9 45.9 45.9 45.9 45.9 45.9 45.9 45.9 45.9 45.9 45.9 45.9 45.9 38.7 38.7 32.3 38.7 32.4 33.2 32.7 13.5 36.7 Min 36.7 Min 36.7 Min 36.4 Min 30.7 Min 30.4

TEST REPORT	# HIG - 6232, TNHB Pha Kamarajar Road, Ayapa Chennai - 600 077 Ph: +91 44 2682 3390 / Email: Iab@plicareim Web : www.poliucareim	ikam, 1+91 73977 96883 Na.com
L & NABET, Certified ISO 9001:2	2015 & ISO 14001:2015	2920
	Report Pate	09.12.2005
and the second state of th	asport case	- 07.12.2023
H/s Chennal Metro Ruil Limited Offic Depot, Adron Building, Pronoesalee High Raad, Koyambeta, Chennar - 600 1037		
: IS 9989 - 1981 (KA 2008)	LHS/RHS	1495
Laboratory		Temple
		13%2718.7% 00%15/21.5%
		PCEUN-A028-12-19
1 Fit for Analysis	Sample Received On	23.11.2019
		23.11.2015
	Test Completed On	23.11.2019
- COMPANY AND ADDRESS OF ADDRESS OF		
Day Time	Night T	Tene
Readings in dB(A)	Readings i	5 dB(A)
41.8	100000	22.22
45.8		
45.1		
44.4		
43.8		
42.9		
and a second		
40.3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
30.4	a series of the second second	
	100 1	
	30.3	
10000	30.0	
Hin	39.4	
Max	46.0	
Leg	and the second se	
and the second se		
	32.5	the second se
Night Limit	40.66	
	PCEL/TE-04-0114 ULR: TCP446190000119F ULR: TCP446190000119F IV/III: Dept4, Admin Building, Postessite High Road, Kopambels, Cherasi + 600 307 IS 9989 - 1961 (KA 2008) Latoration Zoutility Z2:11.2019 Adjacepar Tempte Readings In dB(A) Stance Hanitering Pd for Analysis Stance Zoue Stanc	L & NABET, Certified ISO 9001-2015 & ISO 14001-2015 I PCEUTR-N-4014 Report Date I MARET, Certified ISO 9001-2015 & ISO 14001-2015 I MARET, Chernal Metro Rail Likeling Pronversive High Road, Koyambeda, Chernar Hoo 1937 I IS 9989 - 1981 (KA 2008) I Latoratory I IS 9989 - 1981 (KA 2008) L Latoratory I IS 9989 - 1981 (KA 2008) L Latoratory I IS 9989 - 1981 (KA 2008) L Latoratory I IS 9989 - 1981 (KA 2008) L Latoratory I IS 9989 - 1981 (KA 2008) L Latoratory I IS 9989 - 1981 (KA 2008) L Latoratory I IS 9989 - 1981 (KA 2008) L Latoratory I IS 9989 - 1981 (KA 2008) L Latoratory I IS 9989 - 1981 (KA 2008) L Latoratory I IS 9989 - 1981 (KA 2008) L Latoratory I IS 9989 - 1981 (KA 2008) L Latoratory I IS 9989 - 1981 (KA 2008) I Latoratory I IS 9989 - 1981 (KA 2008) I Latoratory I IS 9989 - 1981 (KA 2008) I Latoratory I IS 9989 - 1981 (KA 2008) I Latoratory I IS 9989 - 1981 (KA 2008) I Latoratory I IS 9989 - 1981 (KA 2008) I Latoratory I IS 9989 - 1981 (KA 2008) I Latoratory I IS 9989 - 1981 (KA 2008) I Latoratory I IS 9989 - 1981 (KA 2008) I Latoratory I IS 9989 - 1981 (KA 2008) I Latoratory I IS 9989 - 1981 (KA 2008) I Latoratory I IS 9989 - 1981 (KA 2008) I Latoratory I IS 9989 - 1981 (KA 2008) I Latoratory I IS 9989 - 1981 (KA 2008) I Latoratory I IS 9989 - 1981 (KA 2008) I Latoratory I IS 9989 - 1981 (KA 2008) I IS 998 (KA 2008) I IS 99

POLIUTR-N-4515 ULR-TC7H46190003130F M/s Chennel Netro Rail Limited Orfil: Depot, Admit Building.	Report Date	09.12.2019
Psonemailee High Road, Keyambedu, Chennai - 500 107		
1 15 9999 - 1981 (XA 2008) 1 Laborskovy 2 25.11.2019 1 Yilvity Hospital 1 Noise Monitoring 1 Fit for Anaryas 5 Simon Zone 2 .549 - Alwarpet - Bharathidasan Road	LHS/RHS Type of Sensitive Receptors Latitude Complexed Sample Received On Test Commenced On Test Completed On	1 NPS 2 Haupital 1 1370219.07N 8571528.27L 2 PCLINI NG29-12-19 2 35.11.2009 1 25.11.2009 1 25.11.2009
Quy Time	Night T	ine
Readings in (B(A)	Readings 1	1-08(A)
53.2		
59.6		
54.8		
\$3.5		
52.4		
and the second se		
10.00		
45.2		
47,3	and the same service of	
	and the second second	
	47.5	
50		
Hin		
Day Limit		the state of the s
Hin		
Hax	the second se	
Leq Night Limit	40 db(
	15 9999 - 1981 (94 2008) Libbridovy 25.11.2019 Trivity Hospital Noise Hemiltoning Pit for Analysis Stonce Zone 2.58 Alwarpst - Bharasthidasan Rood Bay Time Headings in (95(A) 40.2 40.5 53.2 55.3 52.4 53.2 55.3 52.4 53.2 55.3 52.4 53.3 52.4 53.2 55.3 52.4 53.2 55.3 52.4 55.3 55.3 52.4 55.3 55.3 55.2 55.3 55.2 55.3 55.3 55.2 55.3 55.2 55.3 55.2 55.3 55.2 55.3 55.3 55.2 55.3 55.3 55.2 55.3 55.2 55.3 55.2 55.3 55.2 55.3 55.2 55.3 55.2 55.3 55.2 55.2 55.3 55.2	I 5 9999 - 2991 (RA 2008) Libborkov 25.11.2019 Trinity Hospital Noise Menitoring Ref tor Analysis Sinner Zone Africarpet - Bharisthillesian Rood Bary Time Africarpet - Bharisthillesian Rood Bary Time Africarpet - Bharisthillesian Rood Bary Time Bary Time

POLLUCARE	TEST REPORT	POLLUCARE ENGI (Laboratory Servi # HIG - 6152, Theilt Phase Kaharipar Road, Ayapika Cheenal - 600 077. Ph : +91 44 2682 3190 / +1 Email: Ibb/Ppol/current/a	ces Division)
Accredited by NAE	8L & NABET, Certified ISO 9001:20	Web : www.pollucardinida 115 & ISO 14001-2015	com
Report No	: PCE1/TR-R-4116	Report Date	1 09.13.2019
uce no	 LLE-TC2+661900031377 M/s Chennal Metris Rail Limited Offit, Depot, Admin Building, Popmanulier High Raid, Rayambeba, Chennal - 500 107 		
Sampling Hethod Sampled by Sample Cellected Date Name of the Sensitive Receptors Sample Condition Sample Condition Category of Area Ostance From the outer most proposed tracks (m) Sampling Location	15 9989 - 1981 (KA 2008) Laboratory 25.11.2019 AVT Hespital Note Hesitaring Pit for Analysis Sitesic Zone 28.9 Awarpet - timerathidecon Road	LHS/RHS Type of Sensitive Receptore Longitude Sample Reference No Sample Received On Test Completed On Test Completed On	1045 Hougetal 1070226.37% 8091526.47 PCIUM-HOIS 12.19 26.11.2019 26.11.2019 26.11.2019
	Day Time	Night Tir	ie:
Tawa	Readings in dB(A)	Readings in	d6(A)
05:00 - 07:00	\$0.7 \$5.1		
07/00 - 08/00	\$7.3		
09:00 - 10:00	87		
10:00 - 11:00	67.6		
11:00 - 12:00	56.8		
12:00 - 13:00	\$4.9		
13:00 - 14:00	54.7	-	
14:00 - 15:00	12.7 15.1		
15:00 - 16:00	54.3		
17:00 - 18:00	96.7		
18:00 - 19:00	55.9		
19:00 - 20:00	\$2.7	-	
20:00 - 21:00	\$1.5	S. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	
21:00 - 22:00	45.3	77	
22:00 - 23:00		37.7	
00.00 - 01.00		36.8	
01:00 - 02:00		36.1	
02:00 - 03:00		35.6	
03-00-04-00		367	
64.00 - 05.00		30.1	
05:00 - 06:00	56	45.3	
	Max	\$7.6	
Day Time	Leg	15.1	
	Day Limit	50 68(/	9
	Hin		
Night Time			
		40 d8(/	45
Night Time Note: CPCB Antioni Ar Quality Standards in respect of Noter in	Max Max Leg Night Limit	and the second s	9
HP-F		Designation: Tachy	
The test results are only to the sample submitted for test		Ocsięwitew: Tech	

15 days from the date of reporting except in case of regulatory samples or specifically instructed by cleant. A Periolable complex will be discarded immediate experting. Subdem in circumstances take accepts any facility or ion/damage caused by use or misute of text report after involving or issued of text report.

POLLUCARE	TEST REPORT	(Laboratory Servi # HIG - 6252, TNHE Phase Kamarajar Road, Ayapakko Chimina - 600.077. Ph : +91.44.2882.3290 / +1 Email: labi@polucareinda Web : www.polucareinida	1 & II, im, k1 73977 96831 .com
Accredited by NA	BL & NABET, Certified ISO 9001-20	015 & ISO 14001:2015	
aport No	1 PCEL/TB/N 4117	Report Oate	1 09.12.2019
LR No Issued to	ULR-TC1445190001138 H(4 Chennal Hefre Rall Limited CMRL Depot, Advan Building, Postanulie High Road, Kayambeda, Chennal - 600 107		
ampling Method ampled by ample Collected Data rams of the Sensitive Receptors ample Description ample Condition atogory of Area Atlance from the outer most proposed tracks (m) ampling Location	15 5989 – 1981 (UA 2008) Laboratory Shi 13 2016 SETF College Noise Honitoring Fit for Analysis Shinic Zone 31.17 Adyar Cate Juntion to Handanam	LHS/BHS Type of Sensitive Receptors Latitude Longitude Sample Reference No Sample Received On Test Commenced On Test Completed On	1 UH5 1 Cullege 1 30152 84 8045526 AVE PCESH 6031 12 12 27 11 2019 27 11 2019 27 11 2019 27 11 2019
	Day Time	Night Tir	
Time	Readings in c0(A)	Readings in	
05:00 - 07:00	\$5.4		(1995) (1997)
07:00 - 05:00	54.6 58.5		
09-00 - 10-00	59.5		
10/09 - 11/00	36.1		
11:00 - 12:00	55.7		
12:00 - 13:00	54.2	-	
13:00 - 14:00	\$3.5		
14:00 - 15:00	58.3	-	
15:00 - 16:00	52.4	-	
16:00 - 17:00 17:00 - 18:00	42.7 60.4		
18:00 - 19:00	56.9		
19:00 - 20:00	80		
20:00 - 21:00	51.6	PA Roll Low	
21:00 - 22:00	52.3	A STORE & Contraction	
22:00 - 23:00		38.6	
23.00 - 00.00		37.4	
01:00 - 02:00		1.66	
01:00 - 02:00		34.5	
03:00 - 04:00		33.6	
04.00 - 03.00		20.4	
05:00 - 06:00		31.2	
	Hin	\$1.6	
Day Time	Max	62.7	
	Leo	57.3	
	Day Limit	50 dB(A 30.4	,
	Hin Has	38.6	
Night Time	Leg	35.3	
	Night Limit	40 db(A)
eller. CPCS Anthent Air Quality Standards in respect of Raise in	the second se	and the second se	ee-

TEST REPORT NABET, Certified ISO 9001:20 CLUTE 44:4138 LISTCH46:900031:397	Web : www.pollurarenni 015 & ISO 14001-2015 Report Date	da com
LR-TC/446290003199F	Report Date	
		: 00.12.2019
I/s Chennai Metro Rail Limited MRL Depol, Admin Building, tonanatee High Road, Wehtledu, Chenna - 600 107		
5 9989 – 1981 (NA 2008) abontory 6.11.2019 Ienkateshwara Hospital Roles Monitoring I for Anaysis Jence Zone 6.23 Jandamam te Natesan Park	URS/RMS Type of Sensitive Receptors Latitude Longitude Sample Reference No Sample Reference No Test Commenced On Test Completed On	: 845 : Henolal : 1304-78,3% : 605438,40 : 90244,402-12-19 : 27,11,2019 : 27,11,2019 : 27,11,2019
Day Time	Night Ti	me .
Readings in dB(A)	Readings in	
47.5		
49.6		
55.2		
the second se		
54.9		
51.6		
52.3		
the second se		
45.6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
44.1	773155	
	41.3	
	the second se	
	25.9	
	36.7	
	24.3	
	25.8	
1.72 Wa		
Leg	51.4	
Day Limit	50 60(4	4
Hin	H.1	12
Max	41.3	
		0
	E 9989 - 1981 (NA 2008) Montory E.11.2019 enkateshwara Hospital Moles Monitoring (fir Anatysis lener Zive E.23 anderen to Natesan Park Bradings in dB(A) 47.3 48.2 47.5 53.4 53.4 53.4 53.4 53.4 53.4 53.4 53	19989 - 1981 (NA 2008) Monitory LMS/Kinds Alt 2015 Latitude enkateshwara Hospital toles Monitoring Longitude Sample Reterence No Sample Reterence No Inr Analysis Sample Reterence No andienam te Natesan Park Test Commenced On 2.23 Test Commenced On andienam te Natesan Park Night Ti Readings in dB(A) Readings in 47.5 47.5 Stat 55.2 Stat 55.2 Stat 55.4 Stat 55.5 Stat 55.6 Stat 55.6 Stat 47.5 Stat 55.6 Stat 55.7 Stat 55.8 Stat 55.9 Stat 55.6 Stat 47.5 Stat 55.6 Stat 47.5 Stat 55.6 Stat 47.6 Stat 55.7 Stat 55.8 Stat 47.9 Stat 55.9 Stat 55.1 Stat 47.3 Stat 55.6 Stat 47.6 Stat 47.7 <td< th=""></td<>

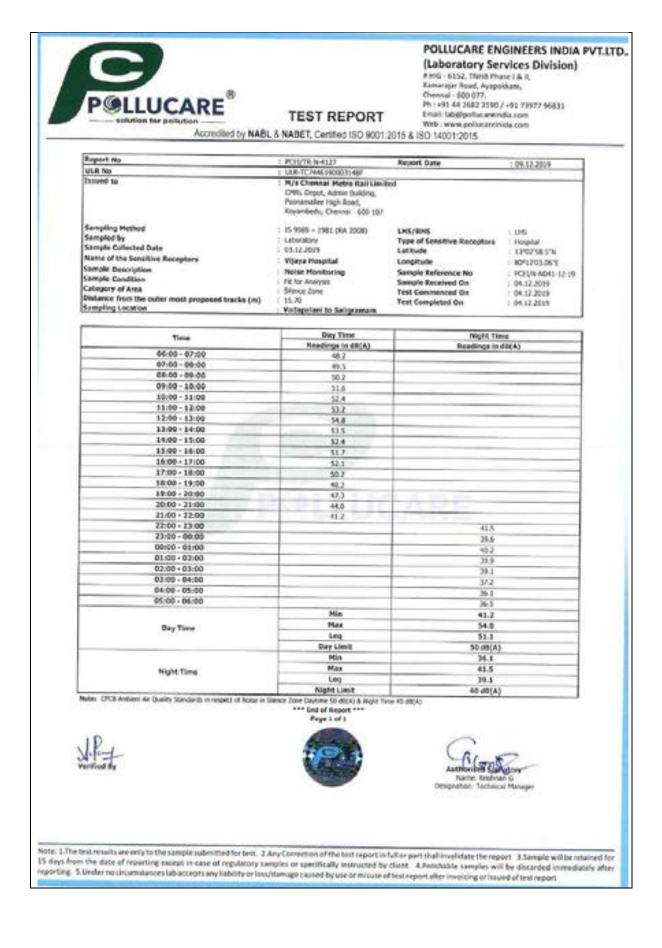
RL & NABET, Certified ISO 9001:20		73977 95831 am am
	15 & ISO 14001-2015	
1 PCED/TR-N-4119	Report Date	09.12.2019
ULR-TC7446190003140P		
 H/a Chennal Hetro Rall Umited OHII, Depit, Adnin Bulding, Postamaler High Roat, Koyanbrdu, Chenna - 600 197 	(Martheorem)	
15 9999 - 1981 (5A 2008)	LHS/RHS	: RHS
: Laboratory	Type of Sensitive Receptors	: College
27.16.2019		: 130156.64
		: 801421.3E : PCELN-N033-12-15
		: 28.11.3019
1. Silence Zone	Test Commenced On	: 29.11.2019
1.1848	Test Completed On	28.11.2019
	20-14 To	
	and the second sec	
	Ender ge til	and the
60.4		
61.8		
£/R		
55.7		
563		
50.9		
	35.4	
	20.1	
	34.8	
	32.6	
	31.3	
	32.9	
	31.7	
10 10 10 10 10 10 10 10 10 10 10 10 10 1		
Min		
Max		
		9
Leg	33.4	
100	40 db(4
Night Linit		
	 M/s Chemis Hetre Rat United O'Bi, Deput, Aprix Building, Poortanative High Staal, Koyambeda, Chemiter 600 187 IS 9909 - 1981 (NA 2008) Laborstore 27.15.2509 Government Arts College Noise Monitoring If it for Anti-sis Sterie Zone St. 57 St. 53 Bit 3 St. 57 St. 3 St. 7 St. 3 St. 7 St. 3 St. 7 St. 7 St. 8 St. 7 St. 7 St. 8 St. 7 St. 8 St. 7 	 My's Chernel Hetre Rall Limited O'Ni, Depd, Adma Suidaq, Pooranite High Rad, Koyambrida, Chentar - 600 187 IS 9999 - 1981 (NA 2008) Laboratory 27.1 2009 IS 9999 - 1981 (NA 2008) Laboratory 27.1 2009 Doesenteet Arts College Noise Monitoring Stence 2000 Stence 2000 Stence 2000 Stence 2000 Stence 2000 Test Commenced On Test Completed On Test Comp

Note: 1.The test results are only to the sample submitted for test. 2.Any Correction of the test report in full or part shall invalidate the report 1.Sample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by client. 4.Perichable samples will be decarded immediately after reporting. 5 Under no sincuestances tab accepts any labrity or loss/damage caused by use or mission of test report after invalidate invalidate the report.

P@LLUCARE®	TEST REPORT	POLLUCARE ENGIN (Laboratory Servic #HIG - 6152, Third Phase 1 Camatojar Road, Ayapakkan Chernai - 600 077 Phi - +35 44 2682 3130 / +83 Email: Jake@pathcareIndia.	es Division) & II, n. 173977 96831
	BL & NABET, Certilled ISO 9001:201	Web : www.pollucareinida.	
Report No	: PCED/TR-N-4120	Report Date	1 09.12.2019
ULR No Second to	: LLR-TC14461900031417 : M/s Chennei Mctro Rail Limited CHEL Cept. Advise Staldag. Poonamalize High Road. Koyambedu, Chennai - 600 137		
Sampling Method Sampled by Sample Collected Date	 E5 9989 ~ 1981 (KA 2008) Laboratory 27.11.2019 	LHS/RHS Type of Sensitive Receptors Latitude	: RHS School 1 1353198.6N
Name of the Sensitive Receptors	Little Oxford Matriculation Higher Secondary School	Longitude	: 801412.8E
Sample Description	Noise Monitoring	Sample Reference No	: PCHUN N034 12-25
Sample Condition Category of Area	: Fit for Analysis : Silence Zone	Sample Received On Text Commenced On	28.11.2019
Category of Area Pistance from the outer most proposed tracks (m)	: 73.81	Test Completed On	28.11.2019
Langling Location	Nandanam to Natesan Park		
Time	Day Time	Night Tim	
06:02 - 07:03	Readings in db(A) 45.5	Readings in c	58(A)
67:03 - 08:09	47.2		
66:00 - 09:00	49.8		
09:00 - 10:00	51.2		
10:00 - 11:00	\$3.4 \$0.8		
12:00 - 13:00	41.9		
13:00 - 14:00	517		
14.00 - 15.00	54.8		
15:00 - 16:00	31.8		
16:00 - 17:00 17:00 - 18:00	49.4		
18:00 - 19:00	45.2		
19:00 - 20:09	45.8	2 1 2 8 Km	
20:00 - 21:00	47.2	15 E3 E.	
21:00 - 22:00 22:00 - 23:00	46.2	37.1	
23:00 - 00:00		34.6	
00:00 - 01:00		26.5	
61:00 - 92:09		35.9	
62:00 - 03:09		34.3	
63:00 - 04:00 64:00 - 05:00		32.8	
65-00 - 66-00		36.5	
	Min	45.2	
Duy Time	Max	54.8	
	Leg Day Limit	\$0.4 \$0 dB(A)	
	Min	30 00(A	
Night Time	Max	37.1	
	Leg Night Limit	34.7 40 db(A	
notes. O'CS Ambuers Ar Quelty Standards in respect of house in High Parts Southed By	Since Zone Devices 20 (8(A) & high Tene 40 *** End of Report *** Page 1 of 3	Authorities P Authorities P Name: Koshn Designation: Technol	
he bott results are only to the sample submitted for test rom the date of reporting except in case of regulator 5. Under no circumstances lab accepts any liability or	y camples or specifically instructed by e	lient. 4.Perishable samples will b	e discarded immedia

POLLUCARE®	TEST REPORT	POLLUCARE ENGIN (Laboratory Servic) # H16 - 6152, ThHIB Plase I & Eamatigar Road, Apopulkan Diennia - 60077 Ph. + 43: 442-682-3130 / + 411 Email: labd@pollucareinida.co Web : www.pollucareinida.co	es Division) 19, 73977 96831 19
Accredited by N	ABL & NABET, Cetified ISO 9001:2015	& ISO 14001:2015	
Report No	: P0E(/18-N-4121	Report Date	108.17.2019
USA Na Issued to	ULN TC/46190003142P I M/I & Chennal Hector Rail Limited CNRL Depot, Admin Building, Fronsenable High Riad, Koyambeda, Chennal - 600 107		
Sampling Hethod Sample Collected Date Name of the Sensitive Receptors Sample Description Sample Condition Category of Area Palance from the outer most proposed tracks (m)	: 55 9989 - 1981 (RA 2008) 1 Liboratory 2 28:11 2019 1 Thiyagarayar Higher Secondary School 1 Moise Monitoring 2 Pic for Anaryas 5 Silence Zime 2 24:55	LHS/RHS Type of Sensitive Receptors Latitude Longitude Sample Reference No Sample Received On Test Commenced On Test Commenced On	: 1945 : School : 130210-4N : 801413-90 : PCI2(N-8035-12-13 : 29-11-2019 : 29-11-2019 : 29-11-2019
Sampling Location	; Nondoners to Nateson Park		
Time	Day Time	Night Tim	
	Readings in db(A)	Readings in a	IB(A)
05-00 - 07:00	46.1		
08:00 - 09:00	48.5		
09:00 - 10:00	15.6		
10:00 - 11:00	54.2		
11:00 - 12:00	18.1		
12-00 - 13-00	\$0.3		
12:00 - 14:00 14:00 - 15:00	41.9	-	
15:00 - 15:00	\$2.4		
16:99 - 17:99	47.9		
17.00 - 18.00	49.1		
10.09 - 19.00	48.1		
19:00 - 20:00	42,3		
20:00 + 21:00	42.5	A. 1979. COM	
21:00 - 22:00	46.7	100 DOL 100	
22:00 - 23:00		N5 N7	
00.00 - 01.00		32.1	
01:06 - 02:00		315	
02-00 - 03-00		31.0	
03:00 - 04:00		30.4	
04.00 - 05.00		30,9	
05:00 - 06:00		8.3	
	Min	45.2	
Day Yime	Max	13.0	
	Leg	50 dB(A)	
	Day Limit Min	39.4	-
Binks Wines	Max	13.5	
Night Time	Leq	31.9	
	Night Livet	40 db(A)	
Neten CPCI Antient Ar Quality Standarts in respect of House in March 197	Serve 2 Dec Daylor to 00001 & rogs Time 40 0004 FFF End of Sepont FFF Page 1 of 1	Autorite States Barles Technologies	an G Si Haroper
Str.		Authoriteti Bi Rame Knaho Designation Technic	an G X Haroger

PORT 1 ISO 9001-20 2 cell Linkbud Nerg, 500 100 001 000 100 001 000 100 001 000 001 000 001 000 000	Sample Reference Sample Received Test Completed O	5 Receptors r No On	: 09.12.3019 : 09.12.3019 : Tamps : 130305.3N : 90142.1C : POD(N 9056-12-15 : 29.11.2019 : 29.11.2019 : 29.11.2019
tail Linkled Rong S00 107 HD Eventhenem In Park In dil(A) I I I I I I I I I I I I I I I I I I I	LHS/RHS Type of Senaltive Latitude Latitude Sample Reference Sample Received Test Completed O	Receptors e No On on Night Time	: RHS : Tampa : 10005.0N : 800412.1C : POD(N M056-12-15 : 29.11.2019 : 29.11.2019 : 29.11.2019
tail Linkled Rong S00 107 HD Eventhenem In Park In dil(A) I I I I I I I I I I I I I I I I I I I	Type of Sensitive Latitude Longitude Sample Reference Sample Received Test Completed 0	Receptors e No On on Night Time	: RHS : Tampa : 10005.0N : 800412.1C : POD(N M056-12-15 : 29.11.2019 : 29.11.2019 : 29.11.2019
Aling, 500 107 108) 1 Deventhenem In Park In Bark In Bark	Type of Sensitive Latitude Longitude Sample Reference Sample Received Test Completed 0	Receptors e No On on Night Time	: Tampie 130205.2% 1001012.1C POEU% MODe 12-15 2%.11.2019 2%.11.2019
Devesthenem	Type of Sensitive Latitude Longitude Sample Reference Sample Received Test Completed 0	Receptors e No On on Night Time	: Tampie 130205.2% 1001012.1C POEU% MODe 12-15 2%.11.2019 2%.11.2019
n Park	Latitude Longitude Sample Reference Sample Received Test Completed 0	e No On On Night Time	1 130205.34 1 901412.10 1 PCEUN NO36 12-19 2 91.11.2019 2 91.11.2019 2 91.11.2019
n Park	Longitude Sample Reference Sample Received Test Completed O	t No On On Night Time	6 601412.10 7 PCEUN NO36 12 15 2 91.11.2019 2 91.11.2019 2 91.11.2019
n Park	Sample Reference Sample Received Test Completed O	e No On On Night Time	- PCEUN NESS 12-15 - 29.11.2019 - 29.11.2019 - 29.11.2019 - 29.11.2019
me n db(A) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sample Received Test Commenced Test Completed 0	Die On In Night Time	29.11.2019 29.11.2019 29.11.2019
me n db(A) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Test Completed D	Night Time	28.11.2819
me n db(A) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Night Time	
me n db(A) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		failer to be an effect on the second second second	and states
		failer to be an effect on the second second second	and states
		Readings is d	8(A)
	-		
	_		
1			
1			
		_	
	-		
	-	53.8	
		52.1	
		51.3	
	-		
	-	42.5	
		31.3	
	-	42.8	
	-		
	-	A.A. 100.111	
		31.3	
i .	-	\$3.6	
		49.6	
	(MA)	40 00(4)	
	wit wit & hight Time 40 pt ***	mit & hught Time HD 00(A) wt ***	49.7 47.3 47.3 47.5 42.5 31.3 42.8 59.4 59.4 59.4 59.4 59.4 59.4 59.4 59.4


POLLUCARE	TEST REPORT	POLLUCARE ENGIN (Laboratory Servic # HIS - 6152, TKHE Phase I Kamarajar Road, Apapakkan Chernal - 600 D77 Ph : +91.44.2682.3190 / +91 Email: lab@polucareinda.c	es Division) k II, V 73977 96831 om
Accredited by NA	BL & NABET, Certified ISO 9001-20	Web : www.pollucarcinida.c 15 & ISO 14001:2015	am
Apport No	: P00/78 N-4123	Report Date	1 09.12.2029
ULR No Issold to	ULL TCP446190001144F H/s Chennal Metro Rall Limited CHIL Dopol Pouramatice High Road, Royambeda, Chennal - 600 107		
Sampling Hellaul Sampled by Sample Collected Date Name of the Sensitive Receptors Sample Condition Sample Condition Category of Area Distance from the outer most proposed tracks (m) Sampling Location	15 5999 - 1981 (NA 2008) Laboratory 20,11,2009 Rose of AC Church Noise Monitoring FA for Analysis Selence Zone 180,34 Kodambabkam Metro to Meenaks8	LHS/RHS Type of Sensitive Receptors Latitude Longitude Sample Reference No Sample Reference No Sample Received On Test Completed On Test Completed On	: 045 : Olach : 138300.54 : 805347.56 : PCL(M:+602+12-11 : 30:11.2609 : 30:11.2609 : 30:11.2609
	Day Time	Night Tim	
Time	Readings in d6(A)	Readings in d	
05:00 - 05:00	41.6	1997 - 1997 - 1998 - 1997 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 -	
08:00 + 09:00	#1.2		
09:00 + 10:00	51.6		
10:00 - 11:00 11:00 - 12:00	50.8	-	
12:00 - 13:00	51.2		
13:00 - 14:00	\$0.3		
14.00 - 15.00	49.8		
16:00 - 17:00	0.2		
17:00 - 18:00	46.2		
18:00 - 19:00	46.1		
19:00 - 20:00 20:00 - 21:00	45.8 45.0	The loss new	
21:00 - 22:00	44.8		
22.00 - 23.00		35.8	
23.00 - 00:00 00:00 - 01:00		37.4 36.6	
01:00 - 02:00	-	101	
62:00 - 03:00		35.1	
03:00 - 04:00		343	
04:00 - 05:00 05:00 - 06:00		37.2	
	His	4.8	
Day Time	Max	52.1	
110000 (1000)	Loq Day Limit	49.9 50 d8(A)	
	Min	14.3	
Night Time	Max	39.6	
	Log Nobt Limit	37.2 42 dB(A)	
Notes: CPCD Andrenit Air Quality Standards in respect of Name in Ann Faith	Night Limit Simur Zore Darme SO (2004) & Kole Time 4 *** End of Report *** Page 1 of 2	Later	May G
		fame: Krahk Designation: Technol	m G al Marsagar

CES/TR-m-E24 R.R. TC:746:1900031459 MS: Chepol, Admin Building, tonamalite High Raad, Systemberle, Chemai - 600 137 S 9987 - 1961 (NA 2000) aboratory 9.11.200 Meenakuhi College for Wassen Reise Monitoring	Report Date LHS/RHS Type of Senaltive Receptors Latitude Longitude Samble Reference No	: U-G : C-G : College : 202018.7N : 202018.7N
N/S Chemital Melos Rall Limited MR, Depol, Admin Building, tonaziator High Road, Syambela, Chemia - 600 137 5 9903 - 1961 (NA 2008) aboretary 9.11.2009 Neonakshi Colloge for Women toise Monitoring	Type of Sensitive Receptors Latitude Longitude	: U/5 1 College 1 130318,7%
atoratory 9.11.2009 Heenakshi Colloge for Women Ioise Monitoring	Type of Sensitive Receptors Latitude Longitude	1 College 1 130318.7N
R for Analysis Hence Zone 20.9 foonakahi College to Power House	Sample Received On Test Commenced On Test Completed On	: 00110740 : 0011074030-17-1 : 30.11.2019 : 30.31.2019 : 30.11.2019
Day Time	Night Tim	
Readings in dB(A)	Readings in d	6(A)
54.7		
55.1		
54.7	-	
51,3		
53.1		
\$2.9		
the second se		
#9.7		
46.3		
the second se		
10.0	40.9	
	8.3	
	35.6	
	30.4	
	30.9	
Min	46.6	
- Sitte	25.0	
Day Limit		-
Min	30.4	
Max	40.9	_
	Constabil College to Power House Readings in dB(A) 55.9 54.7 55.1 54.7 51.5 50.9 51.3 51.7 52.9 52.9 52.6 52.6 52.5 52.5 52.6 52.5 52.6 52.5 52.6 52.5 54.5 52.6 52.6 52.5 54.5 54.7 54.7 54.5 54.7 54.5 54.7 54.5 54.7 54.5 54.7 54.5 54.7 54.5 54.7 54.5 54.7 54.5 54.7 54.5 54.7 54.5 54.7 54.5 54.7 54.5 5	Day Time Night Time Readings in dB(A) Readings in d 55.9

A NABET, Cented ISO 9001-201 POEL/18-44335 UK-TCP4451900201467	Web - www.pollocareinida 15 & ISO 14001-2015	Core -
and the second se		
LLR-TC7445190302146F	Report Date	09.12.2010
H/s Chonnal Hetro Kall Limited CMBL Depot, Admin Building, Poonamales High Road, Royambody, Chonnal - 600 107		
25 9989 - 1981 (UA 2008) Lateratory 42,12,2019 Chennal Higher Secondary School Noise Monitoring Fit for Analysis Service 2016 19.0 Power House to Vadapalani	LHS/RHS Type of Sessitive Receptors Latitude Longitude Sample Reference No Sample Received On Test Commenced On Test Completed On	1 U46. 1 School 1 1390705.87N 8 8091391.47E 2 90139.47E 2 90132.3019 1 90.12.3019 2 90.12.3019 2 90.12.3019
Day Time	Night Ta	
Readings in d8(A)	Readings in	
59.8		
59.1		
58.2		
56.9		
55.4		
	and the second second	
48.5	23. 2. 2. 3.4	
47.9	1.	
	31.2	
	31.9	
	31.1	
100		
	59.8	
Leg	56.2	
Day Limit	A)86 02)
Min Max	31.1	
	40.3	
100	34.3	
	15 9995 - 1981 (IA 2008) Laboratory 02,12,2009 Chennal Higher Secondary School Noise Monitoring Fit for Analysis Storce Zone 13.8 Power House to Vadagatani Day Time Readings in d5(A) 47.5 53.1 53.2 53.1 53.2 53.2 53.2 53.2 53.4 53.4 53.4 53.4 53.4 53.4 53.4 53.4	15 9999 - 1981 (BA 2008) LHS/RHS Laboratory Type of Sessitive Receptors 02,12,2009 Laborators Notee Monitoring Sample Reference No Notee Monitoring Sample Received On Stor Analysis Sample Received On Some Received On Test Completed On Nover House to Vadagatani Test Completed On Day Time Night Tim Readings in dB(A) Readings in 11,4 Single 15,5 Single 16,7 Single 17,8 Readings in 16,7 Single 17,8 Readings in 16,7 Single 17,8 Single 17,9 Single 17,9 Single 17,1 Single 17,2 Single 17,3 Single 17,4 Single 17,5 Single 17,7 Single 17,7

POLLUCARE	TEST REPORT	Ph : +91 66 2682 3190 / +91 Email: labdPpollucareindia.c Web : www.pollucareinida.c	pm.
	ABL & NABET, Certified ISO 9001/2015		
Report No	1 PO5/TE-9-4126	Report Date	1 09.12.2019
5.8 No	: ULI-TC24461900031479 : M/s Chennal Metro Itali Limited		
	CHIL Depit, Admin Building, Ponemater High Road, Koyambedu, Ovennei - 600 107		
ismpling Hethod	: 85 9909 - 1981 (RA 2008)	LHS/RHS	: US
ampled by anulie Collected Date	: Laboratory	Type of Sensitive Receptors	: School
ample Collected Date kame of the Sensitive Receptors	: 03.12.2019 : Saraswathi Vidyalaya Sr. Sec. School	Latitude Longitude	19403402.6°N 80*12552.6°E
ample Description	Noise Monitoring	Sample Reference No	PCELN-N040-12-19
Lample Condition	Fit for Analysis	Sample Received On	03.12.2010
Category of Area Histance from the outer most proposed tracks (m)	Stence Zone 12.79	Test Commenced On Test Completed On	03.12.2019
Langing Location	Power House to Vadapalani	rest completes on	: 03.12.0159
Time	Day Time Readings in dB(A)	Night Tio Readings in	
06:00 - 07:00	46.8		
07:00 - 08:00	47.3		
09:00 - 09:00 - 09:00	\$3.5		
10:00 - 11:00	59.7 58.9		
11:00 - 12:00	\$2.3		
12:00 - 13:00	51.2		
13:00 - 14:00 14:00 - 15:00	55.6 53.4		
15:00 - 16:00	\$7.1		
16:00 - 17:00	58.7		
17:00 - 16:00	52.9		
18:00 - 19:00 19:00 - 20:00	51.7		
20:00 - 21:00	96.5	1 1 1 1 1 1 m	
21:00 - 22:00	45.2	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
22-00 - 23-00		32.5	
23:00 - 00:00	-	31.9	
61:00 - 62:00		327	
02:00 - 03:00		30.4	
03:00 - 04:00		333	
04:00 - 05:00 05:00 - 06:00		30.3 30.0	
and the state of an end	Ma	45.2	-
Ann Time	Max	59.7	-
out the	Leg	54.7	
	Day Limit Min	50 dB(A 30.0	5
	Max	37.5	
Night Time	Leg	33.3	
tote: CPOII Antises Air Quality Standards in respect of Nose in	Night Limit	40 68(A)
AP-1	Fige L = 1	Austrian State Name: Kitcher Designation: Technic	er G cal Hanuper
The test results are only to the sample submitted for te from the date of reporting except in case of regulato g. 5. Under nu circumstances fab accepts any liability o	ry samples or specifically instructed by ch	ent. A.Perishable samples will be	e discarded immediat

POLLUCARE	TEST REPORT	POLLUCARE ENGI (Laboratory Servic # H03 - 6153, TMHB Phase I Emergar Road, Ayapakka Chennal - 600 077. Ph : +01.445 2682 31390 / +0 Email: 165 @polkaranindia. Web : www.polkcareinida.	ces Division) 6 II, 70, 1 73977 96831 com
Accredited by NA	BL & NABET, Certified ISO 9001:20	15 & ISO 14001-2015	A 10
leport Na	FCEL/18-6-4126	Report Gate	1 09.12.2019
ILR No second to	 ULB-TC7446190003149F MYA Chennal Metro Itali Limited Odil, Depot, Admin building, Paronamiler High Read, Kisyambeda, Chennei - 600 107 		
ampling Method ampled by	: 15 9989 - 1981 (RA 2008) : Laberatory	LHS/RHS Type of Sensitive Receptors	: LHS : School
ample Collected Date	: 03.12.2099	Latitude	13*02*55.5*N
large of the Sensitive Receptors	Karthikeyan Matriculation School	Longitude	10/12/18/71
ample Description	: Noise Hamilaring	Sample Reference No	PCEUN-NOIQ-12-19
attple Condition	Fit for Analysis	Sample Received On	: 04.12.2019
alogory of Area	: Siever Zone	Test Commenced On	1 04.12.2019
listance from the outer most proposed tracks (m) ampling Location	2 35.56 Vadapatani to Saligramani	Test Completed On	04,12,2019
	Day Time	Night Tir	
Time	Readings in dB(A)	Readings in	
06:00 - 07:00	44.5		entra.
07:00 - 08:00	45.3		
08:00 - 09:00	47.1		
09:00 - 10:00	52.6		
10:00 - 11:00	45.3		
11:00 - 12:00	45.5		
13:00 - 14:00	517	-	
14:00 - 15:00	44.2		
15:00 - 16:00	45.8		
16:00 - 17:00	58.3		
17:00 - 18:00	42.7		
18:00 - 19:00	45.8		
19:00 - 20:00	49.1	the second second second	
20:00 - 21:00	29.3		
21:00 - 22:00	56.6		
23:00 - 00:00		36.3	
00.00 - 61.00		34.7	
01:00 - 02:00		115	
02:00 - 03:00		21.9	
03:00 - 04:00		33.1	
04:00-05:00		34.5	
65.00 - 66.00		35.7	
	Hin	36.8	
Day Time	Hax	58.3	
1111111111	Leq	49.8	
	Day Limit Min	50 db(A 31.9	0
100.0242673	Has	343	
Night Time	Log	34.7	
	Night Linsk	40 dB(A	1
offer O'CB Andreis An Quelty Standards in respect of house in	Stence June Durine 10 ORA/ 5 August Time 10	Gind	e aller y ar G al Manager

4129 4129 451900031507 mai Medou Rall Limitod of, Advin Building, er High Ruat, o, Chennal - 600 307 1981 (KA 2008) 9 in E-Tecno School nitoring histone Day Time Readings in (BI(A) 40.3 41.5 42.8 55.4	Ng	- 09, 12,2019 - UHS tons - School - 12702746,473 - 0712746,473 - 0712746,474
401900033507 mail Helton Rail Limited of, Advein Bailding, ee High Ruail, o, Chennal - 600 307 1983 (KA 2008) 9 nit E-Tecne School eitering folk re- revenger to Volkenrevolde Day Time Readings in dB(A) 40.3 41.5 42.8 55.4	LHS/RHS Type of Sansitiva Rocopt Latitude Longitude Sample Received On Test Completed On Test Completed On Test Completed On	- UHS 50% : 50%00 : 12%0746.4% : 80%11%6.6% : 90%11%6.6% : 90%12%400012~19 : 05.12.2019 : 05.12.2019 : 05.12.2019 : 05.12.2019
nual Metoro Rail Limited c), Advin Building, er High Ruad, c), Chennal - 600 307 1981 (KA 2008) 9 9 9 9 9 9 9 9 9 9 9 9 9	Type of Sansitive Recept Latitude Longitude Sample Received On Test Cammenced On Test Completed On am	ors : 5000 : 1270746.416 : 8011146.416 : 8011146.416 : 9011146.417 : 9011146.917 : 901124.400-12-19 : 95.12.2019 : 95.12.2019 : 95.12.2019 ht Time
ot, Advin Building, for High Russi, b, Chennal - 600 107 1981 (KA 2008) 9 In E-Tecse School nitoring Note Note Note Day Time Readings in (BI(A) 40.3 41.5 42.8 55.4	Type of Sansitive Recept Latitude Longitude Sample Received On Test Cammenced On Test Completed On am	ors : 5000 : 1270746.416 : 8011146.416 : 8011146.416 : 9011146.417 : 9011146.917 : 901124.400-12-19 : 95.12.2019 : 95.12.2019 : 95.12.2019 ht Time
5 in E-Tecno School nitoring finito re- inumager to Valenarwatike Day Time Readings in (B(A) 40.3 40.5 42.6 55.4	Type of Sansitive Recept Latitude Longitude Sample Received On Test Cammenced On Test Completed On am	ors : 5000 : 1270746.416 : 8011146.416 : 8011146.416 : 9011146.417 : 9011146.917 : 901124.400-12-19 : 95.12.2019 : 95.12.2019 : 95.12.2019 ht Time
9 In E-Tecno School relating forts for runnger to Valenarwolds Day Time Readings in (B(A) 40.3 41.5 42.6 55.4	Latitude Longilude Sample Reference No Sample Received On Test Completed On Test Completed On am	: 13*02*46.4*% : 80*11*6.4*C : 405(3*460*0-12-19 : 05.12.2019 : 05.12.2019 : 05.12.2019 : 05.12.2019
In E-Tecno School nitoring intering investige to Volasarwolde Day Time Readings in (B(A) 40.3 41.5 42.8 55.4	Longitude Sample Reference No Sample Received On Test Completed On am	: 80*11*16.6*E : POEutr-H040-12-19 : 85.12.2019 : 85.12.2019 : 85.12.2019 : 85.12.2019
nitoring Instr Investor Day Time Readings in (B(A) 40.3 40.3 40.5 40.5 55.4	Sample Reference No Sample Received On Test Completed On Test Completed On am	: PCE/H+H043-12-19 : 85.12.2019 : 05.12.2019 : 05.12.2019 : 05.12.2019
fost ne Day Time Readings in (B(A) 40.3 41.5 42.6 55.4	Sample Received On Test Completed On Test Completed On am	: 05.12.2019 : 05.12.2019 : 05.12.2019
fost ne Day Time Readings in (B(A) 40.3 41.5 42.6 55.4	Sample Received On Test Completed On Test Completed On am	: 05.12.2019 : 05.12.2019
ne Investiger to Volseanwolde Day Time Readings in (B(A) 40.3 41.5 42.6 55.4	Test Completed On Test Completed On am	: 05.12.2017
Day Time Day Time Readings in (B(A) 40.3 41.5 42.8 55.4	ara Ng	ht Time
Day Time Readings in (B(A) 40.3 40.5 42.6 55.4	Ng	
Readings in (II(A) 40.3 41.5 42.8 55.4		
Readings in (II(A) 40.3 41.5 42.8 55.4		
40.3 41.5 42.8 55.4		
42.8 55.4		
55.4		
45.3		
45.9		
46.5		
46.0		
45.1		
47.5		
46.2		
45.2		
44.3		
43.5	Chen and a second second	
42.8	the second second	
<1.9	And a second	
		39.1
		38.4
		39.1
		36.5
		23.9
		33.7
		34.5
11.1.1		35.6
		40.3
		55.4
		47.3
		db(A)
		33.7
and the second sec		36.5
		d0(A)
trybine 50-c9(c4) & Night Time		(ender)
	46.2 45.2 41.3 42.8 42.8 42.9 41.9 41.9 Min Max Long Day Limit Max Max Long Night Limit	46.2 45.2 44.3 43.5 42.8 41.9 41.9 Min Max Log Day Limit So Min Max Log Night Limit 40 40 40 40 40 40 40 40 40 40

The set of the set of

(Laboratory Services Division)

E HG - 6152, Th99 Phase I & B, Extension Rood, Augustian, Chennal - 600 077. Ph.: +01 44 2682 3190 / +91 73977 96831

Email: lab@pollucareindia.com Wes : www.pollucareindia.com

TEST REPORT

Accredited by NABL & NABET, Cented ISO 9001:2015 & ISO 14001:2015

Report No	REE/98-N-4135	Report Date	09.12.2019
ULK No	ULR-TC7445150003151#		1121/1210
facond to	 H/s Chennal Metro Rall Limited CNRL Depot, Adnin Bullong, Psonenaber High Rood, Rayambedu, Chonial - 600 107 		
Sampling Method Sampled by Sample Collected Date Sample Collected Date Same of the Sensitive Receptors	2 15 9989 - 1581 (RA 2008) 3 Laboreory 3 04.12.2019 3 The Huly Cross Matric Hr. Sec. School	LHS/RHS Type of Sensitive Receptors Latitude Longitude	: 6H5 1 Sekeel 1 LP0223.4% 1 80/1029.97
Sample Description	1 Noise Monitoring	Sample Reference No	+ PCES/W N044-13-19 + 05-13-3019
Semple Condition	 Fit für Analysis 	Sample Received On Test Commenced On	05.12.2019
Category of Area	Slater Zone #7.50	Test Completed On	: 05.12.2019
Distance from the outer most proposed tracks (m) Sampling Location	Votesarovakicam to Karambokkam	The completion of	1.000
stud of the source			
	Day Time	Night Ta	ne
Time	Readings in dB(A)	Readings in	d8(A)
05:00 - 07:00	\$2.7		
07:00 - 08:00	15.1		
00.00 - 00.00	56.0		
09:00 - 10:00	82.9		
10:00 - 11:00	52.4		
11/00 - 12/00	56.8		
12:00 - 13:00	\$1.9		
13.00 - 14.00	49.5		
14:00 - 15:00	\$2.7		
15:00 - 16:00	50.3		
16-00 - 17:00	52,6		
17:00 - 18:00	51.3	-	
18:00 - 19:00	48.5		
19:00 - 20:00	48.2		
25.65 - 21.65	64.7		
21:00 - 22:00	29.1		
22:00 - 23:00		41,4	
23.00 - 00.00		20.2	
00:00 - 01:00		30.4	
01:00 - 02:00		36.4	
62:00 - 03:00		B.J.	
03:00 - 64:00		152	
04:00 - 05:00		3.7	
05:00 - 56:00	Min	39.1	
and a factory	Hax	56.0	
Day Time	the second se	32.6	2.5
al Strand	Leg Day Limit	50 dB/	43
	Min	35.2	
	Max	41.4	
Night Tanio	Leg	38.1	
	Night Limit	40 db)	A)

XIL

Judener 2 Name: Kri D

Note: LTim test results are only to the sample submitted for test. 2.Ary Correction of the test report in full or part shall invalidate the report 3.Sample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by clerit. 4.Perishable samples will be docarded immediately after reporting. 5.Under no occumptances lab accepts any liability or loss/stampe caused by use or misuse of test report inter invoicing or issued of test report.

POLLUCARE

POLLUCARE	TEST REPORT	POLLUCARE ENG (Laboratory Sen #HIG-6152, TMHB Phan Kamarajar Road, Ayapak Cheminal - 600 077. Ph: 140 64 2682 3190 / Engli labd/pollucareing Wh5: www.pollucareing	vices Division) #18.8, kam, +91.73977.96831 Ia.com
Accredited by NABI	L & NABET, Centiled ISO 9001:2	015 & ISO 14001.2015	
Report No	1 PCEI/TR-N-4131	Report Outo	109.12.2019
ILE No Issued to	tube TC7446190003153F M/s Chernal Matter Rail Limiter CPRI. Depot, Admin Building, Prominelion High Ecial, Koyambedu, Chernas - 600 367	10.	
Sampling Method Sampled by Sample Collected Date Name of the Sensitive Receptors Sample Description Sample Condition Catopory of Area Distance From the ovter most proposed tracks (m) Sampling Location	1 IS 9999 - 1991 (RA 2008) 1 Laboratory 1 05-12-2019 1 Panuathy Hospital 1 Noise Monitoring 1 FA for Analysis 1 Stanze Zone 1 57-56 1 Alagakkawa Junction - Porue Jun	LHS/RHS Type of Sensitive Receptors Latitude Longitude Sample Reference No Sample Reference No Test Commerced On Test Completed On retion	1 1245 1 1247 - Mangalau 2 12727 - 66264 N 2 107973 - 61264 N 2 107973 - 61264 2 106-12 2019 2 106-12 2019 2 106-12 2019
1100	Day Time	Night Tir	ne
Time	Readings in (0(A)	Readings in	
06:00 - 07:00	41.6		
07/00 - 08:00	42.5		
09:00 - 10:00	48.6		
10:00 - 11:00	48.1		
11:00 - 12:00	47.1		
12:00 - 13:00	49.6		
13:00 - 14:00	47.5		
14:00 - 15:00	52.9		
15:00 - 16:00 16:00 - 17:00	50.3 51.7		
17:00 - 18:00			
18:00 - 19:00	47.8		
19:00 - 20:00	45.3	the second second	
29:00 - 21:00	-45.7	2.5. 5-5 3-	
21:00 - 22:00	-0.1	and the second second	
22:00 - 23:00		41.5	
00:00 - 01:00		36.5	
01:00 - 02:00		34.5	
02:00 - 03:00		32.7	
03:00 - 04:00		33.4	
04:00 + 05:00		34.6	
05:00 - 06:00	100	33.5	
1200200-0	Min	\$2.9	
Day Time	Leg	48.3	
	Day Limit	AJBIL DE	9
	Hin	33.1	
Night Time	Max	41.0	
C MUMBR	Leg Night Limit	40 (8(A	1
Notes: CPCB Antipert Ar Quilly Standards in respect of Notes in		and the second s	in Street

Accredited by NAB	TEST REPORT	# HIG - 6352, TMHB Phy Kamarajar Road, Ayapo Chernai - 60ad, Ayapo Phi - 492 44 2662 3330 Email: tab@politicareiry	kkam, / +91 73977 96831 dia.com
	L & NABET, Certified ISO 900	Web: www.pollucarein 1:2015 & ISO 14001:2015	64.70m
eport No	1 PC(1/18-9-41)0	Report Date	09.12.2019
AA no mued to	 ULB TC7445190003153# H/s Chennal Metro Rall Limi OML Depit, Admin Building, Poziarialee High Road, Kayanbelu, Chennal - 600 107 	ted	
ampling Method ample Gelected Date Jamu of the Sonative Receptors ample Description simple Condition atopory of Area Vislance from the outer most proposed tracks (m) ampling Location	25 1969 - 1961 (SA 2008) Ueboreary 05 12 2009 Uskishni Hospital Noise Monitoring P1 for Analysis Silence Zine 183.30 Reinchandra Hospital - Type	Type of Sensitive Receptors Latitude Longitude Sample Reference No Sample Received On Test Commenced On Test Completed On	895 Hountar 139221.4756% 80%23.11270 PC116-4046-12-15 06.12.2019 06.12.2019 06.12.2019
	Day Time	Night Tin	
Time 05.00 - 07.00	Readings in dB(A)	Readings in r	
05:00 - 07:00 07:00 - 06:00	50.3		151000
08:00 - 09:00	\$2.6		
09.00 - 10.00	\$2.9		
10:00 - 11:00	59.1		
11:00 - 12:00 12:00 - 13:00	\$5.4 \$2.3		
13:00 - 14:00	56.9		
14:00 - 15:00	49.5		
15:00 - 16:00	\$2.4		
16:00 - 17:00	50.9		
17:00 - 18:00 18:00 - 19:00	49.5		
19:00 - 20:00	45.8	tion of the local data	
20:00 - 21:00	45.8	A DATE OF COMMENTS	
21:00 - 22:00	45.1	A REAL PROPERTY AND A REAL	
22:00 - 23:00		40.5	
23:00 - 00:00 00:00 - 01:00		38.1 30.5	
01/00 - 02:00		37.5	
03:00 - 03:00		36.1	
03:00 - 04:00		35.2	
04:00 - 05:00		37.2	
05/00 - 06/00	His	45.1	
	Har	59.1	
Day Time	Leg	52.7	
	Day Limit	SO UR(A)	
	Main	35.2	
Night Time	Hax	40.5	
	Night Limit	40 db(A)	

POLLUCARE	TEST REPORT	Kamarajar Rood, Ayapal Olernai - 600 077. Ph.: +93 44 2482 3190 / Email: tabdipoliucarein Web : www.poliucarein	+91 73977 96831 Sa.com
Accredited by NA	BL & NABET, Certified ISO 90012	2015 & ISO 14001:2015	10.00
port No	+ PCUV9E-N-4133	Report Date	< 99.12.2019
R No	+ LBLR-TC74461900031548		
nando he	 H/s Chencal Metro Rall Limited ORI, Digot, Admin Budding, Pusternative High Road, Royardodu, Chencal - 600 187 		
mpling Method	1 15 9989 - 1981 (RA 2008)	LHS/RHS	: 4HS
expled by	1 Laboratory	Type of Sensitive Receptors	: Hospital
mple Collected Date	1 06 12 2019	Lathole	: 13*37.64974
me of the Sensitive Receptors	Hangalam Hospital	Langitude	1015 45.42721
mple Description mple Condition	 Noise Monitoring Fit for Analysis 	Sample Reference No Sample Received On	: 3CEL94-8047-12-19
topory of Area	- Silonce Zone	Test Commenced On	07.12.2019
stance from the outer most proposed tracks (m)	: 23.85	Test Completed On	07.12.2019
engling Location	: Hullei Thottem to Poonemalice #		
Time	Duy Time	Night Ti	Wie .
	Readings in dB(A)	Readings in	d8(A)
05.00 - 97.00	42.1	-	
07:00 - 09:00	45,9		
09:00 + 10:00	58.6		
10:00 + 11:00	55.6		
11:00 - 12:00	563		
12:00 - 13:00	54.8		
13:00 - 14:00	32.6		
14:00 - 15:00	\$63		
15:00 - 16:00	56.8		
16:00 - 17:00	55.4		
17:00 - 18:00	51.7		
19:00 - 20:00	43.5	-	
20.00 - 21.00	41.5		
21:00 - 22:00	30.5	and the second second	
22:00 - 23:00		29.5	
23:00 - 06:00		34.9	6
00:00 - 01:00		32.1	2
61:00 - 02:00		32.4	
02:00 - 03:00 03:00 - 04:00		15.2	
64:08 - 05:00		31.5	
05:00 + 05:00		313	
	Min	29.3	2
Day Time	Hav	\$9.0	
way make	Leq	\$4.1	
	Day Limit	30 (8)	0
	Min	32.1	
Night Time	Max	39.5	
	Log Night Limit	40 65(Ú.
ter CPCB Artherst Ar Queity Standarts in respect of Assar is			Platory non 6 Kal Manager

Example of the probation Example of the probation Test REPORT the intermediation Accredited by NABL & NABET, Certified ISO 9001/2015 & ISO 14001/2015 Example of the intermediation Intenemediatintentintermediation <th< th=""><th>View poluciation Weil uww.poluciation/dution Accredited by NABL & NABET, Centified ISO 90012015 & ISO 140012015 No 2 ICEVTR-94124 Report Date 109.32,2009 D ULE ICPRESOD0131555 Report Date 109.32,2009 D I// S Charter Bigh Book, Kapartoni, Chennal - 600 107 Report Date 1005 negative Receiptors Generative Receiptors 109.32,2019 Latitude 109.35,37.34671 Conscitute Receiptors Generative Receiptors 109.32,2019 Latitude 109.35,37.34671 Conscitute Receiptors Generative Receiptors Sample Received On 107.12,2019 Conscitute Receiptors Generative Receiptors Sample Received On 107.12,2019 Conscitute Receiptors Generative Receiptors Sample Received On 107.12,2019 Conscitute Receiptor 110.02 107.12,2019 107.12,2019 Conscitu</th></th<>	View poluciation Weil uww.poluciation/dution Accredited by NABL & NABET, Centified ISO 90012015 & ISO 140012015 No 2 ICEVTR-94124 Report Date 109.32,2009 D ULE ICPRESOD0131555 Report Date 109.32,2009 D I// S Charter Bigh Book, Kapartoni, Chennal - 600 107 Report Date 1005 negative Receiptors Generative Receiptors 109.32,2019 Latitude 109.35,37.34671 Conscitute Receiptors Generative Receiptors 109.32,2019 Latitude 109.35,37.34671 Conscitute Receiptors Generative Receiptors Sample Received On 107.12,2019 Conscitute Receiptors Generative Receiptors Sample Received On 107.12,2019 Conscitute Receiptors Generative Receiptors Sample Received On 107.12,2019 Conscitute Receiptor 110.02 107.12,2019 107.12,2019 Conscitu
Two ILL® IC/PRE STOCISSUE and to IV/s Chemos Hall (united Oris, Dept), Admin Hudding, Neuron-oline High Rout, Knyamedic High Rout, High Deckholth High Rout, Knyamedic High Rout, Knyamedic High Rout, High Rout, High Rout, Knyamedic High Rout, Knyamedic High Rout, Knyamedic High Rout, High Rout, H	1 U.R. ECANE (2000) 1535 to IM/s Chennal Methon Rul Limited CHEL Dett, Adams Methon Rul Limited CHEL Dett, Adams Methon, Neuronmetics High Road, Kuyantedu, 600 100 IMS/RMS 1.015 ng Method 15.9999 - 1981 (RA 2008) LMS/RMS 1.015 of by 1.050700 Type of Sensitive Receptors 1.000100 1 the Sensitive Receptors 0.612.2019 Lutitude 1.9757.310870 1 the Sensitive Receptors 0.6002000 Sample Reference Ho 9.0213/10870 1 the Sensitive Receptors 0.612.2019 Lutitude 1.9757.310870 1 the Sensitive Receptors 1.60001000 1.0712.2019 1.0712.2019 1 the Sensitive Received On 0.712.2019 1.0712.2019 1.0712.2019 1 the out the outer most proposed bracks (m) 1.8.01 Test Completed On 0.712.2019 1 the outer most proposed bracks (m) 1.8.02 Test Completed On 0.712.2019 1 the outer most proposed bracks (m) 1.8.03 Test Completed On 0.712.2019 1 the outer most proposed bracks (m) 1.8.03 Test Completed On 0.712.2019 1 the outer most proposed bracks (
Time Pays Channel Motors Hall Listingd Ores, Description stoparticle, March Budding, Personality, Marchael (Marchael Response) LHS/RHS : U/S glid glid by glid Synghesing Method glid Synghesing American glid Castline Receptors : U/S (MARS) : U/S : U/S (MARS) : U/S (MARS)	Its IM/s Chernal Metris Rail Limited CHIL Dract, Admin Bullion, Non-member High Roof, Kayamteria, Chernal - 600 107 LHS/Ren5 1 U/S I U/S
Special by get Collected Data : Laboratory (06.12.2019) Type of Sensitive Receptors (1.100) : Support (1.100) of the Sensitive Receptors (1.000) : Get 2.2019 Latitude : 10°121.210/15 of the Sensitive Receptors (1.000) : Role the Analysis (1.000) Sample Received Got (1.100) : 00°13.2.2019 inter Content proposed backs (m) (inter Location : Role in Analysis (1.000) Sample Received Got (1.12.2019) : 07.12.2019 inter Content proposed backs (m) (inter Location : Role in Analysis (1.000) : Role in Analysis (1.000) : 07.12.2019 inter Content proposed backs (m) (inter Location : Role in Analysis (1.000) : Role in Content proposed backs (m) (inter Location : 07.12.2019 inter Content proposed backs (m) (inter Location : Role in Content proposed backs (m) (inter Location : 07.12.2019 inter Content proposed backs (m) (inter Location : 0.000 : 07.12.2019 inter Content proposed backs (m) (inter Location : 0.000 : 07.12.2019 inter Content proposed backs (m) (inter Location : 0.000 : 07.12.2019 inter Content proposed backs (m) (inter Location : 0.000 : 07.12.2019 inter Content proposed backs (m) (inter Location : 0.000 <	Image: Second
Readings in db(A) Readings in db(A) 00500 - 07:00 56.5 00700 - 08:00 32.5 008:00 - 09:00 32.5 009:00 - 10:00 51.8 10:00 - 11:00 61.8 11:00 - 12:00 59.8 11:00 - 12:00 59.8 11:00 - 12:00 59.8 11:00 - 12:00 59.8 11:00 - 12:00 59.8 11:00 - 12:00 59.8 11:00 - 12:00 59.8 11:00 - 12:00 59.8 11:00 - 12:00 59.8 11:00 - 12:00 59.8 11:00 - 18:00 60.4 11:00 - 18:00 64.2 11:00 - 18:00 55.1 11:00 - 18:00 44.3 11:00 - 18:00 44.3 11:00 - 18:00 44.3 11:00 - 18:00 44.3 11:00 - 18:00 44.3 11:00 - 18:00 44.3 11:00 - 18:00 44.3 11:00 - 19:00 44.3 11:00 - 10:00 45.9	Resetings in db(A) Readings in db(A) 05:00 - 07:00 56.5 07:00 - 08:00 38.6 08:00 - 09:00 38.6 09:00 - 10:05 57.1 09:00 - 11:00 63.4 10:00 - 11:00 63.4 11:00 - 12:00 59.8 12:00 - 13:06 66.1 13:00 - 14:00 66.4 14:00 - 15:00 64.2 15:00 - 16:00 57.9 15:00 - 16:00 55.1 15:00 - 16:00 55.1 15:00 - 16:00 48.5 20:00 - 20:00 48.5 21:00 - 22:00 45.9 21:00 - 22:00 45.9
Readings in db(A) Readings in db(A) 00500 - 07:00 56.5 00700 - 08:00 32.5 008:00 - 09:00 32.5 009:00 - 10:00 51.8 10:00 - 11:00 61.8 11:00 - 12:00 59.8 11:00 - 12:00 59.8 11:00 - 12:00 59.8 11:00 - 12:00 59.8 11:00 - 12:00 59.8 11:00 - 12:00 59.8 11:00 - 12:00 59.8 11:00 - 12:00 59.8 11:00 - 12:00 59.8 11:00 - 12:00 59.8 11:00 - 18:00 60.4 11:00 - 18:00 64.2 11:00 - 18:00 55.1 11:00 - 18:00 44.3 11:00 - 18:00 44.3 11:00 - 18:00 44.3 11:00 - 18:00 44.3 11:00 - 18:00 44.3 11:00 - 18:00 44.3 11:00 - 18:00 44.3 11:00 - 19:00 44.3 11:00 - 10:00 45.9	Resetings in db(A) Readings in db(A) 05:00 - 07:00 56.5 07:00 - 08:00 38.6 08:00 - 09:00 38.6 09:00 - 10:05 57.1 09:00 - 11:00 63.4 10:00 - 11:00 63.4 11:00 - 12:00 59.8 12:00 - 13:06 66.1 13:00 - 14:00 66.4 14:00 - 15:00 64.2 15:00 - 16:00 57.9 15:00 - 16:00 55.1 15:00 - 16:00 55.1 15:00 - 16:00 48.5 20:00 - 20:00 48.5 21:00 - 22:00 45.9 21:00 - 22:00 45.9
07:00 - 08:00 38.6 08:00 - 09:00 57.1 09:00 - 10:00 61.8 10:00 - 11:00 63.4 11:00 - 12:00 59.8 12:00 - 13:00 56.1 13:00 - 14:05 60.4 14:00 - 15:00 64.3 15:00 - 16:00 61.8 15:00 - 16:00 61.3 15:00 - 16:00 55.1 19:00 - 19:05 55.1 19:00 - 20:00 48.5 22:00 - 23:00 45.9 22:00 - 23:00 45.9 22:00 - 02:00 36.3 63:00 - 04:00 93.4 63:00 - 04:00 36.3 63:00 - 05:00 36.3 63:00 - 06:00 36.7 65:00 - 06:00 36.7 65:00 - 06:00 46.2	07:00-08:00 58.6 08:00-09:00 57.1 09:00-10:00 61.8 10:00-11:00 63.4 11:00-12:00 59.8 12:00-31:00 59.8 13:00-14:00 60.4 13:00-14:00 60.4 14:00-15:00 64.2 15:00-16:00 61.8 15:00-16:00 51.8 15:00-16:00 51.1 16:00-17:00 55.1 19:00-20:00 48.5 20:00-21:00 45.9 21:00-22:00 45.9 21:00-23:00 43.2 41.2 40.2
08.00 - 09.00 57.1 09.00 - 10.00 61.8 10.00 - 11.00 61.4 11.00 - 12.00 59.8 12.00 - 13.00 59.8 13.00 - 14.00 60.4 14.00 - 15.00 64.3 15.00 - 16.00 61.8 15.00 - 16.00 64.3 15.00 - 16.00 55.1 15.00 - 16.00 55.1 15.00 - 18.00 56.4 15.00 - 18.00 56.4 15.00 - 18.00 44.3 10.00 - 20.00 44.3 11.00 - 20.00 44.3 11.00 - 20.00 44.3 11.00 - 20.00 44.3 11.00 - 20.00 44.3 11.00 - 20.00 44.3 11.00 - 20.00 44.5 11.00 - 01.00 43.3 11.00 - 02.00 34.3 11.00 - 02.00 30.4 11.00 - 02.00 30.7 11.00 - 02.00 30.7 11.00 - 02.00 30.7 11.00 - 02.00 30.7 11.00 -	08.05-09.06 \$7,1 09.00-10.00 61.8 10.00-11.00 63.4 11.00-12.00 \$9.8 13.00-13.00 \$9.8 13.00-13.00 \$9.8 13.00-14.00 \$0.4 13.00-14.00 \$0.4 13.00-14.00 \$0.4 13.00-14.00 \$0.4 14.00-15.00 \$0.4 15.00-16.00 \$64.2 15.00-16.00 \$55.4 18.00-19.00 \$55.1 19.00-20.00 \$48.5 20.00 \$44.5 21.00-20.00 \$45.9 21.00-20.00 \$45.9 21.00-20.00 \$42.3
09:00-10:00 61.8 10:00-11:00 63.4 11:00-12:00 59.8 12:00-13:00 59.8 13:00-14:05 60.4 13:00-14:06 60.4 14:00-15:00 64.2 15:00-16:00 51.8 16:00-17:00 57.9 17:00-18:05 56.4 18:00-19:00 48.5 19:00-20:00 48.5 20:00-22:00 44.7 23:00-22:00 41.7 23:00-22:00 41.3 14:00-03:00 43.3 00:00-01:00 43.3 01:00-02:00 30.3 02:00-03:00 30.3 03:00-04:00 30.4 04:00-05:00 30.4 04:00-06:00 30.7 05:00-06:00 30.7 05:00-06:00 30.7 05:00-06:00 30.7 05:00-06:00 30.7 05:00-06:00 30.7	09:00 - 10:00 61.8 10:00 - 11:00 63.4 11:00 - 12:00 59.8 12:00 - 13:00 59.8 13:00 - 14:00 66.4 14:00 - 15:00 64.2 15:00 - 16:00 64.2 15:00 - 16:00 57.9 17:00 - 19:00 55.1 19:00 - 19:00 55.1 19:00 - 20:00 48.5 20:00 - 20:00 45.9 21:00 - 20:00 45.9 21:00 - 20:00 40.2
11:00 · 12:00 39.8 13:00 · 13:00 56.1 13:00 · 14:05 60.4 14:00 · 15:00 66.3 15:00 · 15:00 64.3 15:00 · 15:00 51.8 15:00 · 15:00 55.4 15:00 · 15:00 55.4 15:00 · 17:00 55.1 15:00 · 17:00 55.1 15:00 · 17:00 55.1 15:00 · 17:00 45.9 21:00 · 22:00 45.9 22:00 · 23:00 45.9 22:00 · 03:00 41.6 00:00 · 03:00 36.3 00:00 · 03:00 36.3 03:00 · 04:00 36.3 03:00 · 04:00 36.3 03:00 · 04:00 36.7 05:00 · 05:00 36.7 05:00 · 06:00 40.8 Min 44.3 Day Time Max	11:00 - 12:00 59.8 12:00 - 13:00 56.1 13:00 - 14:00 60.4 14:00 - 15:00 64.2 15:00 - 16:00 61.9 15:00 - 16:00 57.9 15:00 - 19:00 55.1 19:00 - 20:00 48.5 20:00 - 21:00 45.9 22:00 - 23:00 45.9 41.2 40.2
12.00 - 13.00 56.1 13.00 - 14.00 60.4 14.00 - 15.00 64.3 15.00 - 16.00 61.3 16.00 - 17.00 57.0 17.00 - 18.00 56.4 18.00 - 19.00 55.1 19.00 - 20.00 48.5 21.00 - 22.00 44.3 21.00 - 22.00 45.9 41.7 41.7 33.00 - 00.00 45.9 22.00 - 03.00 41.6 00.00 - 04.00 41.2 00.00 - 04.00 41.3 01.00 - 05.00 41.5 02.00 - 03.00 41.5 03.00 - 04.00 41.6 02.00 - 03.00 30.3 03.00 - 04.00 30.7 05.00 - 05.00 30.7 05.00 - 06.00 44.3 04.00 - 05.00 30.7 05.00 - 06.00 40.3 00.00 - 06.00 40.3 00.00 - 06.00 40.3 00.00 - 06.00 40.3 00.00 - 06.00 40.3 00.00 - 06.00 <td>12.00 - 13.00 56.1 13.00 - 15.00 60.4 36.00 - 15.00 64.2 15.00 - 16.00 61.8 16.00 - 17.00 57.9 17.00 - 18.00 55.4 18.00 - 19.00 55.1 19.00 - 20.00 48.5 20.00 - 21.00 45.9 21.00 - 23.00 45.9 23.00 - 00.00 40.2 40.2 40.2</td>	12.00 - 13.00 56.1 13.00 - 15.00 60.4 36.00 - 15.00 64.2 15.00 - 16.00 61.8 16.00 - 17.00 57.9 17.00 - 18.00 55.4 18.00 - 19.00 55.1 19.00 - 20.00 48.5 20.00 - 21.00 45.9 21.00 - 23.00 45.9 23.00 - 00.00 40.2 40.2 40.2
13.00 - 14.00 60.4 34.00 - 15.00 64.2 35.00 - 15.00 64.2 35.00 - 16.00 57.3 37.00 - 18.05 56.4 38.00 - 19.00 55.1 39.00 - 19.00 48.5 20.00 - 22.00 44.3 21.00 - 22.00 45.9 22.00 - 22.00 44.7 23.00 - 00.00 43.2 00.00 - 01.00 43.3 01.00 - 02.00 43.3 02.00 - 03.00 30.3 03.00 - 04.00 30.4 04.00 - 05.00 30.4 04.00 - 05.00 30.4 04.00 - 05.00 30.4 04.00 - 05.00 30.4 05.00 - 06.00 30.4 06.01 - 06.00 30.7 05.00 - 06.00 30.7 05.00 - 06.00 30.7 05.00 - 06.00 30.7 05.00 - 06.00 30.7 05.00 - 06.00 44.3 00.00 - 06.00 40.5	13.00 - 14.00 60.4 14.00 - 15:00 64.2 15:00 - 15:00 64.2 15:00 - 15:00 51.8 16:00 - 17:00 57.9 17:00 - 18:00 56.4 18:00 - 17:00 55.1 19:00 - 20:00 48.5 20:00 - 21:00 45.9 21:00 - 22:00 45.9 23:00 - 00:00 40.2 60:00 - 01:00 42.3
14:00-15:00 64.3 15:00-16:00 61.8 16:00-17:00 57.9 17:00-18:00 56.4 18:00-19:00 56.4 19:00-19:00 95.1 19:00-20:00 46.5 20:00-21:00 44.3 21:00-22:00 45.9 22:00-23:00 45.9 22:00-23:00 41.6 00:00-01:00 41.6 02:00-02:00 36.3 63:00-04:00 36.7 05:00-05:00 36.7 05:00-06:00 40.8 00:00-07:00 36.7 05:00-06:00 40.8 00:00-07:00 36.7 05:00-06:00 40.8 00:00-07:00 36.7 05:00-06:00 40.8 00:00 40.8 00:00 40.8 00:00 36.7	14.00 - 15:00 64.2 15:00 - 16:00 61.0 15:00 - 17:00 57.9 17:00 - 18:00 56.4 18:00 - 19:00 55.1 19:00 - 20:00 48.5 20:00 - 22:00 45.9 22:00 - 22:00 45.9 44.7 43.2 60:00 - 01:00 40.2
15.00 61.8 16.50 57.9 17.00 57.9 17.00 56.4 18.00 56.4 18.00 55.1 19.00 48.5 20.00 48.5 21.00 45.9 22.00 45.9 22.00 45.9 22.00 45.9 22.00 45.9 22.00 45.9 22.00 45.9 22.00 45.9 41.6 32.00 61.60 52.00 41.6 33.3 63.00 9.7 64.50 55.1 55.9 36.3 63.00 41.6 92.00 36.3 63.00 55.7 65.60 55.7 55.0 55.7 55.0 55.7 55.0 55.7 55.7 55.7 55.8 55.7 55.9 55.7	15:00 - 16:00 61.0 18:00 - 17:00 \$7.9 17:00 - 18:00 \$6.4 18:00 - 19:00 \$5.1 19:00 - 20:00 48.5 20:00 - 21:00 45.9 21:00 - 23:00 45.9 21:00 - 00:00 40.2 00:00 - 01:00 40.2
16:00 - 17:00 57.3 17:00 - 18:00 56.4 18:00 - 19:00 55.1 19:00 - 20:00 48.5 20:00 - 22:00 45.9 21:00 - 22:00 45.9 22:00 - 03:00 45.9 00:00 - 03:00 41.7 00:00 - 03:00 41.6 02:00 - 02:00 36.3 03:00 - 04:00 36.3 03:00 - 05:00 36.7 05:00 - 06:00 40.6 05:00 - 06:00 36.7 05:00 - 06:00 40.6 05:00 - 06:00 40.3 05:00 - 06:00 36.7 05:00 - 06:00 40.6 05:00 - 06:00 40.6 05:00 - 06:00 40.6 05:00 - 06:00 40.6 06:00 - 06:00 40.6	16:00 - 17:00 57.0 17:00 - 18:00 56.4 18:00 - 19:00 55.1 19:00 - 20:00 48.5 20:00 - 21:00 44.3 21:00 - 22:00 45.9 22:00 - 23:00 45.9 41.7 43.2 00:00 - 01:00 40.2
18.00 19.00 55.1 19.00 48.5 30.60 21.00 44.5 21.00 22.00 45.9 22.00 22.00 41.7 23.00 45.9 41.7 20.00 41.6 42.3 60.00 41.6 42.3 61.00 93.00 41.6 62.00 33.3 33.3 63.00 35.4 36.5 00.00 35.4 36.5 00.00 36.7 36.5 00.00 36.7 36.5 00.00 36.7 36.5 00.00 36.7 36.5 00.00 36.7 36.5 00.00 36.7 36.5	18:00 - 19:00 55.1 19:00 - 20:00 48.5 20:00 - 21:00 44.5 21:00 - 22:00 45.9 22:00 - 20:00 45.9 23:00 - 00:00 41.7 23:00 - 00:00 41.2 60:00 - 01:00 42.3
19:00 - 20:00 48.5 30:50 - 21:00 44.3 31:00 - 32:00 45.9 32:00 - 23:00 45.9 32:00 - 23:00 41.7 30:00 - 01:00 41.2 00:00 - 01:00 41.6 02:00 - 03:00 30.3 63:00 - 04:00 30.7 65:00 - 05:00 40.8 Min 44.3 Day Time Max	19:00 - 20:00 48.5 20:00 - 21:00 44.3 21:00 - 22:00 45.9 22:00 - 22:00 45.9 23:00 - 60:00 44.7 40:00 - 01:00 40.2
20:00 - 21:00 44.3 21:00 - 22:00 45:9 22:00 - 23:00 45:9 23:00 - 00:00 40.2 00:00 - 01:00 40.3 01:00 - 02:00 41.6 02:00 - 02:00 38.3 63:00 - 04:00 36.7 06:00 - 06:00 36.7 06:00 - 06:00 36.7 06:00 - 06:00 36.7 06:00 - 06:00 36.7 06:00 - 06:00 44.3 Day Time Max	20:00 - 21:00 44.3 21:00 - 22:00 45:9 22:00 - 23:00 41.7 23:00 - 00:00 40.2 00:00 - 01:00 42.3
21:00 - 22:00 45.9 22:00 - 23:00 41.7 23:00 - 00:00 41.7 00:00 - 01:00 41.2 00:00 - 02:00 41.6 02:00 - 02:00 31.3 03:00 - 01:00 36.7 05:00 - 06:00 36.7 05:00 - 06:00 40.8 Par Time Max 64.2	21:00 - 22:00 45.9 22:00 - 23:00 41.7 23:00 - 00:00 40.2 00:00 - 01:00 42.3
22:00 - 23:00 44.7 23:00 - 00:00 40.2 00:00 - 01:00 42.3 01:00 - 02:00 41.6 02:00 - 03:00 36.3 02:00 - 04:00 36.4 04:00 - 05:00 36.7 05:00 - 05:00 40.6 00:00 - 05:00 40.6 00:00 - 05:00 40.6 00:00 - 05:00 40.6 00:00 - 05:00 40.6 Min 44.3 Day Time Max	22:00 - 23:00 44.7 23:00 - 00:00 43.2 00:00 - 01:00 42.3
00:00 - 01:00 42.3 01:00 - 02:00 41.6 02:00 - 03:00 30.3 62:00 - 04:00 35.4 64:00 - 05:00 36.7 65:00 - 06:00 36.5 Par Time Max 64.2	60-00-01:00 42.)
81:60 - 02:00 41:6 92:00 - 02:00 36:3 63:00 - 05:00 36:7 64:00 - 05:00 36:7 05:00 - 06:00 40:6 Par Time Max 64:2	
02:00 - 03:00 36.3 02:00 - 04:00 36.4 04:00 - 05:00 36.7 05:00 - 06:00 40.5 Min 44.3 Dar Time Max 64.2	91:09 - 92:00 41.6
63:00 - 04:00 35:7 64:00 - 05:00 36:7 65:00 - 06:00 40:5 Par Time Max 64:2	
64:00 - 05:00 35.7 65:00 40:5 Day Time Max 64:2	57 0 14 STOLD
Min 44.3 Day Time Max 64.2	14
Day Time Max 64.2	2233A. C027
Day Time	64:00 - 05:00 36.7 65:00 - 06:00 40:5
100 000	64:00 - 05:00 36.7 65:00 - 06:00 40.5 Min 64.3
17.0.1 36.5.5	64:00 - 05:00 36.7 65:00 - 06:00 40.5 Min 64.3 Dex Time Max 64.2
	64:00 - 05:00 36.7 65:00 - 06:00 40.6 Min 64.3 Day Time Max 64.2 Log 59:3
700 20.7	64:00 - 05:00 36.7 65:00 - 06:00 40.5 Min 64.3 Dex Time Max 64.2
Max 442	64:00+05:00 30.7 65:00+06:00 40.5 Day Time Max 64.3 Day Time Lag 59.3 Day Limit 50 d8(A) Max 44.7
in the second se	64:00 - 05:00 36.7 65:00 - 06:00 40.6 Day Time Max 64.3 Day Time Max 64.2 Log 59.3 50 dB(A) Night Time Max 46.7 Night Time Max 46.7 Log 41.5 65.7
Day Limit S0 dB(A)	43.44 A 44.44
	64:00 - 05:00 36.7 65:00 - 06:00 40.6 Min 64.3 Day Time Max 64.2 Log 59:3
- min	64:00 + 05:00 30.7 65:00 + 06:00 40.5 Day Time Max 64.3 Day Time Log 59.3 Day Limit 50 dB(A)
Mar 442	64:00+05:00 30.7 65:00+06:00 40.5 Day Time Max 64.3 Day Time Lag 59.3 Day Limit 50 d8(A) Max 44.7
Night Time Max 44.7 Leg 41.5	64:00 - 05:00 36.7 65:00 - 06:00 40.8 Day Time Max 64.3 Day Time Max 64.2 Day Time Day Limit 50.3 Day Limit 50.06(A) 36.7 Night Time Max 44.3 Leg 41.5 50.2
Log 59.3 Day Limit S0 dB(A)	02.00 · 02.00 38.3
64:00 - 05:00 35.7 65:00 40:5 Day Time Max 64:2	
64:00 - 05:00 36.7 65:00 40.5 Max 64:3 Day Time Max 64:2	57 0 14 STOLD
64:00 - 05:00 36.7 65:00 40.5 Max 64:3 Day Time Max 64:2	92:00 - 03:00 38:3
64:00 - 05:00 36.7 65:00 40.5 Max 64:3 Day Time Max 64:2	57 0 14 STOLD
65:00 40.5 Min 64.3 Day Time Max 64.2	43 49 - A4 69
65:00 40.5 Min 64.3 Day Time Max 64.2	
65:00 40.5 Min 64.3 Day Time Max 64.2	51.00 - 04.00
65:00 40.5 Min 64.3 Day Time Max 64.2	63.00 - 04.00
65:00 40.5 Min 64.3 Day Time Max 64.2	E1:00 - 04:00
65:00 40.5 Min 64.3 Day Time Max 64.2	10.000 100
Day Time Max 64.3	214
Day Time Max 64.3	
Day Time Max 64.2	64:00 - 05:00 36.7
Day Time Max 64.2	64:00 - 05:00 36.7
Day Time Max 64.3	64:00 - 05:00 36.7
Day Time Max 64.3	
Day Time Max 64.2	64:00 - 05:00 36.7
Day Time Max 64.2	64:00 - 05:00 36.7
Day Time Max 64.2	64:00 - 05:00 36.7
Day Time Max 64.2	64:00 - 05:00 36.7
Day Time Max 64.2	64:00 - 05:00 36.7
Day Time Max 64.2	64:00 - 05:00 36.7
Day Time Max 64.2	64:00 - 05:00 36.7
Day Time Max 64.2	64:00 - 05:00 36.7
Day Time Max 64.2	64:00 - 05:00 36.7
Day Time Max 64.2	64:00 - 05:00 36.7
Day Time	64:00 - 05:00 36.7 65:00 - 06:00 40:8
Day Time	64:00 - 05:00 36.7 65:00 - 06:00 40:8
Max 1400	64:00 - 05:00 36.7 65:00 - 06:00 40:8
and the second sec	64:00 - 05:00 36.7 65:00 - 06:00 40.8 Min 64.3
Len 59.3	64:00 - 05:00 36.7 65:00 - 06:00 40.5 Min 44.3 Max 64.2
	64:00 - 05:00 36.7 65:00 - 06:00 40.8 Min 44.3 Dex Time Max 64.2
	64:00 - 05:00 36.7 65:00 - 06:00 40.8 Min 44.3 Der Time Max 64.2
Day Limit 50 dB(A)	64:00 - 05:00 36.7 65:00 - 06:00 40.8 Min 44.3 Der Time Max 64.2
Day Limit 50 dB(A)	64:00 - 05:00 36.7 65:00 - 06:00 40.8 Min 44.3 Day Time Max 64.2 Leg 59.3
	64:00 - 05:00 36.7 65:00 - 06:00 40.8 Min 44.3 Day Time Max 64.2 Leg 59.3
	64:00 - 05:00 36.7 65:00 - 06:00 40.8 Min 44.3 Day Time Max 64.2 Leg 59.3
	64:00 - 05:00 36.7 65:00 - 06:00 40.8 Min 44.3 Day Time Max 64.2 Leg 59.3
	64:00 - 05:00 36.7 65:00 - 06:00 40.8 Min 44.3 Day Time Max 64.2 Leg 59.3
Min Sec.	64:00 + 05:00 36.7 65:00 + 06:00 40.5 Day Time 64.2 Log 59.3 Day Limit 50 d8(A)
March 147 B	64:00 + 05:00 36.7 65:00 + 06:00 40.5 Day Time 64.2 Log 59.3 Day Limit 50 d8(A)
Min Sec. 2	64:00 + 05:00 36.7 65:00 + 06:00 40.6 Day Time 64.2 Log 59.3 Day Limit 50 d8(A)
	64:00 + 05:00 36.7 65:00 + 06:00 40.6 Day Time 64.2 Log 59.3 Day Limit 50 d8(A)
	64:00 - 05:00 36.7 65:00 - 06:00 40:0 Day Time Max 64.3 Max 64.2 Leg 59:3 Day Limit 50 dB(A) Min 36.7
Max 44.7	64:00+05:00 36.7 65:00+06:00 40.5 Day Time Max 64.3 Log 53.3 Day Limit 50:06(A) Max 44.3 Max 64.2 Log 53.3 Day Limit 50:06(A) Max 44.7
Max 44.7	64:00+05:00 36.7 65:00+06:00 40.5 Day Time Max 64.3 Log 53.3 Day Limit 50:06(A) Max 44.3 Max 64.2 Log 53.3 Day Limit 50:06(A) Max 44.7
Max 44.7	64:00+05:00 36.7 65:00+06:00 40.5 Day Time Max 64.3 Log 53.3 Day Limit 50:06(A) Max 44.3 Max 64.2 Log 53.3 Day Limit 50:06(A) Max 44.7
NuM Time Max 46.7	64:00 - 05:00 36.7 65:00 - 06:00 40.8 Day Time Max 64.2 Day Time Max 64.2 Day Time Day Limit 59.3 Day Limit 50 dB(A) 36.7 Next Time Max 44.3
Night Time Max 44.7	64:00 - 05:00 36.7 65:00 - 06:00 40.8 Day Time Max 64.2 Day Time Day Limit 59.3 Day Limit 50 dB(A) 36.7 Night Time Max 64.2 Night Time Max 64.2 Max 64.2 59.3 Day Limit 50 dB(A) 56.7 Night Time Max 44.7
Night Time Max 44.7	64:00 - 05:00 36.7 65:00 - 06:00 40.8 Day Time Max 64.2 Day Time Day Limit 59.3 Day Limit 50 dB(A) 36.7 Night Time Max 64.2 Night Time Max 64.2 Max 64.2 59.3 Day Limit 50 dB(A) 56.7 Night Time Max 44.7
Night Time Max 44.7	64:00 - 05:00 36.7 65:00 - 06:00 40.8 Day Time Max 64.2 Day Time Day Limit 59.3 Day Limit 50 dB(A) 36.7 Night Time Max 64.2 Night Time Max 64.2 Max 64.2 59.3 Day Limit 50 dB(A) 56.7 Night Time Max 44.7
Night Time Max 44.7	64:00 - 05:00 36.7 65:00 - 06:00 40.8 Day Time Max 64.2 Day Time Day Limit 59.3 Day Limit 50 dB(A) 36.7 Night Time Max 64.2 Night Time Max 64.2 Max 64.2 59.3 Day Limit 50 dB(A) 56.7 Night Time Max 44.7
Night Time Max 44.7	64:00 - 05:00 36.7 65:00 - 06:00 40.8 Day Time Max 64.2 Day Time Day Limit 59.3 Day Limit 50 dB(A) 36.7 Night Time Max 64.2 Night Time Max 64.2 Max 64.2 59.3 Day Limit 50 dB(A) 50.7 Max 44.7 44.7
Night Time Max 44.7	64:00 - 05:00 36.7 65:00 - 06:00 40.8 Day Time Max 64.2 Day Time 59.3 Day Limit 50 dB(A) Numl Time Max 64.2 59.3 Numl Time Max 36.7
Night Time Max 44.7	64:00 - 05:00 36.7 65:00 - 06:00 40.8 Day Time Max 64.2 Day Time 59.3 Day Limit 50 dB(A) Numl Time Max 64.2 59.3 Numl Time Max 36.7
Night Time Max 44.7	64:00 - 05:00 36.7 65:00 - 06:00 40.8 Day Time Max 64.2 Day Time Day Limit 59.3 Day Limit 50 dB(A) 36.7 Night Time Max 64.2 Night Time Max 64.2 Max 64.2 59.3 Day Limit 50 dB(A) 50.7 Max 44.7 44.7
Night Time Max 44.7 Log 41.5	64:00 - 05:00 35.7 65:00 - 06:00 40.8 Day Time Min 44.3 Day Time Max 64.2 Leg 59.3 59.3 Day Limit 50 d8(A) 56.7 Min 36.7 44.3 Max 64.2 59.3 Day Limit 50 d8(A) 50.7 Min 36.7 56.7 Max 44.7 56.7

g. 5. Under no circumstances lab accepts any fiability or loss/damage caused by use or misuse of sest report after involcing or issued of

(Laboratory Services Division) #18G - 6152, 71416 Phase I & II, Kamarajar Road, Avapakkam, Chennal - 600 077. Ph : +91 44 2582 3190 / +91 73977 96831 Email: tab@pollucareindia.com Web : www.pollucareinida.com

Accredited by NABL & NABET, Certified ISO 9001:2015, ISO 14001:2015 & ISO 46001 : 2018

Report No	: PCEI/TR-N-3541	Report Date	: 22.06.2022
Discipline	: Chemical	Group	: Atmospheric Pollution
Issued to	: M/S ITO Comentation India Limited , R.M.S Tower ,No.2, Mahalakshimi Street, T.Nagar, Chennal -600 017.		
Project Name Sampling Method	CMRL/CON/PHASE-EI/C4/UG-1/2022		
Sampled by	: Laboratory Representative - Mr.Muthukumar		
Sample Description	Noise Monitoring	Sample Reference No	: PCEI/N+182-06-22
Category of Area	: Commercial Area	Sample Received On	12.06.2022
Equipment Installed	1.5 m from Ground Level	Test Commenced On	: 17.06.2022
Sampling Date	: 16.06.2022 to 17.05.2022	Test Completed On	22.06.2022
Sampling Location	Light House Location		2.0.763.00
	EQUIPMENT USED FOR	SAMPLING	

Equipment Name	Make/Model	Equipment ID	Calibration Date	Oue Date
Sound Level Meter with Data Logger	Lutror/SL-4023SD	PCEL/EQ/45	07.02.2022	06.02.2023

UNION NO DE LA COMPANSIÓN	Contractor (Contractor)	Day Time	Night Time
Sampling Date	Sampling Time	Readings dB(A)	Readings dB(A)
16.06.2022	05:00 - 07:00	56.4	
16.06.2022	07:00 - 08:00	57.0	· · · · · · · · · · · · · · · · · · ·
16.06.2022	08:00 - 09:00	58.6	All the second second
16.06.2022	09:00 - 10:00	56.9	and the second
16.06.2022	10:00 - 11:00	60.4	
16.06.2022	11:00 - 12:00	61.9	+
16.06.2022	12:00 - 13:00	62.5	÷
16.06,2022	13:00 - 14:00	63.1	4
16.06.2022	14:00 - 15:00	60.5	
16.06.2022	15:00 - 16:00	59.3	
16.06.2022	16:00 - 17:00	62.3	
16.06.2022	17:00 - 18:00	63.4	
16.06.2022	18:00 - 19:00	58.6	
16.86.2022	19:00 - 20:00	\$7.5	*
16.86.2072	20:00 - 21:00	56.5	
16.06.2022	21:00 - 22:00	56.1	4

Page 1 of 2

Note: 1. The test results are only to the sample submitted for test. 2. Any Correction of the test report in full or part shall invalidate the report. 3. Sample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by client. 4. Perishable samples will be discarded immediately after reporting. 5. Under no circumstances lab accepts any liability or loss/damage caused by use or misuse of test report after invoicing or issued of test report.

(Laboratory Services Division) # HIG - 6152, TNH8 Phase (& II,

Kamarajar Road, Ayapakkam, Chennai - 600.077. Ph :+91.44.2682.3190 / +91.73977.96831 Email: labi@pollucareinida.com Web : www.pollucareinida.com

Accredited by NABL & NABET, Certified ISO 9001:2015, ISO 14001:2015 & ISO 45001 2018

TEST REPORT

tepert No	PCEI/TR-N-3541		Report Date 22.06.2022
Sampling Date		Day Time	Night Time
sampling bace	Sampling Time	Readings dB(A)	Readings dB(A)
16.06.2022	22:00 - 23:00	T T	\$5.0
16.06.2022	23:00 - 00:00	*	\$4.3
17.06.2022	00:00 - 01:00		\$2.6
17.06.2022	01:00 - 02:00	*	51.9
17.06.2022	02:00 - 03:00	4	50.7
17.06.2022	03:00 = 04:00	1	49.5
17.06.2022	04100 - 05100	+	48.3
17.06.2022	05:00 - 06:00	4	47.9
Day Ti	min	Leq (Day)	60.2
Day II		Day Time Limit	65 dB(A)
Night T	lana	Leq (Night)	52.2
ingit i		Night Time Limit	55 dB(A)

Note:

Limit is per THE NOISE POLLUTION (REGULATION AND CONTROL) RULES, 2000, Schedule (as amended bit 10/08/2017 vide S.G.2555(E)) Ambient Air Quality Standards in respect of Noise in Commercial Area Oxytome 65 (8CA) & Night Time 55 (8CA)

LOay time shall mean fram 6.00 a.m. to 10.00 p.m.

2.Night time shall mean from 18.00 p.m. to 6.00 a.m

INTERPRETATION

The Note level were menitared as per IS 9989-1981 and CPCD Protocol for Ambient Noise Level Monitoring, 3ul 2015.

In the following house results, The Day time and High: time Neise levels resets the NAAQS for Noise levels for Converced Area (THE NDESE POLLUTION (REGULATION AND CONTROL) RULES, 2000) (as amended till 10/08/2017 vide S.O.2555(E))

*** End of Report *** Page 2 of 2

Authorised Sig

Note: 1. The test results are only to the sample submitted for test. 2. Any Correction of the test report in full or part shall invalidate the report. 3. Sample will be retained for 15 days from the date of reporting escopt in case of regulatory samples or specifically instructed by client. 4. Perishable samples will be discarded invinediately after reporting. 5. Under no circumstances lab accepts any liability or loss/damage caused by use or misuse of test report after invoicing or issued of test report.

(Laboratory Services Division)

HIG - 6152, TNHB Phase L& R Kemerajar Road, Ayapakkam, Chennal - 600 077. Ph : +93 44 2682 3190 / +91 73977 96831 Email: lab@pollucareindia.com Web I www.pollucareinida.com

TEST REPORT

Accredited by NABL & NABET, Cartilied ISO 9001:2015, ISO 14001:2015 & ISO 45001 : 2018

Report No	PCE1/TR-N-3542	Report Date	22.06.2022
Discipline	: Chemical	Group	: Atmospheric Pallution
Issued to	M/S ITD Cementation India Limited , R.M.S Tower ,No.2, Mahalakshmi Street, T.Nagar, Chonnal -600 017.	- Tobilite	. consequents random
Project Name Sampling Mathod Sampled by Sample Description Category of Area Equipment Installed Sampling Date Sampling Location	: CMRL/CON/PHASE-II/C4/UG-1/2022 : IS 9989 – 1981 (RA 2008) : Laboratory Representative - Mr.Mul/w/wman Noise Monitoring : Commercial Area : 1.5 m from Ground Leval : 16.05.2022 to 17.06.2022 : Bharathidesan Road Location	Sample Reference No Sample Received On Test Commenced On Test Completed On	: PCEI/N-183-06-22 : 17.06-2022 : 17.06-2022 : 22.06-2022
	EQUIPMENT USED FOR	SAMPLING	

Equipment Name Make/Model Equipment ID **Calibration Date Dee Date** Sound Level Motor with Latron/SL-40235D PCEI/EQ/05 Onto Logger 07.02.2022 05.02.2023

Sampling Date	Sampling Time	Day Time	Night Time
somering care	sampling time	Readings dB(A)	Readings dB(A)
16.05.2022	06:00 - 07:00	59.3	
16 06 2022	07:00 - 08:00	50.1	+
16.06.2022	08:00 - 09:00	54.2	
16.06.2022	09:00 - 10:00	60.2	
16.06.2022	10:00 - 11:00	62.5	ALL STREET.
16.06.2022	11:00 - 12:00	64.3	· · · · · · · · · · · · · · · · · · ·
16.06.2022	12:00 - 13:00	60.8	
16.06.2022	13:00 - 14:00	56.8	
16.05.2022	14:00 - 15:00	58.9	- +
16.06.2022	15:00 - 16:00	60.4	
16.06.2022	16:00 - 17:00	62.5	
16.06.2022	17:00 - 18:00	63.4	
16.06.2022	18:00 - 19:00	\$2.2	+
16.06.2022	19:00 - 20:00	\$4.6	1
16.06.2022	20:00 - 21:00	57.8	
16.06.2022	21:00 - 22:00	55.4	

Page 1 of 2

Authorised Signatory

Note: 1. The test results are only to the sample submitted for test. 2. Any Correction of the test report in full or part shall invalidate the report. 3. Sample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by client. 4. Perishable samples will be discarded immediately after reporting. 5. Uniter no circumstances lab accepts any liability or loss/damage caused by use or misuse of test report after invoicing or issued of test report

(Laboratory Services Division) # HIG - 6152, TMHG Phase I & II, Kamarajar Road, Ayapakkam, Chennar - 600 077. Ph I +91 44 2682 3190 / +91 73977 96831 Email: lab@pollucareinda.com Web : www.pollucareinida.com

TEST REPORT

'n

Accredited by NABL & NABET, Certified ISO 9001:2015, ISO 14001:2015 & ISO 45001 : 2018

Report No	PCEI/TR-N-3542	As delikated a	Report Date : 22.06.2022
Sampling Date	Sampling Time	Day Time	Night Time
sampling bate	sampling time	Readings dB(A)	Readings dB(A)
16.06.2022	22:00 - 23:00		\$0.87
16.06.2022	23:00 - 00:00		46.3
17.06.2022	00:00 - 01:00		46,8
17.06.2022	01:00 + 02:00	4	46.0
17.05.2022	02:00 + 03:00		42.8
17.06.2022	03:00 - 04:00		43.5
17.06.2022	04:00 - 05:00		50.2
17.05.2022	05:00 - 06:00		51.3
Day T	1000	Leg (Day)	59.9
Day I	inte	Day Time Limit	65 dB(A)
Night 1	Time	Leq (Night)	48.2
myne		Night Time Limit	55 dB(A)

Note:

Limit as per THE NOISE POLLUTION (REGULATION AND CONTROL) RULES, 2000, Schedule (as amended hit 10/08/2017 wide 5.0.2555(E)) Anitient Air Queity Standards in respect of None in Commercial Area Daytime 65 dB(A) & NoIN Time 55 dB(A)

1.Day time shall mean from 6.00 a.m. to 10.00 p.m.

2./hight time shall mean from 10.00 p.m. to 6.00 a.m.

INTERPRETATION:

The Nake level were mentared as per 15 9989-1981 and CPCB Protocol for Ambent Noise Level Monitoring, Jul 2015.

In the following Noise results. The Day time and Night time Noise levels meets the NAAQS for Noise levels for Commercial Area (THE NOISE POLLUTION (REGULATION AND CONTROL) RULES, 2009) (or amended till 10/08/2017 vide S.O.2555(E))

*** End of Report *** Page 2 of 2

Authorized Signate

Note: 1. The test results are only to the sample submitted for test. 2. Any Correction of the test report in full or part shall invalidate the report 3. Sample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by client. 4. Perishable samples will be discarded immediately after reporting. 5. Under no circumstances lab accepts any liability or loss/damage caused by use or misuse of test report after involcing or issued of test report.

(Laboratory Services Division)

HIG - 6152, TNH8 Phase I & II, Kamarajar Road, Ayapakkam, Chennai - 600 077. Ph : +91 44 2682 3190 / +91 73977 96831 Email: lab@pollucareindia.com Web : www.pollucareinida.com

Accredited by NASL & NABET, Cartified ISO 9001:2015, ISO 14001:2015 & ISO 45001 : 2018

TEST REPORT

Report No	: PCEI/TR-H-3543	Report Date	22.06.2022
Discipline	: Chemical	Group	: Atmospharic Pollution
Issued to	: M/S ITD Comentation India Limited , R.M.S Tower ,No.2, Mahalakahmi Street, T.Nagar, Chennai -600 017.		her
Project Name	CMRL/CON/PHASE-II/C4/UG-1/2022		
Sampling Method	15 9989 - 1981 (RA 2008)		
Sampled by	: Laboratory Representative - Mr.Muthukumar		
Sample Description	1 Noise Monitoring	Sample Reference No	EPCE1/N-184-06-22
Category of Area	Commercial Area	Sample Received On	: 17.06.2022
Equipment Installed	1.5 m from Ground Level	Test Commenced On	: 17.06.2022
Sampling Date	16.05.2022 to 17.06.2022	Test Completed On	22.06.2022
Sampling Location	Kutechery Road Location		
	EQUIPMENT USED FOR	SAMPLING	

Equipment Name	Make/Model	Equipment ID	Calibration Date	Due Date
Sound Level Meter with Data Logger	Hemsun/HDB2202	PCEI/EQ/97	07.02.2022	06.02.2023

	Sampling Time	Day Time	Night Time
Sampling Date		Readings dB(A)	Readings dB(A)
16.06.2022	06:00 + 07:00	59.4	a second a second s
16.06.2022	07:00 - 08:00	50.6	A
16.06.2022	08:00 - 09:00	54.7	
16.06.2022	09:00 - 10:00	62.8	
16.06.2022	10:00 - 11:00	63.0	S.S. Market Strategy at 1
16.06.2022	11:00 - 12:00	64.8	
16.06.2022	12:00 - 13:00	61.3	
16.06.2022	13:00 - 14:00	57.3	
16.06.2022	14:00 - 15:00	59.4	· · · · · · · · · · · · · · · · · · ·
16.06.2022	15:00 - 16:00	60.9	
16.06.2022	16:00 - 17:00	63.0	
16.06.2022	17:00 + 18:00	63.9	+
16.06.2022	18:00 = 19:00	52.7	+
16.06.2022	19:00 - 20:00	55.1	
16.06.2022	20:00 - 21:00	50.3	
16.06.2022	21:00 - 22:00	55.9	

Page 1 of 2

Authorised Signatory

Note: 1. The test results are only to the sample submitted for test. 2. Any Correction of the test report in full or part shall invalidate the report. 3. Sample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by client. 4. Perishable samples will be discarded immediately after reporting. 5. Under no circumstances lab accepts any liability or loss/damage caused by use or misuse of tost report after involcing or issued of test report.

(Laboratory Services Division) # HIG - 6152, TNH0 Phase I & II, Kamarajar Road, Ayapakkam, Chennal - 600 077. Ph : +92 44 2682 3150 / +91 73977 96831 Email: Tab@pol/ucareindia.com Web : www.aofkccareinida.com

Authorised Signato

Accredited by NABL & NABET, Certified ISO 9001:2015, ISO 14001:2015 & ISO 45001 : 2018

TEST REPORT

eport No	: PCEI/TR-N-3543		Report Date : 22.06.2022
Sampling Date	Sampling Time	Day Time	Night Time
southing parts	sampling rune	Readings dB(A)	Readings dB(A)
16.06.2022	22:00 - 23:00	*	52.6
16.06.2022	23:00 - 00:00	i.	50.8
17.06.2022	00:00 - 01:00		49.8
17.06.2022	01:00 - 02:00	.+	46.8
17.06.2022	02:00 = 03:00	.4	43.6
17.06.2022	03:00 - 04:00	1	50.4
17.06.2022	04:00 - 05:00	+	51.0
17.06.2022	05:00 - 06:00		52.1
Day Ti	ma	Log (Day)	60.6
ony n		Day Time Limit	65 dB(A)
Night T	ime	Leg (Night)	50.3
		Night Time Limit	55 d8(A)

Notor

Limit as per THE NOISE POLLUTION (REGULATION AND CONTROL) RULES, 3000, "schedule (as amended bit 10/08/2017 vote 5-0-2555(E)) Ambient Air Quality Standards in respect of Picise in Commercial Area Daytime 65 dB(A) & Night Time 55 dB(A)

1.Day time shall mean from 6.00 a.m. to 10.00 p.m.

2.Night time shall mean from 18.00 p.m. to 6.00 a.m.

INTERPRETATION

The Noise level were monitored as per IS 9009-1981 and CPCD Protocol for Amsent Noise Level Merstering, Jul 2015.

In the following Noise results. The Day time and Night time Noise lovels insets the NAAGS for Noise levels for Commercial Area (THE NOISE POLLUTION (REGULATION AND CONTROL) ALLES, 2000) (as amended till 10/08/2017 vide S.O.2555(E))

*** End of Report *** Page 2 of 2

Note: 1. The test results are only to the sample submitted for test. 2. Any Correction of the test report in full or part shall invalidate the report. 3. Sample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by client. 4. Perishable samples will be discarded immediately after reporting. 5. Under no circumstances lab accepts any fiability or loss/damage caused by use or misuse of test report after invaliding or issued of test report.

(Laboratory Services Division)

N HIG - 6157, TNH8 Phase I & B, Kamarajar Boad, Ayapakkam, Chennal - 600 677. Ph : +91 44 2682 3190 / +91 73977 96831 Email: lab@pollucareinida.com Web : www.pollucareinida.com

Accredited by NABL & NABET, Certified ISO 9001/2015, ISO 14001/2015 & ISO 45001 / 2018

Report No	: PCEL/TR-N-3544	Report Date	22.06.2022
Discipline	: Chemical	Group	: Atmospheric Pollution
Issued to	: M/S ITO Cementation India Limited , R.M.S Tower ,No. 2, Mahalakshmi Street, T.Nagar, Chennai -600 017.	-9 C-1983 (k) (k)	
Project Name	: CMRL/CON/PHASE-II/C4/UG-1/2022		
Sampling Method	: IS 9989 - 1981 (RA 2008)		
Sampled by	Laboratory Representative - Mr.Muthukamar		
Sample Description	: Noise Monitoring	Sample Reference No	1 PCED/N+185-06-22
Category of Area	Commercial Area	Sample Received On	17.06.2022
Equipment Installed	: 1.5 m from Ground Level	Test Commonced On	: 17.06.2022
Sampling Date	: 16.06.2022 to 17.06.2022	Test Completed On	22.06.2022
Sampling Location	Alwerpet Location		

EQUIPMENT USED FOR SAMPLING

Equipment Name	Make/Model	Equipment ID	Calibration Date	Due Date
Sound Level Meter with Data Logger	Hemsen/HD82202	PCEI/EQ/79	07.02.2022	06.02.2023

Recording Rose	Reporting Wines	Day Time	Night Time
Sampling Date	Sampling Time	Readings dB(A)	Readings dB(A)
16.06.2022	06:00 - 07:00	54.2	1
16.96.2022	07:00 - 08:00	50.8	•
16.06.2022	08:00 - 09:00	54.9	*
16.06.2022	09:00 - 10:00	60.1	
16.06.2022	10:00 - 11:00	63.2	The second street of
16.06.2022	11:00 - 12:00	65.0	
16.06.2022	12:00 - 13:00	63.8	
16.06.2022	13/00 - 14:00	64.6	A
16.06.2022	14:00 - 15:00	59.6	
16.06.2022	15:00 - 16:00	61.1	in the second
16.06.2022	16:00 - 17:00	63.2	,
16.06.2022	17:00 - 18:00	64.1	
16.06.2022	18:00 + 19:00	52.9	
16.06.2022	19:00 - 20:00	55.3	
16.06.2022	20:00 - 21:00	58.5	
16.06.2022	21:00 - 22:00	56.1	

Page 1 of 2

Authorised Signati

Note: 1. The test results are only to the sample submitted for test. 2. Any Correction of the test report in full or part shall invalidate the report. 3. Sample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by client. 4. Perishable samples will be discarded immediately after reporting. 5. Under no circumstances lab accepts any liability or less/damage caused by use or misuse of test report after involving or issued of test report.

(Laboratory Services Division) # HIG - 6152, TNHB Phase I & II, Kamarajar Road, Ayapakkam, Chennal - 600 077, Ph 1 +91 44 2682 3190 / +91 73977 96831 Email: lab@psilucareinida.com Web I www.polucareinida.com

TEST REPORT

÷

Accredited by NABL & NABET, Certified ISO 9001:2015, ISO 14001:2015 & ISO 45001 : 2018

Report No	: PCEI/TR-N-3544	40.000	Report Date 22.06.2022
Sampling Date	Encode Trans	Day Timo	Night Time
sampling bace	Sampling Time	Readings dB(A)	Readings dB(A)
. 16.06.2022	22:00 - 23:00	4	51.6
16.06.2022	23:00 - 00:00	4	47,1
17.06.2022	00:00 - 01:00	,	47.6
17.06.2022	01:00 - 02:00		46.8
12.06.2022	02:00 - 03:00	4	43.6
17.06.2022	03:00 - 04:00		44.3
17.06.2022	04:00 - 05:00		51.0
12.06.2022	05:00 - 06:00	4	36.2
Day T	000	Leg (Day)	61.1
Day Time		Day Time Limit	65 d8(A)
Night T	ime	Leg (Night)	47.6
ingin i		Night Time Limit	55 dB(A)

Note

Limit as per THE NOISE POLLUTION (REGULATION AND CONTROL) BULES, 2000, Schedule (as amended bit 10/08/2017 vide.S.O.2555(E)) Ambient Air Quality Standards in respect of Noise in Commercial Area Daytime 65 dB(A) & Night Time 55 dB(A)

1.Day time shall mean from 6.00 a.m. to 10.00 p.m.

2.Night time shall mean from 10.00 p.m. to 6.00 a.m.

INTERPRETATION

The Noise level were monitored as per 15 9989-1981 and CPCB Protocol for Ambient Noise Level Monitoring, Jul 2015.

In the following Noise results, The Day time and Night time Haise levels meets the NAAQS for Noise levels for Commercial Area (THE NOISE POLLUTION (RECULATION AND CONTROL) BULES, 2000) (as amended bit 10/08/2017 vide.S.O.2555(E))

*** End of Report *** Page 2 of 2

Authorised Signato

Note: 1. The test results are only to the sample submitted for test. 2, Any Correction of the test report in full or part shall invalidate the report. 3. Sample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by client. 4. Perishable samples will be discarded immediately after reporting. 5. Under no circumstances lab accepts any fiability or loss/damage caused by use or misuse of test report after invoicing or issued of test report.

......

(Laboratory Services Division)

HIG - 6152, TRHB Phase I & II, Kamarajir Road, Ayapakkam, Chennai - 600 077, Ph : +91 44 2682 3190 / +91 73977 96831 Email: tab@potlucareindia.com Web : www.potlucareinida.com

Accredited by NABL & NABET, Certified ISO 9001:2015, ISO 14001:2015 & ISO 45001 : 2018

TEST REPORT

Report No	: PCEL/TR-N-3479	Report Date	: 18.06.2022
Discipline	: Chemical	Group	: Atmospheric Poliution
tssued to	: M/S ITD Cementation India Limited, R.M.S Tower ,No.2, Mahalakshmi Street, T.Nagar, Chennal -600 017.		
Project Name Sampling Method	: CMRL/CON/PHASE-11/C4/UG-2/2022 : IS 9989 - 1981 (RA 2008)		
Sampled by	Laboratory Representative - Mr.Muthukumar		
Sample Description	: Noise Monitoring	Sample Reference No	PCEI/N-121-06-22
Category of Area	Commercial Area	Sample Received On	15.06.2022
Equipment Installed	: 1.5 m from Ground Level	Test Commanced On	15.06.2022
Sampling Date	14.06.2022 to 15.06.2022	Test Completed On	18.06.2022
Sampling Location	: Panagal Park Location		0.023/042820

Equipment Name	Make/Model	Equipment ID	Calibration Date	Oue Date
Sound Level Meter with Data Logger	Lutren/SL-4023SD	PCEL/EQ/45	07.02.2022	06.02.2023

accord them and according		Day Time	Night Time
Sampling Date	Sampling Time	Readings dB(A)	Readings dB(A)
14.06.2022	06:00 - 07:00	60,4	-
14.06.2022	07:00 - 08:00	61.5	and the second se
14.06.2022	08100 - 09100	67.6	A.M. P.O. 101 1
14.06.2022	09:00 - 10:00	58.4	1
14.06.2022	10:00 - 11:00	54.7	
14.06.2022	11:00 - 12:00	60.1	*
14.05.2022	12:00 - 13:00	58.7	
14.06.2022	13:00 - 14:00	59.3	
14.06.2022	14:00 - 15:00	57.0	
14.06.2022	15:00 - 16:00	55.7	
14.06.2022	16:00 - 17:00	53.6	
14.06.2022	17:00 - 18:00	53.0	
14.06.2022	18:00 - 19:00	59.2	
14.06.2022	19:00 - 20:00	57.6	
14.06.2022	20:00 - 21:00	50.5	1
14.06.2022	21:00 - 22:00	48.6	

Page 1 of 2

Authorised Signat

Note: 1. The test results are only to the sample submitted for test. 2. Any Correction of the test report in full or part shall invalidate the report. 3. Sample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by client. 4. Perishable samples will be discarded immediately after reporting. 5. Under ne circumstances (ab accepts any liability or loss/damage caused by use or misuse of test report after involcing or issued of test report

(Laboratory Services Division) # HIG - 6152, TMHB Phase F & H, Kamarajar Road, Ayapakkam, Chennal - 600 077. Ph : +91 44 2682 3190 / +91 73977 96831 Email: tab@poliscareindia.com Web : www.policareindia.com

TEST REPORT

Accredited by NABL & NABET, Certified ISO 9001:2015, ISO 14001:2015 & ISO 45001 : 2018

leport No	PCE1/TR-N-3479	and the second sec	Report Date ± 18.05.2022
and a subscription of the second	diameter Nine	Day Time	Night Time
Sampling Date	Sampling Time	Readings dB(A)	Readings dB(A)
14.06.2022	22:00 - 23:00	*	52.7
14,06.2022	23:00 - 00:00		52.2
15.06.2022	00:00 - 01:00		50.5
15.06.2022	01:00 + 02:00		49.1
15.06.2022	02:00 - 03:00	4	48.5
15.06.2022	03:00 - 04:00	,	49.7
15.06.2022	04:00 - 05:00	+	48.3
15.06.2022	05:00 - 06:00		47.4
		Leg (Day)	59.7
Day T	ime	Day Time Limit	65 dB(A)
	Plana -	Leg (Night)	\$0.2
Night	rimo	Night Time Limit	55 dB(A)

Noter

Limit as per THE NOISE POLLUTION (REGULATION AND CONTROL) RULES, 2000. Schedule (as amended till 10/08/2017 vide.S.O.2555(E)) Ambient Air Quality Standards in respect of Noise in Commercial Area Daytime 65 d0(A) & Night Time 55 d0(A)

LOay time shall mean from 6.00 a.m. to 10.00 p.m.

2.night time shall mean from 10.00 p.m. to 6.00 a.m.

INTERPRETATION

The Noise level were monitored as per 15 9989-1981 and CPCB Protocol for Ambient Noise Level Monitoring, Jul 2015.

In the following Noise results, The Day time and Night time Noise levels meets the NAAQS for Naise levels for Commercial Area (THE NOISE POLLUTION (REGULATION AND CONTROL) RULES, 2000) (as amended till 10/00/2012 vide.S.O.2555(E))

*** End of Report *** Page 2 of 2

Authorised Signi

Note: 1. The test results are only to the sample submitted for test. 2. Any Correction of the test report in full or part shall invalidate the report. 3. Sample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by client. 4. Perishable samples will be discarded immediately after reporting. 5. Under no circumstances lab accepts any liability or loss/damage caused by use or misuse of test report after involcing or issued of test report.

(Laboratory Services Division) # HIG - 6152, TMHB Phase I & II, Kamarajar Road, Ayapakkam, Chennai - 600 077. Ph : +01 44 2682 3190 / +91 73977 96831 Ersait: Lab@polfucareindia.com Web : www.polfucareinida.com

Accredited by NABL & NABET, Certified ISO 9001:2015, ISO 14001:2015 & ISO 45001 : 2018

Report No	: PCEL/TR-N-3480	Report Date	18.06.2022
Discipline	: Chemical	Group	Atmospheric Pollution
Issued to	: M/S ITD Comontation India Limited, R.M.S Tower ,No.2, Mahalakshmi Street, T.Nagar, Chennal -600 017.		
Project Name Sampling Method Sampled by	: CMRL/CON/PHASE-II/C4/UG-2/2022 : IS 9989 – 1981 (RA 2008) : Laboratory Representative - Mr.Muthukumar		
Sample Description	: Noise Monitoring	Sample Reference No	PCEI/H-122-06-22
Category of Area	Commercial Area	Sample Received On	15.06.2022
Equipment Installed	: 1.5 m from Ground Level	Test Commenced On	15.06.2022
Sampling Date	14.06.2022 to 15.06.2022	Test Completed On	18.06.2022
Sampling Location	Nandanam Location		

Equipment Name	Make/Model	Equipment 1D	Calibration Date	Due Date	
Sound Level Meter with Data Logger	Lutren/5L-40235D	PCEI/EQ/05	07.02.2022	06.02.2023	

EQUIPMENT USED FOR SAMPLING

	220.00000000000000000000000000000000000	Day Time	Night Time
Sampling Date	Sampling Time	Readings dB(A)	Readings dB(A)
14.05.2022	06:00 - 07:00	61.2	
14.06.2022	07:00 - 08:00	62.3	•
14.05.2022	06:00 - 09:00	60.4	4
14.06.2022	09:00 - 10:00	59.2	4
14.06.2022	10:00 - 11:00	55.5	A
14.06.2022	11:00 - 12:00	60.9	
14.06.2022	12:00 = 13:00	50.5	*
14.06.2022	13:00 - 14:00	60.1	
14.06.2022	14:00 - 15:00	58.6	
14.06.2022	15:00 - 16:00	56.5	
14.06.2022	16:00 - 17:00	\$4.4	+
14.06.2022	17:00 - 18:00	\$3.8	
14.06.2022	18:00 - 19:00	60.0	¥
14.06.2022	19:00 - 20:00	58.4	*
14.06.2022	20:00 - 21:00	× \$1.3	
14.06.2022	21:00 - 22:00	-19.4	

Page 1 of 2

Authorized Signatory

Note: 1.7he test results are only to the sample submitted for test. 2. Any Correction of the test report in full or part shall invalidate the report. 3. Sample will be retained for 15 days from the date of reporting except to case of regulatory samples or specifically instructed by client. 4. Perishable samples will be discarded immediately after reporting. 5. Under no circumstances lab accepts any liability or loss/damage caused by use or misuse of test report after involving or issued of test report.

(Laboratory Services Division) # HIG - 6152, TNHB Phase I & II,

Kamarajar Road, Ayapaldiam, Chennal - 608 077. Ph : +91 44 2682 3190 / +91 73977 96831 Email: lab@pollucareIndia.com Web : www.pollucareinida.com

TEST REPORT

Accredited by NABL & NABET, Certified ISO 9001:2015, ISO 14001:2015 & ISO 45001 : 2018

leport No	: PCEI/TR-N-3480		Report Date : 18.06.2022
		Day Time	Night Time
Sampling Data	Sampling Time	Readings dB(A)	Readings dB(A)
14.06.2022	22:00 - 23:00		53.9
14.06.2022	23:00 - 00:00	4 i.	53.4
15.06.2022	00:00 - 01:00		51.7
15.06.2022	01:00 - 02:00		50.3
15.06.2022	02:00 + 03:00		49.7
15.06.2022	03:00 - 04:00		50.9
15.06.2022	04:00 - 05:00		49.5
15.06.2022	05:00 + 06:00	1	48.0
	144	Leg (Day)	60.5
Day T	ime	Day Time Limit	65 d6(A)
		Leg (Night)	51.4
Night	TIMHO	Night Time Limit	55 dB(A)

Notice

Limit as per THE NOISE POLLUTION (REGULATION AND CONTROL) BULES, 2000, Schedule (as amended till 10/06/2012 vide.5-0.2555(E)) Ambient Air Quality Standards in respect of Noise in Commercial Area Daytime 65 db(A) & Night Time 55 db(A)

1.Day time shall mean from 6.00 a.m. to 10.00 p.m. 2.Night time shall mean from 10.00 p.m. to 6.00 p.m.

INTERPRETATION:

The Noise level were monitored as per 15 9989-1981 and CPCB Protocol for Ambient Noise Level Monitoring, 3c 2015.

In the following Noise results, The Day time and Night time Noise levels meets the NAAQS for Noise levels for Conviercial Area (THE NOISE POLLUTION (REGULATION AND CONTROL) RULES, 2000) (as amended till 10/06/2017 vide.5-D.2555(E))

*** End of Report *** Page 2 of 2

Note: 1. The test results are only to the sample submitted for test. 2. Any Correction of the test report in full or part shall invalidate the report. 3. Sample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by client. 4.Perishable samples will be discarded immediately after reporting. 5. Under no circumstancos lab accepts any liability or loss/damage caused by use or misuse of test report after involcing or issued of test report.

(Laboratory Services Division)

a HIG - 6152, TNH® Phase I & II, Kamarajar Road, Ayapabkam, Chennai - 660 077. Ph : +91 44 2682 3190 7 +91 73977 96831 Email: lab@pollucareinidia.com Web : www.pollucareinidia.com

TEST REPORT

Accredited by NABL & NABET, Certified ISO 9001:2015, ISO 14001:2015 & ISO 45001 : 2018

a

ution for pollution

Report No	EPCU/TR-N-3483	Report Date	18.06.2022
Discipline	Chemical	Group	Atmospheric Pollution
Issued to	: M/S ITD Comentation India Limited, R.M.S Tower ,No.2, Mahalakshmi Street, T.Nagar, Chennal -600 817.		
Project Name Sampling Method	: CMRL/CON/PHASE-II/C4/UG-2/2022 : IS 9989 - 1981 (RA 2008)		
Sampled by	: Laboratory Representative - Mr.Muthukumar	-	
Sample Description	Noise Monitoring	Sample Reference No	PCEI/N-123-06-22
Category of Area	: Commercial Area	Sample Received On	15.06.2022
Equipment Installed	: 1.5 m from Ground Level	Test Commonced On	15.06.2022
Sampling Date	: 14.06.2022 to 15.06.2022	Test Completed On	18.06.2022
Sampling Location	Kedambakkam Location		

EQUIPMENT USED FOR SAMPLING

Equipment Name	Make/Model	Equipment ID	Calibration Date	Due Date
Sound Level Meter with Data Logger	Homsun/HD82202	PCEI/EQ/97	07.02.2022	06.02.2023

	1	Day Time	Night Time	
Sampling Date	Sampling Time	Readings dB(A)	Readings dB(A)	
14.06.2022	05:00 - 07:00	58.6	*	
14.06.2022	07:00 - 06:00	55.4	*	
14.06.2022	00:00 - 00:80	60.2		
14.06.2022	09:00 - 10:00	60.4	the second of the	
14.06.2022	10:00 - 11:00	56.7	AR IN TO A	
14.06.2022	11:00 - 12:00	62.1		
14.06.2022	12:00 - 13:00	60.7	*	
14.06.2022	13:00 - 14:00	61.3	*	
14.06.2022	14:00 - 15:00	59.8	· · · · ·	
14.06.2022	15:00 - 16:00	57.7	*.	
14.06.2022	16:00 - 17:00	55.6		
14.06.2022	17:00 - 18:00	55.0		
14.06.2022	18:00 + 19:00	61.2	(6)	
14.06.2022	19:00 - 20:00	59.6		
14.06.2022	20:00 - 21:00	52.5		
14.06.2022	21:00 - 22:00	50.6		

Page 1 of 2

00 Authorised Signatory

4

Note: 1. The test results are only to the sample submitted for test. 2. Any Correction of the test report in full or part shall invalidate the report. 3. Sample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by client. 4. Perishable samples will be discarded invenediately after reporting. 5. Under no circumstances lab accepts any liability or loss/damage caused by use or misuae of test report after invoicing or issued of test report.

(Laboratory Services Division) # HG - 5152, TNHB Phase I & II, Kamarajar Road, Ayapakkam, Chennai - 600 627. Ph : +51 44 2682 3190 / +91 73977 96831 Email: lab@poliucareindia.com Web : www.poliucareinidia.com

TEST REPORT

Accredited by NABL & NABET, Certified ISO 9001:2015, ISO 14001:2015 & ISO 45001 : 2018

Report No	: PCEI/TR-N-3481		Report Date : 18.96.2022
		Day Time	Night Time
Sampling Date	Sampling Time	Readings dB(A)	Roadings dB(A)
14.06.2022	22:00 - 23:00		\$3.5
14.05.2022	23:00 - 00:00		\$3.0
15.06.2022	00:00 - 01:00	÷	51.3
15.06.2022	01:00 - 02:00		49.9
15.06.2022	02:00 - 03:00	1	49.3
15.06.2022	03:00 - 04:00		50.5
15.06.2022	04:00 - 05:00	4	49.1
15.06.2022	05:00 - 06:00		48.2
		Leq (Day)	59,0
Day T	ime	Day Time Limit	65 dB(A)
10-1-1-1	27	Leg (Night)	51.0
Night	TIMM	Night Time Limit	SS dB(A)

Notes

Lanit as per THE NOISE POLLUTION (REGULATION AND CONTROL) RULES, 2000, Schedule (as amended till 10/08/2012 vide.5.0.2955(E)) Ambient Air Quality Standards in respect of Noise in Commercial Area Daytime 65 dB(A) & Night Time 55 dB(A)

1.Day bino shall mean from 6.09 a.m. to 10.00 p.m.

2.Night time shall mean from 10.00 p.m. to 6.00 a.m.

INTERPRETATION

The Noise level were monitored as per 15 9989-1981 and CPCB Protocol for Ambient Noise Level Monitoring, Jul 2015.

In the following Noise results, The Day time and Night time Noise levels meets the NAAQS for Noise levels for Commercial Area (THE NOISE POLLUTION (REGULATION AND CONTROL) RULES, 2000) (as amended till 10/09/2017 vide.S.O.2555(E))

*** End of Report *** Page 2 of 2

Note: 1. The text results are only to the sample submitted for test. 2. Any Correction of the test report in full or part shall invalidate the report 3. Sample will be retained for 15 days from the dato of reporting occept in case of regulatory samples or specifically instructed by client. 4. Perishable samples will be discarded immediately after reporting. 5. Under no circumstances lab accepts any liability or loss/damage caused by use or misuse of test report after involcing or issued of test report.

(Laboratory Services Division) #HIG - 6152, 7NHB Phase 1& II, Kamarajar Road, Ayapakkam, Chennal - 600 07?. Ph : +91 44 2682 3190 / +91 73977 96831 Email: lab@pollucareindia.com Web : www.pollucareindia.com

Accredited by NABL & NABET, Certified ISO 9001:2015, ISO 14001:2015 & ISO 45001 : 2018

TEST REPORT

Report No	PC07/TR-N-3482	Report Date	18.06.2022
Discipline	: Chemical	Group	1 Atmospheric Pollution
Issund to	M/S ITD Comontation India Limitod, R.M.S Tower ,No.2, Mahalakshmi Street, T.Nagar, Chennal -600 017.		
Project Name Sampling Method	CMRL/CON/PHASE-EI/C4/UG-2/2022		
fiampled by	: Laboratory Representative - Mr.Muthukumar		
Sample Description	: Noise Monitoring	Sample Reference No	: PCEI/N-124-06-22
Category of Area	: Commercial Area	Sample Received On	15.06.2022
Equipment Installed	: 1.5 m from Ground Level	Test Commanced On	15.06.2022
Sampling Date	: 14.06.2022 to 15.06.2022	Test Completed On	18.06.2022
Sampling Location	: Boat Club Location		

Equipment Name	Mako/Model	Equipment ID	Calibration Date	Oue Date	
Sound Level Meter with Data Logger	Hemsun/HDB2202	PCEL/EQ/79	07.02.2022	06.02.2023	

12.54 (0.10.59) (0.10)	12230220022100	Day Time	Night Time
Sampling Date	Sampling Time	Readings dB(A)	Readings dB(A)
14.06.2022	06:00 - 07:00	59.1	4
14.06.2022	07:00 - 00:00	60.2	
14.06.2022	08:00 - 09:00	66.3	
14.06.2022	09:00 - 10:00	\$7.1	
14.06.2022	10:00 - 11:00	\$3.4	
14.06.2022	11:00 - 12:00	58.0	
14.06.2022	12:00 - 13:00	\$7.4	•
14.06.2022	13:00 - 14:00	58.0	
14.06.2022	14:00 - 15:00	56.5	
14.06.2022	15:00 - 16:00	54.4	*
14.06.2022	16:00 - 17:00	52.3	
14.06.2022	17:00 - 18:00	51.2	
14.06.2022	18:00 - 19:00	57.9	
14.06.2022	19:00 - 20:00	56.3	
14.06.2022	20:00 - 21:00	49.2	
14.06.2022	21:00 - 22:00	47.3	

Page 1 of 2

Note: 1. The test results are only to the sample submitted for test. 2. Any Correction of the test report in full or part shall invalidate the report. It. Sample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by client. 4. Perishable samples will be discarded immediately after reporting. 5. Under no circumstances tab accepts any liability or loss/damage caused by use or misuse of test report after involcing or issued of test report.

(Laboratory Services Division) # HIG - 6152, TNHB Phase I & II, Kamarajar Road, Ayapakkam, Chonnai - 600 077. Ph : +91 44 2682 3190 / +91 73977 96831 Email: lab@pollucareindia.com Web : www.pallucareinisla.com

TEST REPORT

١.,

Accredited by NABL & NABET, Certified ISO 9001:2015, ISO 14001:2015 & ISO 45001 : 2018

Report No	PCEI/TR-N-3482	and the second sec	Report Date 18.06.2022
and an	Day Time		Night Time
Sampling Date	Sompling Time	Readings dB(A)	Readings dB(A)
14.06.2022	22:00 - 23:00	E	52.0
14.06.2022	23:00 = 00:00	*	51.5
15.06.2022	00:00 - 01:00		49.8
15.06.2022	01:00 - 02:00	4	48.4
15.06.2022	02:00 - 03:00	+	47.8
15.06.2022	03:00 - 04:00		49.0
15.06.2022	04100 - 05100		47.6
15.06.2022	05:00 - 06:00		46.7
		Leg (Day)	58.4
Day T	ime	Day Time Limit	65 dB(A)
A1-6-1	-	Leq (Night)	49.5
Night	time	Night Time Limit	55 dB(A)

Note

Limit as per THE NOISE POLLUTION (REGULATION AND CONTROL) RULES, 2000, Schedule (as amended to 10/08/2017 vide.S.O.2555(E)) Ambient Air Quality Standards in respect of Noise in Commercial Area Daytime 65 (0(A) & Night Time 55 (III(A)

1.Day time shall mean from 6.00 a.m. to 10.00 p.m.

2.Night time shall mean from 10.00 p.m. to 6.00 a.m.

INTERPRETATION

The Noise level were monitored as por 15 9989-1991 and CPCB Protocol for Ambient Noise Level Monitoring, 3d 2015.

In the following Noise results, The Day time and Night time Noise levels meets the NAAQS for Naise levels for Commercial Area (THE NOISE POLLUTION (REGULATION AND CONTROL) BULES, 2000) (as amended till 10/06/2017 vide.5-O.2555(E))

*** End of Report *** Page 2 of 2

Authorised Signalo

Note: 1 The test results are only to the sample submitted for test. 2. Any Correction of the test report in full or part shall invalidate the report. 3. Sample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by client. 4.Perishable samples will be discarded immediately after reporting. 5. Under no circumstances lab accepts any liability or loss/damage caused by use or misuse of test report after invoicing or issued of test report

(Laboratory Services División) And Alasta Contractory Services And Alasta Contractory And Alasta Contractory Photocol 44 (2007) Photocol 44 (

TEST REPORT

Accentised by NABL & NABEY, Cr-tident \$0,9:01 2015, (SC 14001 2015 & (SC 45001 12018

Skypert No.	THE WARDER	Report Date	· · · · ·
Discipline	1 1 N 1	Graup	
J Willed to	My sturken & Toubru Line ted Meavy Civil Intrastruction	are tt	
	 A finisher provide the second sec second second sec		
	nav de l'Alexandre Statue		
	A Second Contraction		
Survigling Hechad	1		
Sampled by	she san iy Asgreen na ye. Thirt dhi e anan		
Sacaphe Ontemption	the second second	Sample Reference So	 100 (100 (100 (100 (100 (100 (100 (100
Category of Area	Commonical Area	Sample Received On	18 (m. 21)
Environment Installed	1.5 m from Ground Level	Test Commenced Un	18 (A. 11)
Sampling Oute	a subtraction of the second	Test Completed On	19 1 Mar 18
Sumpling Location	Vada palanis Vasan Eye Care		
	a QUIP SENT USED FOR SAM	PL35G	

Equipment Alarce	Make/Model	Eq.apment 10	Cal Bration Date	Due Oate
 States - Materia Materia States - Other 	and solution	1. (1. j.). 		1927 - 199

Samp! ng Dare	Sampling Time	Day Turné Renducigo 46(A	Night Time Readings dB(A)
::.:		A 4.	
		•• :	
	·	··.	
·	1 . A . K.A. [17		
2. Con 1	22.12.50 [191	· ·
	1.11.0	····	
a	1.0 1.0		
1. · ·:	1101-144	9 S.	
1 i	1999 P	• :	
1	1 a 66 a		
· ·	1 BAR BA	1.1.1	
::	1.1.1.1	· .	
	and the second	0.5	
1. * * 1	1 100 DO		
1997	1 a state 1	2 -	
	1	• .	

Puge 1 of 2

Ventied

1.12.12

Note: E flor test results accord, to the supple sub-inited for test. 2 Any Connection of the instruction for supple to sub-initial installation the import. 3.5 anytes will be descended for test for the descendence of regulatory samples or specifically instructed by client. Adversibility of the disturded immediately after registring. Supplementations and the instructed by warman concerning to concerning exactly in the disturded in the instructed by warman concerning to concerning the instructed by the supplementation of the instructed by the disturded of test instructed by warman concerning to concerning to the disturded of test instructed by warman concerning to the concerning to the disturded of test instructed by warman concerning to the supplementation of test instructed by the disturded of test instructed by test instructed by the disturded of test instructed by the disturded of test instructed by the disturded of test instructed by test instru

(Laboratory Services Division) Friday (INC) ArtE College S

and and AAU (AV 310) Long MARCHNER. and a state of the back of

Content in Paul Alignee in the second of the

Were a www.cov.com/nitionary

TEST REPORT

Accredited by NABL 8 NABET, Certified ISC 9001 2015, ISC 14001 2015 & SC 45001 12016

Кирол Но	an a na Nataz		Report Oale	2000 C
		Day Time		Night Time
Sampling Date	Samplusy Terre	Readings dB(A)		Readings (U(A)
1. 1. 10. 1	:: · · : s · ·]	• .		
·				
1.1.1	· · · · · · · · · · · · · · · · · · ·			2. 5
1	1.00 . 0		-	2.7 -
1	1		•	2.4
15 5 25	··. ··. ·		··· -	
	an see i			··· ··
1.1.2.1	1 N 10 N		-	111 T
	• •	Les (Day)	•	64.4
Duy T		Day time (in:)		65 ØB(A)
N . be 7		Lvg (Night)		42.3
N yht T	enter	Night Fime Linid		\$5 dB(A)

Mule Security and Constant States and the second states of the second s

INTERPRETATION:

exclusive wave environments of a participative of the electronic state

. . .

ren Lind of Report 1411 Page Z af 2

ربا تام قور. Authorned S phaloly

POLLUCARE ENGINEERS INDIA PVT.LTD., (Laboratory Services Division)

TEST REPORT

 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ
 γ

Aboved (6) by NABL & NABET, Certified (SO 9001 2015, ISO 14001 2015 & ISO 45001 - 2015

Report No	ED TONIE LA	Report Date	2
Discipline	at the second se	Group	At 1.1 1.1
two-of to-	Mos tursen & Toulou Limited Reavy Cool	In least ructure 10	
	 A strategy of the second se		
	CAN AN UNA AND NO TO REPORT		
	In our constant for		
Sampling Method	1999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		
Sumpled by	and the second second second second		
Sample Description	And the second	Sapople Reference Ho	P. 15 (N. 187
Callegory of Allen	Conversial Area	Sample Received On	
Equipment Installed	1.5 m loom Gaound Towel	Trivi Commenced On	13 Mar. 1
Sampling Date	114 - 177 - W Collector - 1	Test Completed On	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -
Sampling Location	Kelangsikan Powe Boyer Rau Theat	ie.	
	EQUIPMENT USI	D FOR SAMPLING	

Équiposent Name	Make/Hodel	Liquipment 10	Calibration Oate	Dur Date	
 Gales - Meter Algebrach Gale Data - Children 	n an	 al ey es 	20.117.07	: .:: :	

Sampling Date	Sanspling Time	Day finis Readings dB(A)	Mapt Tone Readings a8(A)	
to the second		.'	_ , -	
:. ·. ·*				
1. j + . + 21				
16 14.21				
: <i>:</i> :	i kan dan j	2.4.9		
	1 I			
10 N N N	2 - 1 -			
	1 (a. 194)	6.6	•	
1.000	ters ters	1.1	•	
	1 124 C 1	· . ·		
1.000	1	6. S		
1.6915	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	·: ·		
· ·	1 197 199 T	. :		
12/14/2011	1993 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 -	·:		
1211-121	·	•.		
1. 1. J. NI	in a start in the	.± •		

Page 1 05 2

Sec. if we

Authorized Signatory

Note: 1 The hist results are universitied on test. 2 Any Convertion of the test repart whill on participal date the report 13.5 mole will be retained for 15 days from the date of reporting carept in save of regulatory camples or oper boals instructed to chemic 4 Providable samples will be distinded encodedly after reporting 15 Onlier no netromstances lab accepts and have to of issued assessory use or insure of test report after invalued of less report to chemical date of respective save of the standard gradient age causes by use or insure of test report after invalue of test report.

. .

(Laboratory Services Division)

TEST REPORT

Key and State Care of the Web in whipe use in the set

2-2 CLOCANON MARINE

Accredited by NABL & NABET, Centified ISO 9021 2015, ISO 14001:2015 & ISO 45001 (2018)

Heport Ru	statistical state		Report Date	18, 24, 12,
Sampling Date	Sampling Table -	Day & nie Head-nos dB(A)		Night Time Heidings dB(A)
12.0014.1	22.00			44.0
12 02123	1			: ·
1. materi	······································	· .		42.6
1.101.21	· · · · · ·			21.1
1.1111	·			
1. 1000	i gara agra i			21.2
121-021	1 A. A. T.			1. ¹
:• * • <i>*</i> * • •	· · · · · · · · ·			֥ .
 Day 3.		Len (Day) Day Tene Lenis Len (Nicht)	-	619 6500(*) 47.9
Night 1	lime.	Leg (Night) Night This Linus	-	55 nH(A)

hear

anan Tanang manang pananan ang Kabupatèn Mananan Panananan

(1) A second se second sec

e de la companya de l La companya de la comp

en la sur la sur la serie a serie

INTERPRESATION:

*** Find of Report *** Page 2 of 2

Authorised Sin Tation

Note: 1 The test results are only to the sample submittee for test. 2. Any Correction of the test report in full or part shell invalidate the report. A Sample will be retained for 15 daws from the date of reporting exception case of regulatory samples or specifically instructed by clarify 0.6 emphable samples will be its actived or need at ny after reporting. 5 Under nois reumstances lab accepts any liability or loss/damage caused by use or misuse of test report alter involving or issued of test report.

(Laboratory Services Division) File of the University of Service Period Service

en esperando de estador esta

TEST REPORT

Web . WAY DON CONSIDER LOT

che la spritsson de com

grand a second

Avared foulby NABL 5 NABET, Certified (SO 9001 2015, ISC 14001 2015 & ISO 45001 / 2018

Report No	2110 14 19 / 121	Report Onto	20 A
Disc, plune	1 · · · · · · · · · · · · · · · · · · ·	Group	and an easily run
Ewued to	M/S Lasser & Incline Limited Heavy Cred	I Infrastructure IC	
	 A feature of ended in 		
	14 A. Deviet - Neter		
Sampling Method	Provide the AMPLA		
Sampled by	the set of second time. Moreover, and		
Sample Description	April Marine and	Sample Reference No	 C. G. S. M. (1990)
Category of Area	Commercial faces	Sample Received 0.5	1 K. (1717)
Equipment Instal od	1.5 millioni Graund Level	Test Contravisted On	12 N.2121
Sumpling Date	(2) (2) (1) (1) (2) (3) (4)	Test Completed On	16 - CAND
Surniphing Line atoms	Alwarth Kunagar (CSE Church		

Equipment Name	Make: Mudel	Equ pinen: (D	Calibration Date	Oue Date
en ander Stebengele. Die bei bei geen	an a	6.01174		19 We

Samp ^a ng Date	Sampling Turn:	Dav Time Readings dR(A)	Night Time Avadings 48(A)	
:. * <i>.</i> ****	: :/	12.2		
	· · · · · .	. •		
	The second second	1 () () () () () () () () () (
	• • •	12.2		
		12.5		
1.1 · · · · ·	10 10 11	·		
1. .	1 10 10 11 1	V11		
12/12/2014		1.1.1		
1:		(4)		
::** : ··	i w ur i	: [:] :		
	i standar i j	1.19		
:	1 14 A 1	· • •		
::	1 · · · · · · ·	Υ		
2000/24	i se na i	:.		
. 16. 22	· · · · ·	2.5		

Page 1 of 2

Action of Signatory

•• •• .

Note 1 The best results are only to the sumple submated for test. 2 Any Correction of the best report in turns tailling a date the report 16 Sumplew will be standard for To days from the date of reporting earling to see of legituding samples or port forally childs and by there. 4 Perior to be samples will be distanced and earliefy their reporting, 5 Under not report and the standard will overlabeling or overlabeling use or misus of test report after involting material functions.

POLLUCARE ENGINEERS INDIA PVT.LTD., (Laboratory Services Division)

TEST REPORT

Group with 12 Loublas set wasers asses Rectinence 120 August

enal (2021), Although 21 Parts at Phan April Main

Accreated by NASE & NABET, Centred ISO 9001/2015, ISO 14001.2015 & ISO 45001 / 2018

Repart No	and the set of the set		Report Date	2.2.6
function Dec.	Constant and Borry	Day Time		Hight Time
Sampling Date	Sentplote T-me	Acadimys (18(A)		Readings dB(A)
a. 2014.a)	10 N. 1			41 -
14 C + 15				s. *
12,000,00	·			•.:
:. ·	· · · ·			A: \
19179-191	· · · ·	•		4.
an salar	·		•	
114.111	· · ·		•	4, 5
1 0.01	· · · ·		•	a. •
D 1		Leg (Day)	-	61.7
Day Time - 		Day time time		45 86 (*)
		Leg (Night)		42.0
		N pH1 Time Louid		55 dll(4)

ence. The second s The second secon

INTERPOETATION.

and End of Report 111 Page 2 of 2

. Authorised S-onalory

Note: LThe test for all same only to the name exacting test to test. 2 Any Correction of the test report in full or participal invalidate the report in 3 Sample will be retained for 15 days from the date of reporting exception case at regulatory statules of specifically unstracted by cloud 14 Percebable surples will be discarded immediately after reparting. Silling in the end of the second state of the second second

(Laboratory Services Division) termination (Content of Services o

en letter and an entrance and the

TEST REPORT

Manual appendix order one
 Available appendix or the second

1999 - A. 200

Accredited by NABL & NABET. Centilied: SO 2001 2015, ISO 14001 2015 & ISO 45001 (2018)

(c) (1) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	Report Date		:		
16	GIOOP	24.5	· :		
M/s Carsen & Foubro Crimited House Civil Introversitie M/s Carsen Conference of Anno Conference of Anno Anno Conference	re IC				
provide a consequence of a point of provide a sequence of the consequence of the consequence to the March States Commercial Ares 1.5 m From Ground Level The Consequence of the consequence of the top of the consequence of the consequence of the consequence of the top of the consequence of the consequence of the consequence of the top of the consequence of the consequence of the consequence of the top of the consequence of the consequence of the consequence of the top of the consequence of the consequence of the consequence of the top of the consequence of the consequence of the consequence of the top of the consequence of the top of the consequence of the cons	Sample Reference No Sample Reference No Lest Companyed On Fest Completed On	: *	• •		
	M/s Larsen & Foubro Limited House Civil Introvtruction *1 - Control (Control Limited House Civil Introvtruction (Control Control (Control (Contro	Group M/s Laisen & Foubro Limited Heavy Civil Influentrations IC M/s Laisen & Foubro Limited Heavy Civil Influentrations IC M/s Laisen & Foubro Limited Heavy Civil Influentrations IC M/s Laisen & Foubro Limited Heavy Civil Influentrations IC M/s Laisen & Foubro Limited Heavy Civil Influentrations IC M/s Laisen & Four Mission Civit Action Sample Reference No Commercial Area Sample Reference No Lising From Ground Level Test Completed On Mission Completed On Test Completed On	State Group Alter M/s Larsen & Foubrie Limited Heavy Civil Introvtructure IC Ministructure IC Ministructure Control Limited Heavy Civil Introvtructure IC Ministructure IC Ministructure Control Limited Heavy Civil Introvtructure IC Ministructure IC Ministructure Control Limited Heavy Civil Introvtructure IC Ministructure IC Ministructure Control Limited Heavy Civil Introvtructure IC Ministructure IC Ministructure Control Limited Heavy Civil Introvtructure IC Ministructure IC Ministructure Control Limited Heavy Civil Introvtructure IC Ministructure IC Ministructure Control Limited Heavy Civil Introvtructure IC Ministructure IC Ministructure Control Limited Heavy Civil Introverse Ministructure IC Ministructure C	Subscription Group Alternation M/s Larsen & Foubro Limited Heavy Civil Introvtructure IC M/s Larsen & Foubro Limited Heavy Civil Introvtructure IC M/s Larsen & Foubro Limited Heavy Civil Introvtructure IC M/s Larsen & Foubro Limited Heavy Civil Introvtructure IC M/s Larsen & Foubro Limited Heavy Civil Introvtructure IC M/s Larsen & Foubro Limited Heavy Civil Introvtructure IC M/s Larsen & Foubro Limited Heavy Civil Introvtructure IC M/s Larsen & Foubro Limited Heavy Civil Introvtructure IC M/s Larsen & Foubro Limited Heavy Civil Introvtructure IC M/s Larsen & Foubro Limited Heavy Civil Introvtructure IC M/s Larsen & Four Civil Introverse M/s Larsen &	No Group Annumber N/S Larsen & Foubro Limited Heavy (rol Introvtructure IC N/S Larsen & Foubro Limited Heavy (rol Introvtructure Introvtructure IC Larsen Meavy (rol Introvtructure Introversen) Larsen Meavy (rol Introversen) Larsen Meavy (rol Introv

		EQUEPMENT USED FOR SAI	M9(146	
Equipment Name	Маке: Мелеі	Equipment ID	Calibration Bule	Nu 0319
and a straight state and a straight	n The tend	8.114.10	· · ·	1.622

Sampling Date	Sampling fime	Day Time Read ags d0(A)	Arghi Tin'u Readings d6(A)
·. · :			· · ·
: ¹	2 - S.A.	•	•
:*.·.	· · ·	·	
	:	···· (
:. ** .	·	÷	
:. ·:	1 11 1 1 1 1 1		
		1.11	
	1.1611.164	6 ₁ - 4	
·. ·		· · ·	
2002	1 12 B.A.	н÷.,	
· · . ··	1.11.120	÷ .	
·	1 12 A 24	19.5	
12 A	i 200 i 100 i 1	12 A.	
:. ·:	17 - L	•	
:.· .	·		
· · .	·	•.	-

Page 2 of 2

Vented S

Authorized Signatory

Note: 1 The text results are only to the sample submotivel for text. 2 Any transition of the text report in full count of a functional date the report of submotively respectively of the rest of the text of the text from the date of report in generatively samples or specifically estimated by clear. After shable samples will be bacar lear income date in specifically estimated by clear. After shable samples will be bacar lear income date in specifically estimated by clear. After shable samples will be bacar lear income date in specifically estimated by clear. After shable samples will be bacar lear income date in specifically estimated by clear the rest of text respectively will be bacar lear income date in specifical structures. Subsection of text rest of text res

. • •

(Laboratory Services Division) and the magnets of

An order to see the second second second

TEST REPORT

enne Mussel uternamiser 17-1 0-10-52 - 1 m - 21 Sm

CONSTRACEOUS AUTOMONY

0.5

. .

Accredited by NABL & NABET, Certified, SO 9001 2015, ISO 14001/2015 & ISO 45001 (2016

Report No	Weiter Colore		Wepoit Date	1.4.2.2
		Day Тляче		եւցիէ Նաթ
Sampling Date	հետ ընդերը կտում	Readings dB(A)		Readings (B(A)
17 v. 11				A :
2	1			12
· · · · · · · · · · · · · · · · · · ·		•		
11.011.0	1	•		A: .
19.00.24	and the second second		-	2011
18.000	· ·		•	
6.00				·. ·
1000	· ··· · · ·		-	÷
Date 1	• •	Leg (Day)	•	67.4
Day v	Day time			65 A0(A)
Night I	1.00.1	leq (Night)	-	41.6
10.5.10		Night from timit	-	55 60(A)

Nate

¹⁰ A second state of the second state of ...

. ..

a. A second s

INTERPRETATION -

(a) the second second second spectra is a second s second se second sec second sec

*** Lod of Report ***

Page 2 of 2

Vor.5 and E

C.L.L. Authorised Signatory

POLLUCARE ENGINEERS INDIA PVT.LTD., (Laboratory Services Division)

TEST REPORT

A Marco (1,2) the Helder Contract of the method of the Helder Contract of the Held

Accreated by NABL 6 NABET. Certifical SO 9001 2015, ISO 14001 2015 & (SO 46001 - 2018

Regard No	THE R MARTE	Report Date	1. A1
Orse plans	1.47 A	Greup	April 1991 Top
asseed to	M/s Lasen & Youhro Comited Heavy Civil In	Mrastructure JC	
	static structure.		
	THE TRUCK HAR CONTRACTOR		
	(1) (1) (1)		
Samp'ny Alethod	1 1 Mil Roll IN		
Sumpled by	 States Constraints (Constraints) 		
Sumple Description	An and the second se	Sample Reference Mo	2000 N 140 1 1 10
Lategory of Alea	Commercial Bags	Sample Revenued Op	· · · · ·
Equipment Installed	2.5 m from Ground Level	Test Commenced On	1. 0.1.1
Sanipling Date	11 JULY 17 17 HULL	Test Completed On	1
Settip" ng Location	≜lagakkum (ndian 0-5		

Едирянскі Мака	Make/ Model	ի դարութով էլ։	Calibration Date	Due Date
na ing pangkana sa	n an tain sealain. Tain tain sealain	1111 (1111) 1111 (1111)		

Sumpling Dute	Sampling Time		Olay Tome			Night Cone	
,			Readings dB(A)			Readings dB(A)	
: * • • • • *	· · · ·		·.				
	i e sai			•			
14.00120	1 x x+1		'	•			
1.000		••••		•			
1144.44	() i x in () (17.1				
11 A.A.			· 5 .	•			
11 I. I. I.	1			-	•		
a. 4 .21	je sevi			•			
: •• .:	14 × 4 ×	•	• .	-			
.:	The second			-			
11 A. A.	· · · · · ·			•			
100.00							
1.1.2	· · · · · · ·						
11000	i se se i		. 1 %				
11 11 2	i see se i i		x +	•			
11.04	· · · · · · ·		·	•			

Page 1 of 2

Ventied 64

Authorised Signatory

Note, Il The test investigate on 5 to the sample substitite (for less) 2 AA, Consubstant (the test report of 10) or part shall invalidate the report of 3 Sample will be returned for 15 days from the date of reporting estept in case of regulatory simples or specifically instructed by the till. C.Ferishable samples will be disarded implies attribute reporting. SUbskin not reportable samples at be disarded implies attribute of test report of the case of resolution by use of test report attribute of test report of test report. SUbskin not report at the disarded implies attribute of the samples attribute of test report attribute of test report attribute of test report attribute of test report.

(Laboratory Services Division) a House (100 Physics and a

on we depend on the periodical

TEST REPORT

tenan safi kenangangan panang West wears for an array on a

Kines are up Aprila in Concerning a service

Accessives by NABL & NABET, Centres (SD 900):2016 ISO 14001 2015 & ISO 45501 . 2016

Report No	1 · · · · · · · · ·		Report Date	11 11 11
Sampling Date	Sampling force -	Day Tune		Night Lone
	······	Rivedings (B(A)	• •	Readings dB(A)
·· · · · · · ·				
11.1.1.1	·	. '		4. 1
			 _ ·	··· ·
to a solution	1 N. 6 N. 7		-	
:. ¹ ••• •	1 - 22 - 2 - 1		• •	· · · ·
2	·		•	11.5
1.11.00	· · · · · ·			
Day 10	 DP	Ung (Duy)	_	67.8
		Day Tone Lynd	-	65 aB(#)
Night fi	. הי	Leg (hight)		43.2
		Night Turic Lumit		55 (IB) A)

Models - Andrea Statistical Control of the Antonio Markoving Cont

n an a chairte an an

INTERVICE 1ATCON

na anna an ann an ann an 1999. Tha chuid ann an Aonaichtean ann an Aonaichtean an an Aonaichtean ann an Aonaichtean Aonaichtean Aonaichtean ann an Aonaichtean Aonaichtean ann an Aonaichtean Aonaicht

*** End of Report *** Page 2 of 2

.

- --

1 and Author yest Superiory

Note: 1 The test sessible are only furthe sample solar ited for test. 2 Any Correction of the 5-st report of UT or participal case thereport -3 Sumple will be related for 15 days from the date of reporting except in case of regulatory sumples or specifically instructed by clique - 4 Per Chable samples will be it to indeed incrediately after reporting. Situation of constraines tablatoopticany habitity or toss/durage cut and as an or misuse of test import offer invoking in issued of test report.

Ye clied By

(Laboratory Services Division) and allocations for an allocation terresearcher despression

TEST REPORT

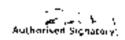
(b) and (c) Systematic groups of the systematic groups of the systematic systematic groups.

Control (March)

Accredited by NABL & NABET, Certified ISO 9001 2015, ISO 14001 2015 & ISO 46601 - 2018

Réport Ny	F 11 1 1 1 1 1 1 1	Report Oute	· · · · · · · · · · · · · · · · · · ·
Disciption	Teaching and the second s	Group	Mer en el sur
lisued to	Max Larvan, <mark>A Houbra Linuted Howey C of In</mark> Anti- Control of the Anti- (AAA - C A an Inc. 1999) Control of the	histocoure to	
ismpt og Heland iampted by iample Description iample pescription	(NAMES – 1949) RADONE Marina Marina Marina (NAMER Radon Marina Marina) Commendual Ar ica	Sample Reference No Sample Reference No	Roko na kato kato Na kato
iampment Costation waapping Cure waapping Curetium	1.5 Milison Broard Level Chick School (Chick School) Vergebakeans: Aviole School	Test Convillenced On Test Convillenced On	

<u> </u>		EQUIPMENT USED FOR SAM	4PL146	
Ligis provin humo	Make/ Model	Louiphism 10	Califications Date	Our Date
No. 1 Contraction	an an an an	· •1.13.41	·	:


Sampling Date	Samp" по Тизич	Duy Time Readings dk(n)		· —	Night frime Resolutions 60(A)	
:: · · · .		- = 7				
		1.5				
: •	· · · · · · · · ·		• •			
::				• •		
	1 a a 1	N 1	•			
1.14			i	-		
:.* .*	·	· · ·				
: •	- 14 (14 - 1 14 - 1		-			
1.13. 1	1 A. A. B.	·:*	•			
· :.	· · · · · · · · · · · · · · · · · · ·	10. S	•			
1.1.1	1 19 1 I I	57.4	•			
.: ••			•			
:	·	···				
:. ¹ .2 .:	· · · · ·	· *	•			
1		· · ·	•			
.::	· . · ·		· •	-		

Page 1 of 2

--- . ---

Sule 1. De les results an eoly to the sample submitted for test 12 Any Cones Long⁴ (Select report of Cronovaldate the report of Somple sub-berefaced for O Cays from the date of reporting except in case of reputatory subplex or specifically instruction by them 1.4 Personable surplex will be disturbed where welly after reporting i S.Under rock a unstances ab arrepts any initiality or taska in age raused by the anonyte of restruction type of alter invoicing the standed merit well after reporting. S.Under rock a unstances ab arrepts any initiality or taska in age raused by the anonyte of restruction report after invoicing to standed merit after invoicing the standed merit of the trade-

(Laboratory Services Division) neta agri marca e e

Kamangan - Die Wysel-Aust

An and the Article Case of the theory

......

TEST REPORT

Construction and the second THE ABOUTS THE DESCRIPTION

Accredited by NABL & NABET, Centrel (SO 9001 2015, ISO 14001 2015 & (SO 45001 - 2018

: -.

Report fio	 3 (2.15, 26, 20) 	Rep	satúsie (<u>e.e.</u>)
h a secolution D ab a		Day tone	High Time
Sampling Date	Sampling Time -	Readings (D(A)	Reader ys dB(A)
111-44-11			s1 5
:::	·		27.5
14 14 1241	· ·· · · ·		
4	· · · · · · ·		211
	· . · · ·		31
di tati di	· · · · · · · · ·	•	2+ ¹
a contra a		•	·· .
120000	1	•	:.
Day 5	· ·	Leg (Day)	617
Day 4		Day Time Lenit	65 d0(A)
Night T	um	Lea (Njahs)	435
		Night Finte Limit	55 d6(A)

hoter

Monumerican Control Control

IN FEE PREPATEDS -

n na seu de proprio de la construcción de la construcción de la construcción. Nomenta de la construcción de la co Nomenta de

*** End of Report *** Page 2 of 3

t izv Verded U/

) Authorised Signatory

Note: 1. In Statistical Statistical provided for lessing day Connection of the test report in full or start shall used differences (1) sample will be retained for 15 days from the participle vector in case of regulatory samples or specifically instructed by client. A.Perisliable samples will be discussed immediately after reporting. 5 Didefinities in constant in the property any hability or law/ famage classed by use or missive of text report of text report

(Laboratory Services Division)

TEST REPORT

Second 22, and give an experiment.
 The formula contract of the second seco

ниточно и Ирали Аразонали. Спорта с селото

Accreated by NABL & NABET, Certilled, SD 9001 2015, ISC 14001 2015 & SD 45001 , 2018

Report No	Million ser	Report Once	and the set
Discipline	ч	Group	American Carl
Exceed to	My starson & Toabin timited Heavy Field Intrastructure	Ξic -	
	SPRID AND STATES THE		
	144 Andrew Charles April 1		
	An		
Sampling Mythod	(Sec. 9.1.1.9.1.94), 199		
Sampled Sv	a development of a paper of the transmission		
Sample Description	A sector sector and a sector sec	Sample Ketwanter No	10 N 64 (0 A 11
Category of Area	Commercial Avea	Sumple Kevence On	
Equipment Installed	1.5 indexed General Level	Text Common 64 Oa	·
Տատքիանը Օսիտ	(c) Comparison (C) A COMPANY	Text from plasted On	1.11.11
Sampling Location	Karapat Kam Stations & LA Star Verde		
	EQUIPMENT USED FOR SAMPL	ING	

ենարունող հատո	Hake/Hadel	Equipment ID	Calibration Oxte	Due Date
A REAL PROFESSION	200 a. († 198	en 1347, 66	12.41	

		Cay Tuse	Night Tube
Sampling Culie	Sampling Time	Avadings dB(A)	Readings (B(A)
.: •		<u></u>	
12 14 1 14	·	10 A	
: :	· · · · ·	•.	
11 A S S	1 a	'	
:. ·. /:	·		
:	·		
a - 1271	1 is 🗍	· · ·	
1.171.1	· · · · ;: ·	-	
:	· · · · ·	• :	
: ·· ·	1. w. it s. [: • 2	
11 1.10	· · · · · ·	÷. ·	
10.00		··· · ···	
:. . .:	· · · · ·	·*.	
11 S. 191	- 45 ° 44		
:.···			
:: >	in a strategy of the	1.2	

Page 1 of 2

同時的 verified eff.

Authonised Son alory

Note 1 the test results are universities ample submitted for test 12 Any Correction of the test report in full or part shall may indete the report 13 Sumple will be retained to 15 align from the date of reporting examption uses of registry sumples or specifically instructed by chemp. All cristiable sumples will be discriming after reporting 5.5 Under notific instances to accepts any liability of fors/four agriculture of more of test report after involting or specific test.

(Laboratory Services Division)

And looked their hans All Kanashari Shini Aliyahan et a caracteria 100 00044267033761000337777555 final and parts in a success West Adding the system of the

TEST REPORT

Actred/action NABL & NABET, Certified ISO 8001 2015, ISO 14001 2015 & ISO 450011 2018

Heport Na	···.: ** *		Report Date	19 Jan 19
	·	Day Tome		Night Time
Samp' ng Dale	չսողջքող Նութ է։	Readings (B(A)		Readings dB(A)
	· · · · · · · ·			
	·		•	
	· · · · · · ·		- · · ·	4: -
· · · :	· · · · ·		•	÷
	· : '			14. N
1	· · · · · · · · · · · · · · · · · · ·		•	4 :
:	±			
::	· · · · · ·		•	÷+
Day Ti		(rq (Day)		60 5
bay II	-n·	Day Time Limit		45 d 0 (4)
Yight T		Le <u>q (Aig</u> ht)		وړه
114111		Night Time Limit		55 dP(A)

Note: A first of X - Yi Yi Yi X - K - Si A - K - Si A - S

INTERPRETATION

(a) and (a) we see that the providence of the

*** End of Report *** Page 2 of 3

Venified Di

Authorised Signatory

(Laboratory Services Division)

TEST REPORT

Marandon (Schurch)
 Marandon (Schurch

Cambra - Charl, Agreen and

Accredited by NABL & NABET, Centified (SD 5001 2016, ISO 14001 2016 \$ (SD 45001 - 2018

Risport I/D	(C) C (1) (1) (2)	Report Date	10 · · · · · · · · · · · · · · · · · · ·
theraphon	2.76 Ja	61060	You we show
Gesond ha	M/s Larsen & Foultrin Limited Meavy Civil Conference Strate Proc Civil Activity Civil (1) Civil Activity Civil (1) Civil Civil (1)		<u> </u>
Sampling Herhad Sanglind by Samplin Description Calegory of Area geophysic Fastalles Sanshity Cale Sanshity Cale	(Alexandri frances) 1. Sul Tura england (Alexandri Standard) 20 Alexandri Alexan Commencial Alexand 1. Sum from Gradual Levini 1. Alexandri Standard Valasar akakkara - Kesanardina	Semple Acteurare No Semple Researed On Test Commenced On Test Completed On	Propinsi Astronomica Secondaria Secondaria Professiona

		EQUIPMENT WATCHING Sharp	C1986		
Equipation Name	Make/ Model	Educorie at 30	Call bration Date:	Dan Dute	<u> </u>
and the second second	• • •		•		1
and to business		11 12 10 11 H	1.1.2.2	11 (1971) -	

Sampling Date	Տուտը։ ույ Հատո	Duy Time	Night Time
11.2.201	· · · · ·	Beadings (0)	Rivadi nga dB(A)
		5 5	
	· · · · · ·		
:		⊷.	-
1. 1. 10	· · · ·	·.	•
	: :	• •	-
1. .		· ·	
.1 • • • 1.3			-
·: ·		Q.,	• •
*. ?:	in state in		···· ·
·····	a 11 an		
- 11 - 11 - 1		· · · · ·	-
::	. • • <u>•</u>		
1. · · · · ·		144	
11	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	· · · ·	-
14 A.A.	. 1	5 - C C C C C C C C	• • • •

Page 1 of 7

Authorized Sugnatury

:

Note 1 The test results are only both sample subjected for less (2 AnyConnection of Inetest report in full or parts have been expert a Sumple will be report as an ple will be report as an other samples of specific ally instructed by climate 4 Per shable samples on the distanted monohistery after report by the instruction will be distanted monohistery after report by the instruction will be distanted monohistery after report by the instruction will be distanted monohistery after report by the instruction will be distanted monohistery after report by the instruction will be distanted monohistery after report by the instruction will be distanted in the instruction of the i

(Laboratory Services Division)

TEST REPORT

Figure 1997, State 1997, Aug. William Alberta Garage

Sheet States

Francisco (State Francisco) Control and South Margarekama

Accredited by NABL 8 NABET, Centred ISC 9001 2015, ISD (400° 2015 & ISC 4500) - 2018

Repart No	Call to the Sale		Report Date	2.02
Samp: ng Date	Sumpling Time -	Du, Tulve		Night Time
		Incudings db(A)		Readings dB(A)
	i 🔥 .			···
^:	_ / i [17 F
:			-	֥ .
	and the second sec		•	4
5 S			•	-0 W
1. ¹ :	in the second		•	
** *	· · · · · · · ·		-	4. 4
•. • <i>.</i> •.•	1	•		
- 634	Tirang .	Log(Qay)	÷. •.	61.3
Nıştı olu	finne	Day Time Linxi Lug (Night) Night Fame Limit	-	65 dB(A) 42.7 55 (B(A)

neede An an an an Anna an Anna an Anna an Anna an Anna Anna Anna an Anna an Anna an Anna Anna Anna Anna an Anna Anna Anna Anna Anna Anna an Anna an Anna A

INTERPRETATION

the maximum states states and ... 111 March 1990

. .. . and the second ·, ·,· . . 2

> 111 End of Report 111 1100 2 of 2

بالجميد تتبغن Authorized Signation

Note: 1. The limit reput/starty only to the hample submitted for result2 Any Clanection of the test report in hit or part shall involuding the report in 3 formale will be relained for IS down from the date of reporting everytion case of regulatory samples or specifically instructed by chemical Perioduble Particles According to distance dimendiately after reporting. S. Under an encomstation tablaccepts any liability or low internage caused by one or misuse of test repair after inter onglocussed of test report.

. .

- ---

(Laboratory Services Division) Color (2013) The Reference of the comparison Field Approvements

TEST REPORT

Frankishi (14.2008), (2007) and (25.2009), (2007) (2007) [Control of the product of the produ

Accredited by NABL & NABET, Cettified ISO 9001 2015, ISO (4001 2015 & ISO 4500) - 2018

Acport No.	10 16 N X.21	Report Date	16 A. N.
Drscip me	1	Graup	<u></u>
Chiued to	Historie Roman - Control (1994) - Control (1995) - Control (1995) - Control (1995) - Control (1995) - Control (1995)		
Sampling Methodi Sampled by	le l'an de la seconda de la companya de la companya de la seconda de la companya de la companya de la companya		
Simple Description	16 . 16	Sourgie Reference No	CONTRACTOR -
Callegen y 14 4rea	Commercial Area	Sample Received On	1
ignitized training	1.5 m from Ground Level	Test Convenced On	
Sumpling Date	end of the figure and the	Test Completed On	·· · · ·
sampling torution	Potter Station - HasibCo		

·		IQUIPMENT USED FOR SA	I M PL ING	
■ quiµment Manne	Make/Mode4	Equipment 1D	Estilitations Date	Due Date
An an an an an Array and Arr	· · · · · · · · · ·	10.9 million	in the second	:•

Sampling Date	Sampling from	Quy Time Reastings (B) (A)		Night Finis Readings of As	_
1.72.1		· ·		·	
1.1.16.1					
• • • • • • •	· · · · · ·	w 2			
10.000	· ·				
11 A. 1	1 10 11 10 1 1		-		
	- 11 - 11 - 1 - 11 - 11 - 11 - 11 - 11				
	· . ·	1.62.2	· -· -	· •	
1.011.01			•		
5.55.1	1 1 1 1 1 1	· · · ·	-		
·			· -		
(1) (()	1		-		
1 200	· · · · · · · · · · · · · · · · · · ·	· .	•		
· · · · · ·	14 ×	· · · · ·	•		
1.11	· · · · · ·	• •	•		
20.00.000	1. 1. 1. 1.		•		
·· · · · · ·	<u>' :</u> '	. 7			

Page 1 of 2

Venturd Di

AulPorved Segnatory

hole 1 The instruments are only to the same examinated for test. 2. Any Connection of for test report infullion part shall use? date the report is Sonto e will be related for 15 days from the dute of reporting except in case of regulator, complex or specifically instructed by chemical date the report is Sonto e will be related for reporting. 5 University comparises to be accepts any hybrid by particles (build or used of respect of instance) before not determined of sectors part or porting. 5 University comparises to be accepts any hybrid by particles (build or used of respect of instance) before not accept also date to report of the sector of the se

(Laboratory Services Division) FOR 1012 1909 7 12

45 000 44 55 42 9101 000 78012 000 10 teache concernence in

TEST REPORT

Arts covers in second accord

na malankawa, Arabaka See 5 105 P

Accredited by NABL & NABET, Certilied ISO 9001 2015, ISO 14001(2015 & ISO 4500) - 2018

Heport Na	1.40 (Charles -		Repain Date	19 (A. 21)	
Sampling Date	Տարըայ քաթո	Day time		Sight Floor	
,	3.000	Readings d0(A)		Readings (B(A)	
4 . H	22.0 (2000)		•		
14 1.121			-	·.	
: *•	1.+ h. ¹			41 ¹	
4 10 12	· · · · ·			<i>н</i> .	
1.000.00	· · ·			22 N	
1.000.00	1 C (* 1	•		4	
1 N.1.1				97 - L	
10.0000	i_wa w <u>z</u> (*	••••		4.2	
Uay Ti		Leg (0.γ)		61.6	
		Day Turne Lineat		65 aH(A)	
N ght •	ime .	teq (Naght)		42.0	
	-	Nodel Frank Losat		55 CB(A)	

Note

(1) A first of the second s

en alere and see a see ale

INFI HORI PATFON

الله المحلي المحل

*** End of Report *** Page 2 of 2

الما تسبية المحاد ALThomsel Signatory

hole 1 (hetest results dependention) enables tred for text (2 Any Correction of the restrepart in to (or persiste), evaluate the report (3 Sumplime if the returned for 15 days from the date of regenting exception case of regentiony simples or specifically in the by ment 14 Per shable samples will be discarded immediately alter reporting its Undering traumistances, ablassingts any haladay or favo/ramage caused by use or misuse of sest report after investing on used of this trapport.

ECO SERVICES INDIA PVT. LTD.

(LABORATORY DIVISION)

150/IEC 17025:2017 Accredited Testing La	boratory by	NABL (QCI) Vide Certificate Number TC-5664					
	Test Repo	ort					
Report No.: ESIPL/EMS/2021/07/3310Customer Name: M/s. CHENNAI METRO RAIL LIMITED& Address: CMRL Depot, Admin Building, Poonamalle High Road Koyambedu, Chennai - 600 107.		Date of Monitoring 19.07.2021 - 20.07.2021 Date of Registration 20.07.2021 Sample Code E-4460 Test Commenced on 20.07.2021 Test Completed on 24.07.2021 Report Issuing Date 26.07.2021					
Sample Description	t Ambie	nt Noise (in dB (A) Leq)					
Category of Area/Zone Sampling Plan/Procedure Sample Location	ntegory of Area/Zone Commercial Area mpling Plan/Procedure IS : 9989 : 2014						
Time of Monitoring (Hrs)		Noise Level in dB (A) Leq					
6.00-7.00		68.9					
7.00-8.00		63.5					
8.00-9.00		69.7					
9.00-10.00		68.4					
10.00-11.00		69.9					
11.00-12.00		65.3					
12.00-13.00		64.7					
13.00-14.00 14.00-15.00 15.00-16.00		65.2 68.5 65.7					
					16.00-17.00		65.2
					17.00-18.00 18.00-19.00	_	66.3
9.00-20.00		64.7					
20.00-21.00	_	63.8 68.6					
21.00-22.00	_	63.2					
22.00-23.00		63.5					
23.00-24.00		58.6					
24.00-1.00		58.4					
1.00-2.00		55.9					
2.00-3.00		56.7					
3.00-4.00		56.4					
4 00-5 00		55.7					
5.00-6.00		56.3					
Day Lequivalent (6.00 AM- 10.00 PM)		66.9					
Night Lequivalent (10.00 PM - 6.00 AM)		57.0					
L10		68.8					
L50		64.7					
L90		56.3					
Lmin	-	55.7					
Lmax lote:		69.9					

Note:

The Noise Pollution (Regulation and Control) Rules 2000-Ambient Air Quality Standards in Respect of Noise.Leq is an energy mean of the noise level at Commercial area over a specified period of day time = 65 dB(A) Leq and Night time = 55 dB(A) Leq.End of Report.....

Verified by

M · Boeg . (M. Beer Mohamed)

LANDY S Note: § This report relates only to the particular sample submitted for test. § Any correction not attented shall invalidate this report. § This report shall not be reproduced in full or part without our written approval. § The test samples will not be retained for more than 7 days from the date of issue of test report unless otherwise requested by the customer.

Registered Office & Laboratory:

No.1/134, Dhanakotiraja Street, Sundar Nagar, Ekkaduthangal, Guindy, Chennai - 600032, Tamil Nadu, India Phone: (044) 30683067/43102232 E-mail: info@ecoservices.in, Web: www.ecoservices.in

ISO/IEC 17025:2017 Accredited Testing Laboratory by NABL (QCI) Vide Certificate Number TC-5664				
	Test Report			
Report No.: ESIPL/EMS/2021/07/3311Customer Name: M/s. CHENNAI METRO RAIL& Address:CMRL Depot, Admin Building, Poonamalle High Road Koyambedu, Chennai – 600 107.	Date of Monitoring 1 19.07.2021 - 20.07.202			
Sample Description Category of Area/Zone Sampling Plan/Procedure Sample Location	Ambient Noise (in dB (A) Leq) Commercial Area IS : 9989 : 2014 Mullaithottam(NQ - 2)			
Time of Monitoring (Hrs)	Noise Level in dB (A) Leq			
6.00-7.00	66.3			
7.00-8.00	64.7			
8.00-9.00	70.2			
9.00-10.00	66.4			
10.00-11.00	63,1			
11.00-12.00	64.1			
12.00-13.00	65.2			
13.00-14.00	61.5			
14.00-15.00	60.8			
15.00-16.00	68.3			
16.00-17.00	67.2			
17.00-18.00 18.00-19.00	63.8			
1 Contraction of the second se	63.2			
19.00-20.00 20.00-21.00	63.7			
21.00-22.00	67,3			
22.00-23.00	62.4			
23.00-24.00	61,4			
24.00-1.00	60.3			
1.00-2.00	59.8 61.2			
2.00-3.00	56.4			
3.00-4.00	56.3			
4.00-5.00	57.2			
5.00-6.00	56.9			
Day Lequivalent (6.00 AM- 10.00 PM)	65.8			
Night Lequivalent (10.00 PM - 6.00 AM)	58.7			
L10	67.3			
L50	63.2			
1.90	57.0			
Lmin	56,3			
Lmax Jote:	70.2			

Note:

The Noise Pollution (Regulation and Control) Rules 2000-Ambient Air Quality Standards in Respect of Noise.Leq is an energy mean of the noise level at Commercial area over a specified period of day time = 65 dB(A) Leq. End of Report.

Verified by

M. Barg. (M.Beer Mohamed)

co Syrvices India Pvt. Ltd., TVALLA (R.Sivakumar) Authorized Signatory

Note: § This report relates only to the particular sample submitted for test. § Any correction not attested shall invalidate this report. § This report shall not be reproduced in full or part without our written approval. § The test samples will not be retained for more than 7 days from the date of issue of test report unless otherwise requested by the customer.

Registered Office & Laboratory:

No.1/134, Dhanakotiraja Street, Sundar Nagar, Ekkaduthangal, Guindy, Chennai – 600032, Tamil Nadu, India Phone: (044) 30683067/43102232 E-mail: info@ecoservices.in, Web: www.ecoservices.in

est Repor	t	
	Date of Monitoring 19.07.2021 - 20.07.2021 Date of Registration 20.07.2021 Sample Code E-4462 Test Commenced on 20.07.2021 Test Completed on 24.07.2021 Report Issuing Date 26.07.2021	
Ambient Noise (in dB (A) Leq) Commercial Area IS : 9989 : 2014 Poonamallee By Pass (NQ - 3)		
	Noise Level in dB (A) Leq	
	62.0	
	64.6	
	63.1	
	68.7	
	63.4	
	62.1	
	63.8	
	62.3	
	64.3	
	67.6	
	68.8	
	66,3	
	64.6	
	66,7	
	63.9	
-	62,5	
	68.7	
	61,5	
	60.4	
-	59.7	
	56.8	
-	58.5	
-	59.2	
	56.5	
-	65.7	
	59,3	
-	68.4	
-	63,3	
-	58.7	
	56.5 68.8	
	MITED Ambie Comm IS:99	

Note:

The Noise Pollution (Regulation and Control) Rules 2000-Ambient Air Quality Standards in Respect of Noise.Leq is an energy mean of the noise level at Commercial area over a specified period of day time = 65 dB(A) Leq and Night time = 55 dB(A) Leq.End of Report.....

Verified by

M. Bourg. (M.Beer Mohamed)

ices India Pvt/ Ltd., (K.Sivakumar) Authorized Signatory

Note: § This report relates only to the particular sample submitted for test. § Any correction not attested shall invalidate this report. § This report shall not be reproduced in full or part without our written approval. § The test samples will not be retained for more than 7 days from the date of issue of test report unless otherwise requested by the customer.

Registered Office & Laboratory:

No.1/134, Dhanakotiraja Street, Sundar Nagar, Ekkaduthangal, Guindy, Chennai – 600032, Tamil Nadu, India Phone: (044) 30683067/43102232 E-mail: info@ecoservices.in, Web: www.ecoservices.in

	tory by INA	BL (QCI) Vide Certificate Number TC-5664
Te	st Report	
Report No.: ESIPL/EMS/2021/07/3313Customer Name: M/s. CHENNAI METRO RAIL LIMITE& Address:CMRL Depot, Admin Building, Poonamalle High Road Koyambedu, Chennai – 600 107.		Date of Monitoring 19.07.2021 - 20.07.2021 Date of Registration 20.07.2021 Sample Code E-4463 Fest Commenced on 20.07.2021 Test Completed on 24.07.2021 Report Issuing Date 26.07.2021
Sample Description Category of Area/Zone Sampling Plan/Procedure Sample Location	Report Issuing Date 26.07.2021 Ambient Noise (in dB (A) Leq) Commercial Area IS : 9989 : 2014 Poonamallee Bus Terminus (NQ – 4)	
Time of Monitoring (Hrs)		Noise Level in dB (A) Leq
6.00-7.00		65.6
7.00-8.00		68,4
8.00-9.00		63.8
9.00-10.00		64.2
10.00-11.00		69.9
11.00-12.00		69.8
12.00-13.00		64.5
13.00-14.00		66.3
14.00-15.00		67.9
15.00-16.00		64.7
16.00-17.00		64.3
17.00-18.00		66.2
18.00-19.00		67.8
19.00-20.00		65.2
20.00-21.00		67.7
21.00-22.00		65.8
22.00-23.00		64.9
23.00-24.00		58.4
24.00-1.00		59.2
1,00-2,00		56.8
2.00-3.00		57.7
3,00-4,00		55.8
4.00-5.00		56.7
5.00-6.00		58.3
Day Lequivalent (6.00 AM- 10.00 PM)		67,0
Night Lequivalent (10.00 PM - 6.00 AM)		57.7
L10		68.3
1.50		64.8
1.90	(57,1
Lmin		55.8
lote:		69.9

The Noise Pollution (Regulation and Control) Rules 2000-Ambient Air Quality Standards in Respect of Noise.Leq is an energy mean of the noise level at Commercial area over a specified period of day time = 65 dB(A) Leq and Night time = 55 dB(A) Leq.End of Report.....

Verified by

M. Beef. (M.Beer Mohamed)

ices India Pvt. Ltd., hvall (R.Sivakumar) Authorized Signatory

Note: § This report relates only to the particular sample submitted for test. § Any correction not attested shall invalidate this report. § This report shall not be reproduced in full or part without our written approval. § The test samples will not be retained for more than 7 days from the date of issue of test report unless otherwise requested by the customer.

Registered Office & Laboratory:

No.1/134, Dhanakotiraja Street, Sundar Nagar, Ekkaduthangal, Guindy, Chennai - 600032, Tamil Nadu, India Phone: (044) 30683067/43102232 E-mail: info@ecoservices.in, Web: www.ecoservices.in

ISO/IEC 17025:2017 Accredited Testing Laboratory by NABL (QCI) Vide Certificate Number TC-5664						
Test Report						
Report No.: ESIPL/EMS/2021/07/3314Customer Name: M/s. CHENNAI METRO RAIL& Address:CMRL Depot, Admin Building, Poonamalle High Road Koyambedu, Chennai – 600 107.	Date of Monitoring19IMITEDDate of Registration20Sample CodeE-Test Commenced on20Test Completed on24	.07.2021 – 20.07.2021 .07.2021 4464 .07.2021 .07.2021 .07.2021				
Sample Description Category of Area/Zone Sampling Plan/Procedure Sample Location	iption Ambient Noise (in dB (A) Leq) rea/Zone Commercial Area n/Procedure IS : 9989 : 2014		Ambient Noise (in dB (A) Leq) Commercial Area IS : 9989 : 2014		Iple DescriptionAmbient Noise (in dB (A) Leq)egory of Area/ZoneCommercial AreaIpling Plan/ProcedureIS : 9989 : 2014	
Time of Monitoring (Hrs)	Noise Level in dB (A) Leg				
6.00-7.00 7.00-8.00 8.00-9.00 9.00-10.00 10.00-11.00 11.00-12.00 12.00-13.00 13.00-14.00 14.00-15.00 15.00-16.00 15.00-16.00 17.00-18.00 18.00-19.00 19.00-20.00 20.00-21.00 21.00-22.00	54.3 56.7 54.2 55.6 58.3 57.3 59.6 60.2 62.4 59.8 57.6 63.4 57.3 57.3 59.8 57.6 63.4 57.3 55.3 54.1					
22.00-23.00 23.00-24.00 24.00-1.00 1.00-2.00 2.00-3.00 3.00-4.00 4.00-5.00 5.00-6.00 Day Lequivalent (6.00 AM- 10.00 PM) Night Lequivalent (10.00 PM - 6.00 AM) L10 L50	53.8 52.9 53.7 54.2 53.1 52.8 50.9 53.7 59.6 53.1 59.6 53.1 60.1 55.5					
L90 Lmin	53.0 50.9					
Lmax	63.4					

Note:

The Noise Pollution (Regulation and Control) Rules 2000-Ambient Air Quality Standards in Respect of Noise.Leq is an energy mean of the noise level at Commercial area over a specified period of day time = 65 dB(A) Leq and Night time = 55 dB(A) Leq.End of Report.....

Verified by

M. Beer (M.Beer Mohamed)

Services India Pvt. Ltd., Suaren (R.Sivakumar) Authorized Signatory

Note: § This report relates only to the particular sample submitted for test. § Any correction not attested shall invalidate this report. § This report shall not be reproduced in full or part without our written approval. § The test samples will not be retained for more than 7 days from the date of issue of test report unless otherwise requested by the customer.

Registered Office & Laboratory:

No.1/134, Dhanakotiraja Street, Sundar Nagar, Ekkaduthangal, Guindy, Chennai – 600032, Tamil Nadu, India Phone: (044) 30683067/43102232 E-mail: info@ecoservices.in, Web: www.ecoservices.in

(Laboratory Services Division)

If HIG - 5152, TNHB Phase I & B, Kamarajar Road, Ayapakkam, Chennai - 600 072. Ph : +91 44 2682 3190 / +91 73977 96831 Email: Isb@pollucareinida.com Web : www.pollucareinida.com

Accredited by NABL & NABET, Centified ISO 9001:2015, ISO 14001:2015 & ISO 45001 : 2018

Report No	: PCEL/TR-AAQ-3537	Report Date	22.06.2022
Discipline	: Chemical	Group	: Atmospheric Pollution
Issued to	M/S ITD Comentation India Limited, R.M.S Tower ,No.2, Mahalakshmi Street, T.Nagar, Chonnai -600 017.		
Project Name Sampling Method Sampled by Sample Collected Date Sample Description Qty of Sample Received Sample Condition Sample Condition	CMRL/CON/PHASE-II/C4/UG-1/2022 :15 5182 (Part 23) 2006 : Laboratory :16.06.2022 : Ambient Air : Filter Paper & 30ml : Filt for Analysis : Light House Location	Sample Reference No Sample Received On Test Commenced On Test Completed On	: PCEI/AAQ-128-06-22 17.06.2022 17.06.2022 22.06.2022

	Weather Condition
Ambient Temperature	1 33°C
Relative Humidity	: 61%
Climate Condition	Passing Clouds
Predominent Wind Direction	: 50

5.No	Parameters	Units	Test Method	Results	NAAQ Standards for Industrial, Residential, Rura and Other Area
1	Sulphur dioxide (as SO ₂)	µg/m ³	15 5182 (Part 2) 2001 (RA 2017)	31.5	00
2	Oxides of Nitrogen (as NO ₃)	pg/m ²	IS 5182 (Part 6) 2006 (RA 2017)	23.1	80
3	Raspirable Particulate Matter (PM ₁₀)	µg/m³	15 5182 (Part 23) 2006 (RA 2017)	60.7	100
4	Respirable Particulate Matter (PMJ3)	pg/m ³	15 5182 (Part 24) 2019	28.4	60
5	Orone (as O ₁)	µg/m²	IS 5182 (Part 9) 1974 (RA 2019)	15.3	180**
6	Lead (as Pb)	hā/m3	15 5182 (Part 22) 2004 (RA 2019)	80L(0L:0.05)	L
7	Carbon Monoxide (as CO)	/mg/m ¹	PCEI/SOP/AAQ/003	BOL(OL:1.14)	4==
0	Ammonia (as NH ₃)	ug/m³	15 5182 (Part 25) 2018	7.21	400**
9	Benzene (C _e H _e)	ug/m³	15 5182 (Part 11) 2006 (RA 2017)	6DL(DL:1.0)	3*
10	Benzo (a) Pyrene (BaP)	ng/m*	15 5182 (Part 12) 2004 (RA 2019)	BDL(DL:1.0)	1*
11	Arsenic (as As)	ng/m³	PCEI/SOP/AAQ/002	BDL(DL:2.0)	6*
12	Nickel (as Ni)	no/m ³	PCE1/SOP/AAQ/002	BOL(DL:10)	20+

Note: I) NAAQS - National Ambient Air Quality Standards Issued by CPCB (Central Pollution Control Board) in 2009 I) TWA - Time Weighted Average III) **- TWA for 1. Hour IIIV) *: TWA for Annual

BOL - Below Detection Limit) DL - Detection Limit

...... End of Report Page 1 of 1

Authorised Signals

Note: 1. The test results are only to the sample submitted for test. 2. Any Correction of the test report in full or part shall invalidate the report. 3. Sample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by client. 4. Perishable samples will be discarded immediately after reporting. 5. Under no circumstances lab accepts any liability or loss/damage caused by use or misuse of test report after invoicing or issued of test report.

(Laboratory Services Division) # HG - 0152, TMH0 Phase L& II, Kamarajar Road, Avagatikam, Chenoal - 600 077. Ph : +91 44 2682 3190 / +91 73977 96831 Email: labd9pollucareinida.com Web : www.pollucareinida.com

Accredited by NABL & NABET, Certified ISO 9001:2015, ISO 14001:2015 & ISO 45001 - 2018

Report No	: PCEL/TR-AAQ-3538	Report Date	: 22.06.2022
Discipline	: Chomical	Group	: Atmospheric Pollution
Issued to	M/S ITD Comentation India Limited , R.M.S Tower ,No.2, Mahalakahmi Street, T.Nagar, Chennal -600 017.		
Project Name Sampling Method Sampled by Sample Collected Date Sample Description Qty of Sample Received Sample Condition Sampling Location	: CMRL/CON/PHASE-II/C4/UG-1/2022 :15 5182 (Part 23) 2006 : Laboratory : 16,06,2022 : Ambient Air : Filter Paper & 30mi : Fit for Analysis : Bharathidasan Road Location	Sample Reference No Sample Received On Test Commenced On Test Completed On	PCEL/AAQ-170-06-22 : 17.06.2022 : 17.06.2022 : 22.06.2022

Ambient Temperature	1.34°C
Relative Humidity	: 57%
Climate Condition	: Scattered Clouds
Predominent Wind Direction	I NE

5.No	Paransotera	Units	Test Method	Results	NAAQ Standards for Industrial, Residential, Rural and Other Area
1	Sulphur dioxide (as SO ₂)	pg/m³	15 5182 (Part 2) 2001 (RA 2017)	10.3	80
2	Oxides of Nitrogen (as NO ₂)	µg/m²	IS 5182 (Part 6) 2006 (RA 2017)	18.5	80
3	Respirable Particulate Matter (PM ₁₀)	µg/m³	IS 5182 (Part 23) 2006 (RA 2017)	56.8	100
4	Respirable Particulate Matter (PM _{2.5})	µg/m³	IS 5182 (Part 24) 2019	27.6	60
5	Ozone (as O ₃)	µg/m³	15 5182 (Part 9) 1974 (RA 2019)	11.9	180**
6	Lead (as Pb)	pa/m ³	15 5182 (Part 22) 2004 (RA 2019)	BDL(DL:0.05)	1
7	Carbon Monoxide (as CO)	mg/m ²	PCEL/SOP/AAQ/003	BOL(DL:1.14)	4**
8	Ammonia (as NH ₁)	Mil/us	15 5182 (Part 25) 2018	9.63	400**
9	Benzene (C ₆ H ₆)	µg/m ³	IS 5182 (Part 11) 2006 (RA 2017)	BDL(DL:1.0)	5*
10	Benzo (a) Pyrene (BaP)	ng/m³	15 5182 (Part 12) 2004 (RA 2019)	BDL(OLII.0)	1*
11	Arsenic (as As)	ng/m ¹	PCEI/SOP/AAQ/002	0DL(OL:2.0)	6*
12	Nickel (as Ni)	ng/m1	PCEL/SOP/AAQ/002	BDL(DL:10)	20*

Nete: i) NAAQS - National Ambient Air Quality Standards Issued by CPCB (Central Pollution Central Roard) in 2009 ii) TWA - Time Weighted Average iii) **- TWA for 1 Hour iiv) * - TWA for Annual

ii) TWA - Time Weighted Average
 iii) **- TWA for 1 Hour
 iv) * - TWA for Annual BDL - Balaw Detection Limit;

Page 1 of 1

Authorised Signatory

Note: 1. The test results are only to the sample submitted for test. 2. Any Correction of the test report in full or part shall invalidate the report - 3. Sample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by client. 4. Perishable samples will be discarded immediately after reporting. 5. Under no circumstances lab accepts any liability or loss/damage caused by use or misuse of test report after invoicing or issued of test report.

(Laboratory Services Division)

HIG - 6352, TNHB Phase I & IL Kamarajar Road, Ayapakkam, Chennai - 600 077. Ph : +91 44 2682 3190 / +91 73077 96831 Email: late@pollucareindia.com Web / www.pollucareinida.com

Accredited by NABL & NABET, Certified ISO 9001:2015, ISO 14001:2015 & ISO 45001 : 2018

TEST REPORT

teport	No	: PCEI/TR-/	VAQ-3539	Report Date	: 22.06.2022	
Discipline		ine : Chemical		Ğroup	: Atmospheric Pollution	
Issued to		: M/S ITD Cementation India Limited ,				
			ver "No.2, Mahalakshmi Street, Thennai -600 017.			
		T Nagar, C	Tullunan -2020 012-			
Projec	t Name	CMRL/C	DN/PHASE-II/C4/UG-1/2022			
Sampl	ng Method	100000000	Part 23) 2006			
Sampl		: Laborator		Sample Reference No	: PCEI/AAQ-180-06-22	
	e Collected Date e Description	: 16.06.202		Sample Received On	17.06.2022	
	Sample Received	Filter Pape		Test Commenced On	17.06.2022	
a.a	e Condition	: Fit for Ani	Wysis	Test Completed On	22.06.2022	
Sampl	ing Location	Kuteche	ry Road Location	2000 00 00 00 00 00 00 00 00 00 00 00 00		
			Weather Condition			
	t Temperature	: 34ºC				
	Humidity	: 55% : Scattered	Clouds			
	Condition Innent Wind Direction	: scattored : W	ciouda			
CTS MONT	ENGLAND CONTRACT					
5.No	Paramoters	Units		Results	NAAQ Standards for Industrial, Residential Rural and Other Area	
1	Sulphur dioxide (as SO ₂)	µg/m ¹	IS 5182 (Part 2) 2001 (RA 2017)	9.25	80	
2	Oxides of Nitrogen (as NO _J)	µg/m ²	15 5182 (Part 6) 2006 (RA 2017)	22.4	80	
3	Respirable Particulate Matter (PM _{s8})	µg/m²	IS 5102 (Part 23) 2006 (RA 2017)	59.9	100	
4	Respirable Particulate Matter (PMLs)	µg/m ³	15 5182 (Part 24) 2019	26.7	60	
5	Ozone (as O _J)	µg/m ³	15 5182 (Part 9) 1974 (RA 2019)	16.5	100**	
6	Lead (as Pb)	pg/m ³	15 5182 (Part 22) 2004 (RA 2019)	BDL(DL:0.05)	1	
7	Carbon Monoxide (as CO)	mg/m ¹	PCE1/SOP/AAQ/003	80L(0L:1.14)	4**	
1	and a second		15 5182 (Part 25) 2018	5.74	400**	
8	Ammonia (as NH ₂)	hð/ш3		and a second		
-	Ammonia (as NH ₂) Benzene (C ₆ H ₆)	µg/m²	IS 5182 (Part 11) 2006 (RA 2017)	BOL(DL:1.0)	5*	
8	and the second	and the subscription of th	and set of the set of	BOL(DL:1.0) BOL(DL:1.0)	5-	
8 9	Benzene (C _e H _e)	µg/m³	IS 5182 (Part 11) 2006 (RA 2017)	and a second s		

i) NAAQS - National Ambient Air Quality Standards Issued by CPCB (Central Pollution Control Board) in 2009 Notes

iii) **- TWA for 1 Hour iv) * - TWA for Annual a) TWA - Time Weighted Average BDL - Below Detection Limit ; DL - Detection Limit

Authorised Signate

Note: 1. The test results are only to the cample submitted for test. 2. Any Correction of the test report in full or part shall invalidate the report. 3. Sample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by client. 4.Perishable samples will be discarded immediately after reporting. S. Under no circumstances lab accepts any liability or loss/damage caused by use or misuse of test report after involving or issued of test report.

(Laboratory Services Division) 8 HIG - 6152, TNHB Phase I & H. Kamarajar Noad, Ayapakkam, Chennai - 600 077 Ph: +91 44 2682 3190 / +91 73977 96831 Email: Tab@pollucareindia.com

TEST REPORT

Web / www.pollucareinida.com Accredited by NABL & NABET, Certified ISO 9001.2015, ISO 14001.2015 & ISO 45001 : 2018

Report No	: PCEL/TR-AAQ-3540	Report Date	22.06.2022
Discipline	: Chemical	Group	: Atmospheric Pollution
Issued to	: M/S ITD Cementation India Limited , R.M.S Tower ,No.2, Mahalakshmi Street, T.Magar, Chennal -600 017.		n li jou Anna ann a' fh
Project Name Sampling Method	: CMRL/CON/PHASE-II/C4/UG-1/2022 15 5182 (Part 23) 2006		
Sampled by	Laboratory	영문 지금(영문 문) 있다.	
Sample Collected Date	16.06.2022	Sample Reference No	: PCEI/AAQ-181-06-22
Sample Description	Ambient Air	Sample Received On	: 17.06.2022
Qty of Sample Received	: Filter Paper & 30mil	Test Commenced On	17.06.2022
Sample Condition	: Fit for Analysis	Test Completed On	1 22.06 2022
Sampling Location	Alwerpet Location	VARIATION OF STREET, SUL	CONTRACTOR D

and managements of the	Weather Condition				
Ambient Temperature	1 35°C				
Relative Humidity	1 54%				
Climate Condition	1 filliontry				
Predominent Wind Direction	1 SN				
	afatta A				

5.No	Parameters	Units	Test Method	Results	NAAQ Standards for Industrial, Residential, Rural and Other Area
1	Sulphur dioxide (as \$0 ₃)	10/m ³	15 5102 (Part 2) 2001 (RA 2017)	12.4	80
2	Oxides of Nitrogen (as NO ₂)	140/m3	15 \$182 (Part 6) 2006 (RA 2017)	22.3	IIIO
3	Respirable Particulate Matter (PM ₁₀)	ug/m³	15 5182 (Part 23) 2006 (RA 2017)	62.9	100
4	Respirable Particulate Matter (PM _{2.5})	ug/m ¹	15 5182 (Part 24) 2019	25.5	60
5	Ozone (as O ₁)	1/m ³	15.5102 (Part 9) 1974 (RA 2019)	13.8	100**
6	Lead (as Pb)	µg/m ¹	IS 5162 (Part 22) 2004 (RA 2019)	BDL(DL:0.05)	1
y	Carbon Monoxide (as CO)	mg/m ³	PCEI/SOP/AAQ/003	BDL(DL:1.14)	4**
6	Ammonia (as NH ₃)	1/m ³	15 5182 (Part 25) 2018	4,49	400**
9	Benzono (C ₆ H ₆)	40/m ³	IS 5182 (Part 11) 2006 (RA 2017)	80L(0L:1.0)	5*
10	Benzo (a) Pyrene (BaP)	ng/m1	15 5182 (Port 12) 2004 (RA 2019)	BDL(DL:1.0)	1*
11	Arsonic (as As)	ng/m1	PCEI/SOP/AAQ/002	BOL(0L:2.0)	6*
12	Nickel (as Ni)	ng/m ³	PCEI/SOP/AAQ/002	BDL(DL:10)	20*

Note: () NAAQS - National Ambient Air Quality Standards Issued by CPCB (Central Pollubon Control Board) in 2009 iii) **- TWA for 1 Hour iv) * - TWA for Annual iii) TWA - Time Weighted Average

BOL - Below Detection Limit | DL - Detection Limit

...... End of Report Page 1 of 1

Authorised Signatory

Note: 1.The test results are only to the sample submitted for test. 2. Any Correction of the test report in full or part shall invalidate the report. 3.Sample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by client. 4.Perishable samples will be discarded immediately after reporting. 5.Under no circumstances lab accepts any liability or loss/damage caused by use or misuse of test report after involving or issued of test report.

(Laboratory Services Division)

HIG - 6152, TNHB Phase I & II, Kamarajar Road, Ayapakkam, Chennai - 600 077. Ph : +91 44 2682 3190 / +91 73977 96831 Email: lab@pollucareindia.com Web : www.pollucareinida.com

Accredited by NABL & NABET, Certified ISO 9001:2015, ISO 14001:2015 & ISO 45001 : 2018

TEST REPORT

ø

LUCARE

slution for pollution

Report No	: PCEI/TR-AAQ-3478	Report Date	: 18.06.2022
Discipline	i Chemical	Group	: Atmospheric Pallution
Issued to	M/S ITD Comentation India Limited, R.M.S Tower ,No.2, Mahalakshmi Street, T.Nagar, Chennal -600 017.		
Project Name Sampling Method Sampled by Sample Collected Date Sample Description Qty of Sample Received Sample Condition Sampling Location	CMRL/CON/PHASE-II/C4/UG-2/2022 IS 5102 (Part 23) 2006 (RA 2017) Laboratory 13.06.2022 Ambient Air Filter Paper & 30ml Filt for Analysis Panagal Park Location	Sample Reference No Sample Received On Test Commanced On Test Completed On	: PCE1/AAQ-120-06-22 : 14.06 2022 : 14.06 2022 : 18.06 2022

	The second
Ambient Temperature	: 33°C
Rolative Humidity	: 59%
Climate Condition	: Scattered Clouds
Predominent Wind Direction	: 96

S.No	Parameters	Units	Test Method	Rosuita	NAAQ Standards for Industrial, Residential, Rural and Other Area
1	Sulphur dioxide (as SO ₂)	µg/m ¹	IS 5182 (Part 2) 2001 (RA 2017)	11.7	60
3	Daides of Nitrogen (as ND ₂)	1/0/m ⁸	IS 5182 (Part 6) 2006 (RA 2017)	21.4	80
3	Respirable Particulate Matter (PM ₁₀)	pg/m ³	15 5182 (Part 23) 2006 (RA 2017)	64.7	100
4	Respirable Particulate Matter (PM _{2.8})	1-0/101	15 5182 (Part 24) 2019	28.6	60
5	Ozone (as O ₃)	µg/m ¹	15 5182 (Part 9) 1974 (RA 2019)	17.4	180**
6	Lead (as Pb)	pg/m ³	15 5182 (Part 22) 2004 (RA 2019)	80L(OL:0.05)	1
2	Carbon Monoxide (as CO)	rmg/rm ³	PCEI/SOP/AAQ/003	0DL(DL:1.14)	4**
8	Ammonia (as NH);}	F0/m3	15 5182 (Part 25) 2018	5.22	400**
9	Benzene (C _s H _s)	µg/m³	15 5182 (Part 11) 2006 (RA 2017)	BOL(OL:1.0)	5*
10	Benzo (a) Pyrene (BaP)	ng/m*	15 5182 (Part 12) 2004 (RA 2019)	80L(0L1.0)	1*
11	Arsenic (as As)	ng/m³	PCEL/SOP/AAQ/002	UOL(DL:2.0)	6.
12	Nickel (as Ni)	ng/m³	PCEL/SOP/AAQ/002	BDL(DL:10)	20*

Note: I) NAAQS - National Amount Air Quality Standards Issued by CPCB (Central Policion Control Board) in 2009

iii) **- TWA for 1 Hour iv) * - TWA for Annual ii) TWA - Time Weighted Average BOL - Below Detection Limit ; DL - Detection Limit

Page 1 of 1

20 Authorised Signatory

Note: 1. The test results are only to the sample submitted for test. 2. Any Correction of the test report in full or part shall invalidate the report. 3. Samplo will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by client. 4.Perishable samples will be discarded immediately after reporting. S.Under no dircumstances lab accepts any liability or loss/damage caused by use or misuse of text report after invoicing or issued of text report.

(Laboratory Services Division)

II HIG - 6152, TNHB Phase I & 0, Kamarajar Road, Ayapakkam, Channai - 600 077. Ph : +91 44 2682 3190 / +91 73977 96831 Email: labePpollucareIndia.com Web : www.pollucareinida.com

TEST REPORT Accredited by NABL & NABET, Certified ISO 9001:2015, ISO 14001:2015 & ISO 45001 : 2018

Ð

UCARE

lution for pollution

Report No	PCEL/TR-AAQ-3475	Report Date	1 18.06.2022
Discipline	: Chemical	Group	: Atmospheric Pollution
Issued to	M/S ITO Comentation India Limited, R.M.S Tower ,No.2, Mahalakahmi Street, T.Nagar, Chennai -600 017.		
Project Name Sampling Method Sample Collected Date Sample Description Qty of Sample Received Sample Condition Sample Condition	: CMRL/CON/PHASE-II/C4/UG-2/2022 : IS 5182 (Part 23) 2006 (RA 2017) : Laboratory : 13:06:2022 : Ambient Air : Pitter Paper & 30ml : Fit for Analysis Nandanam Location	Sample Reference Ne Sample Received On Test Commanced On Test Completed On	: PCEI/AAQ-117-06-22 : 14.06.2022 : 14.06.2022 : 18.06.2022

phage many processing and the second s	Weather Condition
Ambient Temperature	: 34°C
Relative Humidity	58%
Climate Condition	: Scattered Clouds
Predominent Wind Direction	I W

9.No	Parameters	Units	Test Method	Results	NAAQ Standards for Industrial, Residential, Rura and Other Area
1	Sulphur dioxide (as SO ₂)	µg/m ³	15 5182 (Part 2) 2001 (RA 2017)	12.1	80
2	Oxides of Nitrogen (as NO2)	µg/m³	IS 5182 (Part 6) 2006 (RA 2017)	23.9	HO
3	Respirable Particulate Matter (PM ₆₀)	µg/m ³	15 5182 (Part 23) 2006 (RA 2017)	\$7.9	100
4	Respirable Particulate Matter (PM _{2.5})	µg/m ¹	15 5182 (Part 24) 2019	30.4	60
5	Ozone (as O ₁)	µg/m³	[S 5182 (Part 9) 1974 (RA 2019)	9.21	180**
6	Lead (as Pb)	ug/m ³	IS 5182 (Part 22) 2004 (BA 2019)	BDL(DL:0.05)	1
7	Carbon Monoxide (as CD)	mg/m ³	PCEL/SOP/AAQ/003	6DL(DL:1.14)	.4**
8	Ammonia (as NH ₃)	µg/m ¹	15 5182 (Part 25) 2018	5.98	400**
9	Benzene (C ₄ H ₆)	µg/m³	IS 5182 (Part 11) 2006 (RA 2017)	BDL(01:1.0)	5*
10	Benzo (a) Pyrene (BaP)	ng/m³	15 5182 (Part 12) 2004 (RA 2019)	BOL(OL:1.0)	1*
11	Arsenic (as As)	ng/m³	PCEL/SOP/AAQ/002	00L(0L12.0)	6*
12	Nickel (as Ni)	ng/m ¹	PCEL/SOP/AAQ/002	BDL(DL:10)	20°

i) NAAQS - National Ambient Air Quality Standards Issued by CPCB (Central Pollution Control Board) in 2009 ii) TWA - Time Weighted Average III) **- TWA for 1 Hour Iv) * - TWA for Annual

BDL - Below Detection Limit ; DL - Detection Limit

Page 1 of 1

Authorised Signatory

Note 1. The test results are only to the sample submitted for test. 2. Any Correction of the test report in full or part shall invalidate the report. 3. Sample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by client. 4.Perishable samples will be discarded immediately after reporting. 5.Under no circumstances lab accepts any liability or loss/damage caused by use or misuse of test report after invoicing or issued of test report.

Ð

POLLUCARE ENGINEERS INDIA PVT.LTD.,

(Laboratory Services Division) # HIG - 6152, TNHB Phase I & II, Kamarajar Rood, Ayapakkam, Chennal - 600 077. Ph | +91 44 2682 3198 / +91 73977 96831 Email: tab@pollucareindia.com Web : www.pollucareinida.com

TEST REPORT Accredited by NABL & NABET, Certified ISO 9001:2015, ISO 14001:2015 & ISO 45001 : 2018

Report No	PCEL/TR-AAQ-3476	Report Date	: 18.06.2022
Discipline	Chemical	Group	: Atmospheric Pollution
Issued to	: M/S ITD Cementation India Limited, R.M.S Tower ,No.2, Mahalakshmi Street, T.Nagar, Chennal -600 017.		
Project Name Sampling Method Sampled by Sample Collected Date Sample Description Qty of Sample Received Sample Condition Sample Condition	CMRL/CON/PHASE-II/C4/UG-2/2022 15 5182 (Part 23) 2006 (RA 2017) 1 Laboratory 13.06-2022 Ambient Air Filter Paper 6, 30ml Filt for Analysis Koddambakkam Location	Sample Reference No Sample Received On Test Commenced On Test Completed On	PCEL/AAQ-118-06-22 14.06.2022 14.06.2022 18.06.2022

de la la companya de	Weather Condition	
Ambient Temperature	34°C	
Relative Humidity	: 57%	
Climate Condition	: Partly Sunny	
Predominent Wind Direction	: W	

5.No	Parameters	Units	Test Method	Results	NAAQ Standards for Industrial, Residential, Rural and Other Area
1	Sulphur diaxide (as SO ₁)	µg/m³	15 5182 (Part 2) 2001 (RA 2017)	14.4	50
2 .	Oxides of Nitrogen (as NO1)	ug/m³	IS 5182 (Part 6) 2006 (RA 2017)	19.6	60
3	Respirable Particulate Matter (PM _H)	140/m ³	15 5182 (Part 23) 2005 (RA 2017)	66.1	100
4.	Respirable Particulate Matter (PM2.5)	ug/m*	15 5182 (Part 24) 2019	26.4	60
5	Ozone (as O ₃)	ug/m ³	15 5182 (Part 9) 1974 (RA 2019)	15.1	180++
6	Lead (as Pb)	h0\u0	IS \$182 (Part 22) 2004 (RA 2019)	80L(DL:0.05)	1
7	Carbon Monoxide (as CO)	mg/m ³	PCEI/SOP/AAQ/003	80L(0L:1.14)	. 4**
8	Ammonia (as NH ₃)	uo/m*	15 5182 (Part 25) 2018	7.48	400**
9	Denzene (C _a H _b)	ug/m³	IS 5182 (Part 11) 2006 (RA 2017)	8DL(DL 1.0)	5*
10	Benzo (a) Pyrene (BaP)	ng/m ³	IS 5182 (Part 12) 2004 (RA 2019)	80L(0L:1.0)	1.
11	Arsenic (as As)	ng/m²	PCEL/SOP/AAQ/002	BOL(OL:2.0)	- 0°
12	Nickel (as Ni)	ng/m ^a	PCEL/SOP/AAQ/002	BDL(DL:10)	20*

Note: I) NAAQS - National Antisent Air Quality Standards Teaued by CPCB (Central Pollution Control Board) in 2009 II) TWA - Time Weighted Average III) **• TWA for 1 Hour IV) *• TWA for Areual

804. - Below Detection Limit ; DL - Detection Limit

...... End of Report Page 1 of 1

Authorised Signa

Note: 1.The test results are only to the sample submitted for test. 2. Any Correction of the test report in full or part shall invalidate the report - 3. Sample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by client. 4.Perishable samples will be discarded immediately after reporting. S. Under no circumstances lab accepts any liability or loss/damage caused by use or misuse of test report after invoicing or issued of test report

(Laboratory Services Division)

N HIG - 6152, TNH9 Phase I & II, Kamarajar Road, Ayapakkam, Chennai - 600 077. Ph : +91 44 2682 3190 / +91 73977 96831 Email: lab@ppllucareindia.com Web : www.pollucareinida.com

Accredited by NABL & NABET, Certified ISO 9001:2015, ISO 14001:2015 & ISO 45001 : 2018

Report	No	: PCEI/TR-	AAQ-3477	Report Date	18.06.2022	
Discipline		: Chemical		Group	: Atmospheric Pollution	
Issued to		R.M.S To	Cementation India Limited, wer ,No.2, Mahalakshmi Street, Chennai -600 917.			
Sample Sample	ng Method		22	Sample Reference No Sample Received On	PCEDAAQ-119-06-22 14.06.2022	
Qty of 5	Sample Received	: Filter Pap	er & 30ml	Test Commenced On	14.06.2022	
	Condition	Fit for An		Test Completed On	: 18.06.2022	
Samplir	ng Location	: Boat Ch	b Location			
110000	100.000211111111111111111	A-1872	Weather Condition			
Relative Climate (Temperature Humidity Condition nent Wind Direction	1 35°C 1 55% 1 Scattered 1 SN	t Clouds			
5.No	Parameters	Units		Results	MAAQ Standards for Industria Residential, Rural and Other Area	
1	Sulphur dioxide (as SO ₂)	µg/m²	15 5182 (Part 2) 2001 (RA 2017)	13.2	80	
2	Oxides of Nitrogen (as NO ₃)	M0/m3	15 5182 (Part 6) 2006 (RA 2017)	20.1	80	
3	Respirable Particulate Matter (PM ₁₀)	µ0/m ³	15 5182 (Part 23) 2006 (RA 2017)	61.9	100	
4	Respirable Particulate Matter (PM _{2.9})	µg/m ³	15 5182 (Part 24) 2019	32.5	60	
5	Ozone (as O ₃)	µg/m³	15 5182 (Part 9) 1974 (RA 2019)	13.6	180**	
6	Lead (as Pb)	140/m ³	15 5182 (Part 22) 2004 (RA 2019)	BDL(DL:0.05)	1	
7	Carbon Monoxide (as CO)	mg/m³	PCET/SOP/AAQ/003	6DL(0L:1.14)	4	
8	Ammonia (as NH ₃)	140/m ³	15 5182 (Part 25) 2018	6.81	400**	
9	Benzene (C ₆ H ₆)	µ0/m ³	IS 5182 (Pert 11) 2006 (RA 2017)	80L(OL:1.0)	5*	
10	Benzo (a) Pyrene (BaP)	ng/m²	IS 5182 (Part 12) 2004 (RA 2019)	BOL(OL: 1.0)	1*	
13	Arsenic (as As)	ng/m³	PCEL/SOP/AAQ/002	80L(DL:2.0)	6*	
12	Nickel (as Ni)	no/m ¹	PCE1/SOP/AAQ/002	BDL(DL:10)	20*	

i) NAAQS - National Ambient Air Quality Standards Issued by CPCB (Central Pollution Control Board) in 2009
 ii) TWA - Time Weighted Average
 iii)_**- TWA for 1 Hour
 iv) * - TWA for Annual

BOL - Below Detection Limit ; DL - Detection Limit

...... End of Report Page 1 of 1

Authorised Signatory

Note: 1. The test results are only to the sample submitted for test. 2. Any Correction of the test report in full or part shall invalidate the report. 3. Sample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by client. 4. Perishable samples will be discarded immediately after reporting. 5. Under no circumstances tab accepts any flability or loss/damage caused by use or misuse of test report after involcing or insued of test report.

at in Local

(Laboratory Services Division) End and the Card of

TEST REPORT

the involtion en land de service de l'antenine en Evaluations in a section of Arthony a secondaries

Forg For Addresse

Accredited by NABL & NABET, Confided ISO 9001 2015, ISO 14001, 2015 & ISO 45001 - 2016

Report No	191 BLAA, 117	Report Oate	<u> </u>
Discipline	1 *	Group	A-1 - 1 - 1 - 1
Essued to	M/s caused & Taubro Limited Hea	avy Cred Infrastructure TC	
	of a constant of the fit of		
	147 All the Charles		
	17. 11.11.11		
Sampling Hiethod	$\mathcal{F}_{\mathcal{T}}(\mathcal{F}_{\mathcal{T}}) = \mathcal{F}_{\mathcal{T}}(\mathcal{F}_{\mathcal{T}}) + \mathcal{F}_{\mathcal{T}}(\mathcal{F}) + \mathcal{F}_{\mathcal{T}$		
Sampled by	at tar ty		
Sample Collected Date	1	Sample Reference No	(4) (1) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4
Sample Destrophon	Ambugat Ac-	Sample Received On	:: .'x.
Qiy of Sample Received	and the second	Test Commenced On	·:
Sample Cond-Ligh	product Arriva	Test Completed On	11
Sangling Location	Porte Station-Basi&Co		

	AA6'llano L Counstien	
The Mercaneta		
a sha mara ta	A MARKET AND A MARKET	i
at the second	First and the second	i
<u>e</u> 20.5 m e ⁻¹	<u></u>	

5.N.,	Euro-Hern	Quita	rest Pethon	Herally	h AAQ Stendarda ⁴ 01 Jedustriati Revoluciati Rutat and Difer Area (2004 for 21 Urs)
	Napoleo y Martin		a server the second second	:•	
	- The second state of the second sec	 	State Product Address		
>	المتحديد والمتدود الم	· . ·	 Stary second to watch 	· * •	
	- The second second part of the	-		12.5	•
	Na second	· ·	n orton versionere de 21		
	- 	·		AL	
		·	2 1 1 2 1 A. M.	·:	
-		·	e travera potra	± 2	· .
		· 	in provide the transformed at	·:	
:	e Berne andere en der		n an	··	
	a e l'el al	· .	e ga the sea for a	···	•
ι.	Notifi		на. 1945 — П. А. М. М. П.	n New York	·

Note: 1.4.1

• Marchaeler and State Appendix and the device of the second state of the Average Control Average State (Second State State) and the State State (Second State) and the State (State) and the State (Sta ing Compositions

Vehicled By

Page 3 of 1

Jahren . Authorised Signatory

145 150 Not 13

Note: Life test whill sum only to the sample submitted for test. 2.6 by Correction of the rest report in full or wert shall invulid the the report of Sample will be in the red for 15 New from the date of reporting twood in case of regulator. Samples or specifically instructed by client of Penshable samples will be discarded immediately after repairing. 5 Under no information on accepts any hability or loss damage to use or minuse attest reportation measurement into report

(Laboratory Services Division) -- C 11/7 19/68/10/ K Partorajor Frinti Avadori (om-

19 YO 19 (19 20) HOLD ALL THOTA HERE.

TEST REPORT

Each de Assure a through Arthony and a second second

10012 1.11

Availabled by NABL 6 NABET, Centred (SO 9001:2015, ISO 14001 2015 & SO 45001 (2018)

Report No.	11-11 TH AN 2 100-	Report Date	
Discipline	··· ·	Group	1999 - S. 1999 - B. 1999 -
Jssuert to	M/s Larsen & Toubro Limited M	leavy Civil Infrastructure 3C	
	Real Program Action Providence		
	104 Avera Vinning Server		
	· ·.·		
Sampling Method	Provide the state of PAPE1		
Sampled by	4.5.5.6		
Sumple Collected Date		Sangle Reference No	1.1.1.477/1.1.1.477
Santple Descoption	Acabiept Au	Sample Received On	.:
Q1y of Sample Received	$(1 + m + 1) = (1 + k_1) + (1 + m)$	Test Commenced On	(11) (1)
Sample Confilten	 El tra Accepto 	Test Completed On	10.09773
Sampling constian	Casting Yard- Varyalanallur		

	Weatter Condition	
Contraction and the second	11 · · · · · · · · · · · · · · · · · ·	
 A second residue 		
and the first states of the st	a section.	
Regeneral Arrighter a	1.6	

- -- -- --

УNJ	ParaPetris	Units	Text Method	Perio (s	SAAQ Standards for God asia J., Residentias, Rotal and Difer Area (1964/6) 24 1 Hirs)
	The Market			72.5	
	And Market May		Tradevice record and the	· · · · · ·	
	n 1795 - Stelling Konstellik ster 1819	.z. ar	Toola decidar walth	· 4	
:	n en		ister (middlede	:	
•		•	[7] (12) Autor (1974) (A.C.)	· · · · · · · · · · · · · · · · · · ·	
	Sent et		Distriction of second second	22.0	
	n Len all a period			:*	41
-	an an tao	• • •	 MELTERSON STREET 	: •	4 1
	- 	- 	n As as a state of seven as	· -	
:	An an an Against And	-	To see and the search the	.	·
		- r			·
		- 		4:	· . ··

المكلم المحمد المحم المحمد Sole .

المراجع محصور می از المراجع . ماریخی از ماند محصوف از م . . .

. . . End of Report Page 1 of 1

Ventied B

Authorised Signatory

1.1

Note: 3 The test results are an you the sample submitted for test 12 Art. Correction of the test report in full or parts half over cate the report 13 Sample will be reading to the test report. Ly care from the state of rescuting exception care of regulatory sumples or voesility untracted by client - 4. Period up a sumples will be discarred immediately after reporting. Subdempolencementations lab acception, liability infinit/damage caused by interview of cest report after invariant of centreport.

(Laboratory Services Division)

TEST REPORT

n ann a bha tha là bhrail an Air Bhrailte an Airte Airte Airte sheet with the Private 1220/2031/02/1451 (1477-1647) Etter at an Allerentia em-Additional and the beautiest

Accessies by NABL & NABET, Centre of ISO 9001 2015, ISO 14001 2015 & ISO 45001 (2018)

Keport No	(1) AA _ (1); (1)	Report Oate	111111
Gsscipline	1	Grossp	Are 1, 17 11 11
Issued to	N. & Larsen & Tentors Lumited H	eavy Civil Intenstructure IC	
	A HE CALL AND ME HE		
	CAN ALL SAM IN METAL 2.4		
	4 Mar 1999 - 199		
Sampling Method	INCOMENTATION AND AND A		
Numpied by	and 115		
Sample Collected Date	· · · · ·	Sample Reference No	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
Sample Deverytion	Anilugal Arr	Sample Received On	•2.1 x 24.85
Qfy of Sample Received	50 A. A. A.	Test Commenced On	12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Simple Condition	 Common Analysis 	Test Completed On	. * . * .***
Sampling Location	Alapakkam - Indian Oil		

Weather Condition						
The formation of the second	· · · · · · · · · · · · · · · · · · ·					
e staelese th						
	 A start start 					
June en tet wi <u>ng</u>	144					

ν.N.,	Parametics	UT IN	Test Melbal	Kinulla	6430 Mandards for Joctastras, Residential, Rocal and Other Area (TVA for Ja Mes)
	satisfies a	· .:	in produces to provide the Morth	i. 1	· ·
:	i an		CENTER AND A DECK	2. F	
· ·	e la ser la presente de la	• • •	Пользія ній з ійнах раб	4	
	n Aller var en der specielen ander e	: 	s detailed and	1.1	
•	· · · · · · · · · · · · · · · · · · ·		Contraction of the second	:•	
		;.e	interfese cantol a secondaria i	P. C. 197	
	200 M	· · . · ·	- 	e 114	4.
:	n An an Ann	• ·	to any same to the		
÷	n Nerzine un	·	і із сілінанскі скіненцісті.		
::	Na se Anna Anna Anna Anna Anna Anna Anna Ann	• • • •	The set of the state of the second of	2 1	:"
::	n Anna 19		a service and the		
:.	N 44 N	: ·	- 1948 - Maria M	.:	1

Note: Prove the second s

Page 1 of 1

Venned by

. جست ÷. Authorised Signatory

(Laboratory Services Division) Energy (20) They shall be accessed to Fried, which is

TEST REPORT

 And Addised scheme and Associate Co. man and the construction

A SERVICE AND A SERVICE

con a store

Accredited by NABL & NABET, Centified ISO 9001.2015, ISO 14001:2015 8 (SO 45001); 2018.

Report No	81011 - AA	Report Date	<u> </u>
Oscipline	here de	Group	Aren de la rel
Issued to	Mis Larsen Bi Touðro Limited He Stár Stár Stár Man 1997 - Stár Stár Sagar	avy Cael Infrastructure IC	
Sampling Hethod	Sector Contractor Activity		
Sampled by	x 44 122 13		
Sample Collected Date	11 ····	Sample Reference No	 INTERACIONAL ST
Sample Destroymon	Ambient Air	Sample Received On	12 (A. A.)
Qty of Sample Received	 A set of the set of	Test Commerced On	1.101.30
Sample Condition	and a product of	Test Completed On	1112-22-3
Samplang Location	Verygabakkami Averni School		

[Weather Condition	
A - Contraction and a second	NN (1		
Average Average	:		
an an the state	Latte set a		
er i men gizti di elemento di	t.:		

> N	Pounctors	çaars	Test Michael	Sina h	"Ang Mandards to Deputient Reveloped a' Senat and Gines Area (1966 for 24 Hist
<u> </u>	n an the second		Contraction of the second	:4 -	
.	n an tha an tha an tha	- 	in protection of the solution	. ^	
	See al the a Marsav	· ·	n an teologia en se utile e en esta de la c		:
·	n The second second second second		1945 - 1949 - 195	2	
:		• •••	 N. 19, Kamin Donal PALLADA 		
		•	s de les de entre l	HC 0	•
	en e		9.11 × 0.640 (12)		:
.	n an an Anna an	· · · ·		· · · · · · · · · · · · · · · · · · ·	1.1
ļ		· . ·	n an an an an an an Arabah an	··· . : . :	· · · · · · · · · · · · · · · · · · ·
:	e Teoreta (Centre Adal	• • . •	n The New Rome (Night and Alas	÷ :• :	
:1	2000 A.	• • . •	Л. С. К. ААТ. С.К.	··· . 1 .	
	e Alexandria	· • • • • •	.11 - 64. W	P. 1. 1	. *

A LEAST AND A STATE NO CO. 1. . . -: --· · · . · · 4 · . . · 11 1 K 1 K 1 K ۰. .

174 · · A. ··. S. 18 1. 1. 1. 1. 1. 1. 1. 1.

> End of Repair Page 1 of 1

Venturd By

ې با کر کې Authorised Signatoly

Nggy J The test results are only to the sample submitted for test 2.2 m, conestion of the test report in build or platishill restricted by the Sample will be test and for L'i days from the rivie of reporting exception case of regulatory samples or specifically instructorility client. I & Perior role surveits will be dovarded council alkiy alter regenting i 5-1 nder warmet ersten et als accepts any i alality op det diaanages unserbay van wirmense al teatrepart of teatrepart of teatrepart

POLLUCARE ENGINEERS INDIA PVT.UTD., (Laboratory Services Division)

TEST REPORT

(a) -91242 graph (10) - (10) (a-10) (653) Exclusion Convertion

Frid Charlester A CONTRACTOR AND A dama damar

Accidented by NABL & NABET, Certified ISO 5001 2015, ISO 14001, 2015 & ISO 45001 12018

Report Nn	* B AN AND ALL	Report Date	41 (A. 17)
Discipline		Group	And South Provide
lessent La	M/s Larsen & Fuebro Limited Heavel - 26 Constant of Constants 265 Constants of Constants	Civil Infrastrui (une 10	
Sampling Method	1 - 188 - and 199 - August		
Sampled by			
Sample Colligator Date	11 · · · · · · · · · · · · · · · · · ·	Sample Reference No	ALCON Y LAND -
Sample Description	Ambient Air	Sample Receiver On	
Qty at Sample Received	 A set of the set of	Test Commenced On	a. 13
Sample Condition	send on Analysis	Test Completed On	11.92.11
Sampling Location	Karapakkani Station - ETA Star Verde		

	Weather Condition	
And and Taylor all the	÷.	
Frighten and State	1.5	
1	THE REPORT OF A	
in the state of the state	· · ·.	

N.No	Puersten.	lines	Lest Method	Percenta	NASQ Standards for Indugrial Resolvation Road and Oliver Auro (1965 for 24 1965)
<u> </u>	E HANNE A AN	··	Souther State of Advance	111	··· · ·
ĺ	a she water a super-	·	n bergezonen in Galera i	2.2	· ·
:	e An is an an an is grant an an an an	·	n in de saerne en sketet i	· · · .	:
•	Revision e mouside trades prison	· . ·	n na seconda e compositore de la compositore de		•
	e A forma fa	· · ·	a and a second contraction of	1:1	
	,		CONTRACTOR STATES	9 I	
•	n an tha an tha an tha an tha	· .	 Elster Awy 132 	8. A 11.4	·
-		· .	n in de le atabilité d'in in	. : n	-
:	an a		n de des Raets, 2000 KAS stra	- 1.4 T. C.	•••
	<u>.</u>	•	n di kangkatun di kawa ay	÷:. * :	
:.	A-0. (10	·	en der Many für	·.	·
:•	1. io da	•	en e	-1.4C (11)	·

Assign Alexandro and Ale Alexandro and Alex Alexandro and Alexandro a Note

· . -. .

Verified By (

Page 1 of 1

- . 1 . . h Authorised Signatory

(Laboratory Services Division) аны (63) (510-75) (41 Калария (22) (510-75) (41

enclosed as generation of the tent to exclude

TEST REPORT

en 110 ground f In a commutation of the second

2500 N 2527

Accredited by NABL & NABET, Centerd ISO 9001 2015, ISC 14001 2015 & ISO 45001 (2018)

Report No	(1) 1 + 36, 1022	Report Oate	14.14.21	
Discipline	19 B.	Group	400.0000.000	•
Essued to	M/s Losen & Touleo Linited I:	leavy Civil Infrastructure IC		
	 A start start start was an end of the start st start start start			
	14 Sec. 5 Book Status			
	· · ·			
Sampling Method	 A set of address of the RA set of the 			
Sanipled by	11111111			
Sample Collected Date	·· · · · ·	Sample Reference No	1 g Arg 8	.:
Sample Description	Ard (or 01 Am	Sanspie Received On	:. •:** :	
Q1y of Sample Received	A STATE OF STATE	Test Contributed On		
Sample Condition	Service All and	Test Completed On	14.4.4	
Sampling Location	Valasaravakkarin Kesavardiri			

ſ	Weather Condition	
A device the relevance		
 A set of the set of	67	
1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 -	and a family of the second	
han <u>antantin</u> a dalar	A.,	

y 40	Parameters	Units	Tess Nethod	Незий з	NAAQ Standards for Industrial Resident (* Rova) ang Ocher Area (1441 for 24 Ifin)
:	en en en en	. : `	and the second second	· · ·	÷1.
	n Alexandra Alexandra Alexandra	• •	States Alter Alter March		
	The proposition of the theory of the		19 A.C A.C.		- I
•	- Sel promisional conservation (SM) sur		in the providence of the	··· .	
•	. 1. e 1		CONTRACTOR AND A	14-1	
'	· · ··! ··	• •	Nordal jo dalak se ekal del		· ·
	1997 - Maria Berland	• • • •	- 	20 - LAN	
	na an taon		10.06 (1977) 107		· · · · ·
. '	n an an an	 1	IN DRIVING DUCK HAZZON	÷ 11	
. '	The an Aric State	· •	n The Decidest Michael Ball, Decid	. · ·	
.:	<u>%</u> .	• • •	- 1910 - 145, 1	. : .	
i. (· · · ·	• 	· · · · · · · · · · · · · · · · · · ·	6 (E.S.)	· . ··

 Teacher Contracter Contracter
 Teacher Contracter
 Teacher Contracter
 Teacher Contracter Measure Marcine Landscott in spirit of Note: 6 e - P ÷ ••• .

 The All sectors of the All sectors
 The West Constant of the All sectors

Vershed B

Page Lol 1

くぶつ ل - / - معر Anthoreved Signatory

(Laboratory Services Division)

en und stagesticken, ein isternie ein

TEST REPORT

activity of the filles Art. Annual Calence (1965)

en eu estari

Accredited by NABL 6 NABET. Cert (ed ISO 9001:2015, ISO 14001:2015 & ISO 45001, 2018

Report for	 1 - 7 A (1999) 	Report Oate	17 (C. 21)
Quacistime		Grunp	We group the
Issued to	M/s Laisen & Toubio Limited II	eavy Civil Join structure IC	
	 K Sector Astro-Site Sector Processing 		
	14 VA AMERICAN Services		
	 a 1 (10) 10 		
Sampling Method	is the story of AAAAA		
Simpled by			
Sample Collected Date	1	Sample Reference No	Contraction and Contraction
Sample Description	Applocist Art	Sample Received On	1 + + 2 .1
Qty of Sample Received	· · · · · · · · · · · · · · · ·	Test Commenced On	1 · · · · ·
Sample Condition	: · · A	Test Completed Dr.	11-1-2012
Sampling Location	Vadapalansi Vasan Eye Care		

Г		· -	Weather Condition	
	no filosofie	·.		
2	e an the state of the	N		
1	A Long March	: N	-	
Ł.,	proved And see 12	14		

4 lua	Parameters	Vinis	Test. HelPed	Frank	AXAQ Standards for Inde Strutt Reported at Rocal and Other Area (TWA for 25 High
: •	a shekera	10 m	Contraction of the Contraction	: A	
	e esta substantia	141 M	Constant and a second second	.12	a
· -	ng ng nang lang ng manang lang		Contraction of the second second	· · ·	<u> </u>
- X - 90	egiseria (ervanijev)		n an		•
· :.	· .		n san an amparata	12.4	
	· ·		n The sector factory and the Alexandria	6. N. N	
í, i	ence March 1997	· · · ·	анан алараан алар Алар Алараан ал	11.12.113	
	e sta		is the second	5.4	
	o te se ser	. : "	 Some that the second sec		
:	er a segura de la composición de la com	- •	n an	10.000	
: 1		· • •	- 211 - 212 - 212 - 213 - 213 - 213 - 213 - 213 - 213 - 213 - 213 - 213 - 213 - 213 - 213 - 213 - 213 - 213 - 213	er 1, 21 ± 1	·
· · ·			· · · · · · · · · · · · · · · · · · ·		·

l, L. Notes NAMES SPECIFICATION AND SERVICE SPECIFICATION OF STREET, SPECIFICATION AND SPECI 1.1

Venified By

... ... Ene of Report Page 1 of 1

Authorised Signatory

Ν. 1.

Note: 101 exertine suits are privated to submitted for test - 2 Gey: critection - 4 the test report infull or particular undate the report - 3 Sumple will be retained for to days from the date of reporting exception sace of regulatory comptonion specificativy instructor (by client), 4 Pointwickle campling will be described, monentarily after reporting its Under no tintumst incestablic coepts any tubicty or lossy tamage caused by use or misuse of test report after invationg or issued of test report.

(Laboratory Services Division) Entra 12 Theorem 24.

communicational Augustanni Constant and Constant constraint and other statements real takes which are re-Web water like our over the

TEST REPORT Accessibled by NABL 8 NABET, Cettified, SO 9261,2015, ISC 14001/2015 8 (SO 49001 - 2016)

Report No	ere dire en proce	Report Date	<u></u>
Oiscipline	1 million a	Group	Weige of Second
issued to	M/s Larsen & Tenbro Limited Heavy Civ	al Tofrastructure IC	
	 K. A. De Jack policy in the hole of the second secon		
	おはない しょうしょう ちょうし		
	A thur - curt CDr		
S-unpling Method	1 March Stevenson, and the second		
Sampled by	1		
5 msp3e Collected Date	the state	Sample Reference No	0.62 AM (104 - 17
Sample Description	Ambient Ais	Sample Received On	19 19 1 C
Qfy of Sample Received	1. Constraints and the second seco	Test Convisioned On	
Sample Condition	3.5 March provides	Test Completed On	at so we
Sampling Locatean	KodumpaRkam Power Rouse - Ram Tite	alré	

!	Weather Condition	
And a firm production		
* *** * ********		
and shares and shares	i na chuir an chuir a	
[5] I. Contract Track in		

 5 No	Pariatelets	: Units	. Test Nelhod	Resalls	NARQ Standards for 2nd astrod, Residential, Ruspi and Uther Area (1994 for 24 Hest
	ena el considere tran	64 mi	to device the state of the sold	١.	-
-	and a tradition of the	- 	- Berley Retrieve Review	.: :	· •
:	 Contraction and the second seco	- . :: :::	n an Asia (an Asia) ing makawan a	•. •	- W
	n Restance e British Marin Mari		1990 - Sector March	 :	· ·
	ten a		 Bergerschutzenschutzen 	:2 *	191
	जन्म ३.	• ·	n 1995 - Alex Alexandri, Marchael Marchael 1997 - Alexandria	•	
	Long the second		Alising ang sa	- 12 - 12 - 14	
-			n Alexandr Martin (1995)	- 	• • •
	Av. 1. 1911	·	n The stars particle X in Security	· ··	·
•	en de la composition		n 1997 - Standard Standard († 1947) 1997 - Standard († 1997) 1997 - Standard Standard († 1997) 1997 - Standard († 1997)	. :	·
:: '	in an		- 1. 1 - 2.24	•	·
	n an th	·.: •		··· · ···	

Nuters $(x_j, x_{j-1}) \in \mathbb{R}_{j} \times \mathbb{R} \times$ The state of the second proved ... S 6. 200.0 ч<u>.</u> ۰. ÷ •• MAC Directory processing Agency
 MAC Directory processing Agency
 Directory processing Agency * 1488-10 C. 1 ** 1887 Am 1

. .

Verified Be

..... End of Report Page 1 of 1

بالمراجع Authorised Signatory

19 •

٠÷.,

Note: L "Section on calls are only to the sample submitted for test - 2. Any Correction of the Instrument in Full or part shall ovaid at the report - 3. Service will be retained for 15 days from the drie of reporting exception were of regulatory samples or specifically instructed by client (A. Perishable samples will be discarded --hourd ately after reporting of Under no uniter statues tablaccepts any habitily or fass/camage caused by use or anyone of text report after into a caparity is red of text report.

(Laboratory Services Division) de la contrata de la contrata de

TEST REPORT

PERSONAL AND ADDRESS OF A STRENGTON AND A the description of the

Althonogy wheel later

Kennen Kulturge der M Concerne de 11

Accredited by NABL & NABET, Centeral ISO 5001 2015, ISO 14001 2015 & ISO 45001 | 2018

Report No	1 - 1 - 1 - 2 - 1 - 1 - 1 - 1 - 1 - 1 -	Report Date	(2000)
Discipline	•	Group	and showing the
I vivued to	Mills Larsen & Touble Comiled Heave 2000 (1997) - State Print 245 Anno 1997 - Compan 2019 - State 10	Civil Infrastructure (C	
Saulphon Method	المراجع والمراجع والمراجع		
Sampled by	14111111111		
Sumple Collected Date	14 . 4 . 1 i	Sample Refetence Ma	1 80 A& 1 AA
Sample Description	Ambient Au	Sample Received On	:::
Qty of Sample Received		Test Contributed On	11 12 11
Sample Condition	El Constante de la constante de	Lest Completed On	17 Mar 11
Samphing Location	Arward Incohagar - CSI Church		

	Weather Condition	
The second second		
Contract sector	\$	
1 - 41 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	Children and Chi	
<u>1</u>	help in the second s	

5 ha	Parameters.	Un N	To it Mitchiel	Results	NAAQ Standards for Incastrac, Residential Recal Jac Other Area (1968-56, 21 (Ph)
;	age to a second		1 20 167 20 2407	:•	
	n The period between N	·	i i si estersionistati	. • •	•
	en en sel an en	· ·	n geerste van de arte date dat	200	:
•	n Neglad Skatal de Marson (M		n an		
•			i balen er en er	:	
	•	· . ··	Продаления 2011 желар	· : :	
	ν Ανταγκατική το προστάλου το προστ		·	25. 1	
		- 	n an tarta da an	·.	:
	Ta processo	· . •	n an	:	·
:	e Benara Aries e C		· · · · · · · · · · · · · · · · · · ·	÷ . *. : .	·
::	Reg Is	· · ·	n ar sa wiye in th	10 C 27	
:. '	1999 - Th	·	 A registration of the second state 	N. 1. 19	·

Noter 52.000

MAAL C. Martina Andreas Andreas Association (Example) (Edited States of Control Control Flux).
 MAAL C. Martina (Edited States Stat States Sta

Venilied Sy

Autorized Supratory

(...)

... ... that of Report Page 1 of 1

(Laboratory Services Division)

 Balancia (192) Paleborna (1946).
 Balancia (1946) Paleborna (1946). Second and second Had tables read and readers as and the second second second

TEST REPORT

Weblinkwool (kale Alf Con Accredited by NABL 6 NABET, Centred ISO 9001 2015, ISO 14001 2015 8 (SO 45001 - 2018)

Report No 1 11 M. 1. ... 1.4. Report Oally 14

Disciption e		Group	and the second second
Essued to	Hills Larved & Taubia Limited Keavy C	ivel Intrastructure 1C	
	 A 1.5 A 1.5 A 1.5 B 		
	(AA AM A HEALTH AND A HEALTH		
	3. a m + 1.22 (12)		
Sampling Method	CODE AND ALLOW AND A		
Somulad br			
Sample Collected Date		Sungle Reference No	0.00000/048.4420
Saniple Description	Answert Au	Sample Received On	11.1
Qty of Sample Received	 Berning and Konstant 	Fest Continenced On	2010-2020
Sample Condition	and the pro-	First Completed On	14 14 2 2 2
Sumpling Location	Saligramamy Socarya Hospital		

·	Weather Condition	
Second Second	···.	
a the second to		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
<u>es</u> te terrete		

\$ 16	Kadallele-p	lleits	T-se Mothes	Кемийа	RAAQ Manderdy for Sminshoul Revolution, Rurel and Olary Alexa (1996 for 24 Hosy
1.1	• · · · · · · · · · · · · · · · · · · ·	·	an a	15.1	
	e Ne subbra sint	·	i santo atelicare Revice 1	27 E	·
	e Senger - Gart gebetraties etc.	• . ·	n an an an an an Araba an Araba.	5.0	
÷ ۱	n Ang se ait strange frank tit	. : m	and the set of the set	71.1	
F	- 		1 2 4 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	: ^ .	
· 1	- lanat At			8 a. 16 - 76	:
1	That Mathematica	The second	·	 1.15, 1.14 	4-
.	· · · · · · ·	• •	an a	5.62	· · · ·
			Construction of Parallel	· · · · ·	
	n Antaria Aren de S		n akara ke palawakan tah	÷ : •	·
·	Nesta ta	·	· · · · · · · · · · · · · · · · · · ·	÷ ·	·
	19.99 - 19	·	11. (AA2.43	6 fe	

Note: 644 40 2.1 4 2 1 2 ·~ :-1.1.1.1.1.1.1. .. •

(1) A second s second seco

Venturis B

Pour Lef 1

Authorized Separate

Note: 1 The test is sufficiently and to the sumate submittee for test. 2.5 mg/ or rest on of the test report in full or part shall invalidate the report. 3 Sample will be retained for 15 data from the dirte of reporting except in care of regulatory samples or specifically instructed by client. A Perioduble symplex will be discarded convertibility affini reporting 15 Unite investments developed a month style loss/damage caused bruse or misuse of test report siter involving crissical of test report

۰.

		<u>Test Report</u>		
& Addr	er Name M/s. CHENNAI METRO ess CMRL Depot, Admin Bu Poonamalle High Road Koyambedu, Chennai – G	D RAIL LIMITED Date of Regist ailding, Sample Code Test Commen	tration 17.07.202] E-4428 E-4428 E-4428 17.07.202] E-4428 17.07.202] E-4428	
Samplin Samplin Categor Ambien Relative	Description ng Location ng Plan/Procedure ry of Area/Zone t Temperature during the Sampling (A e Humidity during the Sampling (Aver nd Hours of Sampling	i ESIPL/SOP/C i Commercial A Average) i 31.5°C	Pass Crossing (AAQ-1) C-AA/01	
S.No.	Parameters	Test Method	Result AAQ-1	NAAQ STANDARI
01	Respirable Suspended Particulate Matter in µg/m ³	IS :5182 Part 23-2006-(RA 2017)	78	100
02	Particulate Matter (Size Less than 2.5 μ m) in μ g/m ³	ESIPL/SOP/C-AA/03	24	60
03	Sulphur Dioxide as SO_2 in $\mu g/m^3$	IS :5182 Part 2-2001-(RA 2017)	8	80
04	Oxides of Nitrogen as NO_2 in $\mu g/m^3$	IS :5182 Part 6-2006-(RA 2017)	26	80

BDL - Below Detection Limit; DL - Detection Limit

• National Ambient Air Quality (NAAQ) Standards, CPCB, Notification dated 18th November 2009.

End of Report.

Verified by

m·Be (M.Beer Mohamed)

(R.Sivakumar)

Note: § This report relates only to the particular sample submitted for test. § Any correction not attested shall invalidate this report. § This report shall not be reproduced in full or part without our written approval. § The test samples will not be retained for more than 7 days from the date of issue of test report unless otherwise requested by the customer.

Registered Office & Laboratory:

ISO/IEC 17025:2017 Accredited Testing Laboratory by NABL (QCI) Vide Certificate Number TC-5664

		Test Report			
& Addr	ress I M/s. CHENNAI METRO CMRL Depot, Admin B Poonamalle High Road Koyambedu, Chennai –	O RAIL LIMITED uilding, 600 107.	Date of Monitor Date of Registra Sample Code Test Commenc Test Completed Report Issuing	tion 17.07.202 E-4429 ed on 17.07.202 on 22.07.202	- 1 1
-	Description	:	Ambient Air Qu	ality	
-	ng Location			lospital (AAQ-2)	
-	ng Plan/Procedure		ESIPL/SOP/C-A		
	ry of Area/Zone		Commercial Ar	ea	
	t Temperature during the Sampling (e Humidity during the Sampling (Aver		31.5°C		
	id Hours of Sampling		60% 24 Hrs		
S.No.	Demension			Result	NAAQ
3.110.	Parameters	Test Met	hod I		
				AAO-2	STANDARD
01	Respirable Suspended Particulate Matter in µg/m ³	IS :5182 Part 23-200		AAQ-2 72	
01 02	Respirable Suspended Particulate Matter in $\mu g/m^3$ Particulate Matter (Size Less than 2.5 μ m) in $\mu g/m^3$	IS :5182 Part 23-200 ESIPL/SOP/C-AA/0	06-(RA 2017)		STANDARD
	Matter in µg/m ³ Particulate Matter (Size Less		06-(RA 2017) 13	72	STANDARD 100
02	Matter in $\mu g/m^3$ Particulate Matter (Size Less than 2.5 μ m) in $\mu g/m^3$	ESIPL/SOP/C-AA/0	06-(RA 2017) 03 1-(RA 2017)	72 26	STANDARD 100 60

Note :

BDL - Below Detection Limit; DL - Detection Limit

National Ambient Air Quality (NAAQ) Standards, CPCB, Notification dated 18th November 2009.

.....End of Report.....

Verified by

NI. Bel (M.Beer Mohamed)

Contraction of the second

(R.Sivakumar) Authorized Signatory

co Services India Pvt. Ltd.,

Note: § This report relates only to the particular sample submitted for test. § Any correction not attested shall invalidate this report. § This report shall not be reproduced in full or part without our written approval. § The test samples will not be retained for more than 7 days from the date of issue of test report unless otherwise requested by the customer.

Registered Office & Laboratory:

en Services India Pvt. Ltd.,

(R.Sivakumar)

Authorized Signatory

ISO/IEC 17025:2017 Accredited Testing Laboratory by NABL (QCI) Vide Certificate Number TC-5664

		Test Report			
& Addı	ter Name i M/s. CHENNAI METRO i CMRL Depot, Admin B Poonamalle High Road Koyambedu, Chennai –	D RAIL LIMITED E uilding, S 600 107. T	Date of Monito Date of Registra Sample Code Cest Commence Cest Complete Report Issuing	ation 17.07.202 E-4430 ed on 17.07.202 d on 22.07.202	-
Samplin Samplin Categon Amblen Relativo	Description ng Location ng Plan/Procedure ry of Area/Zone at Temperature during the Sampling (Aver the Humidity during the Sampling (Aver and Hours of Sampling	Average) : 3 age) : 6	mbient Air Q	uality Bus Depot (AAQ-3) AA/01	
S.No.	Parameters	Test Meth	od	Result AAQ-3	NAAQ
01	Respirable Suspended Particulate Matter in µg/m ³	IS :5182 Part 23-2006	-(RA 2017)	75	100
02	Particulate Matter (Size Less than 2.5 μ m) in μ g/m ³	ESIPL/SOP/C-AA/03		30	60
03	Sulphur Dioxide as SO_2 in $\mu g/m^3$	IS :5182 Part 2-2001-	(RA 2017)	7.6	80
04	Oxides of Nitrogen as NO_2 in $\mu g/m^3$	IS :5182 Part 6-2006-(RA 2017)		32	80
05	Carbon Monoxide as CO in mg/m ³	NIOSH -6604:1996		BDL (DL:1.14)	2

Note :

BDL - Below Detection Limit; DL - Detection Limit

• National Ambient Air Quality (NAAQ) Standards, CPCB, Notification dated 18th November 2009.

.....End of Report.....

Verified by

(M.Beer Mohamed)

Note: § This report relates only to the particular sample submitted for test. § Any correction not attested shall invalidate this report. § This report shall not be reproduced in full or part without our written approval. § The test samples will not be retained for more than 7 days from the date of issue of test report unless otherwise requested by the customer.

Registered Office & Laboratory:

Services India Pvt. Ltd.,

R.Sivakumar)

Authorized Signatory

ISO/IEC 17025:2017 Accredited Testing Laboratory by NABL (QCI) Vide Certificate Number TC-5664

		Test Repor	t		
& Addı	rer Name : M/s. CHENNAI METRO : CMRL Depot, Admin B Poonamalle High Road Koyambedu, Chennai –	Date of Monito Date of Registr Sample Code Test Commence Test Complete Report Issuing	ation : 17.07.202 : E-4431 red on : 17.07.202 d on : 22.07.202	- 1 1	
Samplin Samplin Categor Ambien	Description ng Location ng Plan/Procedure ry of Area/Zone nt Temperature during the Sampling (Aver e Humidity during the Sampling (Aver		Ambient Air Q Katupakkam (A ESIPL/SOP/C-, Commercial Ar 31.5°C 60%	AAQ-4) AA/01	
	id Hours of Sampling	age)	60% 24 Hrs		
S.No.	Parameters	Test M	ethod	Result	NAAQ
				AAQ-4	STANDARD
01	Respirable Suspended Particulate Matter in µg/m ³	IS :5182 Part 23-20	006-(RA 2017)	79	100
02	Particulate Matter (Size Less than 2.5 μ m) in μ g/m ³	ESIPL/SOP/C-AA/03		31	60
03	Sulphur Dioxide as SO_2 in $\mu g/m^3$	IS :5182 Part 2-2001-(RA 2017)		6.8	80
04	Oxides of Nitrogen as NO_2 in $\mu g/m^3$	IS :5182 Part 6-200	06-(RA 2017)	26	80
05	Carbon Monoxide as CO in mg/m ³	NIOSH -6604:1996	5	BDL (DL:1.14)	2

Note :

BDL - Below Detection Limit; DL - Detection Limit

National Ambient Air Quality (NAAQ) Standards, CPCB, Notification dated 18th November 2009.

.....End of Report.....

Verified by

(M.Beer Mohamed)

Note: § This report relates only to the particular sample submitted for test. § Any correction not attested shall invalidate this report. § This report shall not be reproduced in full or part without our written approval. § The test samples will not be retained for more than 7 days from the date of issue of test report unless otherwise requested by the customer.

Registered Office & Laboratory:

ISO/IEC 17025:2017 Accredited Testing Laboratory by NABL (QCI) Vide Certificate Number TC-5664

		Test Report	rt		
Report Custom & Addr	er Name I M/s. CHENNAI METRO	O RAIL LIMITED uilding,	Date of Monitoria Date of Registrat Sample Code Test Commenced Test Completed Report Issuing Date	ion 17.07.20 E-4431 Ion 17.07.20 on 22.07.20)21)21
Sample	Description	1	Ambient Air Qua		
-	ng Location	1	Kumananchavad	i (AAQ-5)	
Samplir	ng Plan/Procedure	1	ESIPL/SOP/C-A	A/01	
	ry of Area/Zone	1	Commercial Area		
Relative	t Temperature during the Sampling (, e Humidity during the Sampling (Aver ad Hours of Sampling		31.5°C 60% 24Hrs		
C N.				Result	NAAQ
S.No.	Parameters	Test M	ethod	AAQ-5	STANDARD
01	Respirable Suspended Particulate Matter in µg/m ³	IS :5182 Part 23-2	006-(RA 2017)	71	100
02	Particulate Matter (Size Less than 2.5 μ m) in μ g/m ³	ESIPL/SOP/C-AA	/03	29	60
03	Sulphur Dioxide as SO_2 in $\mu g/m^3$	IS :5182 Part 2-20	01-(RA 2017)	7	80
04	Oxides of Nitrogen as NO_2 in $\mu g/m^3$	IS :5182 Part 6-20	06-(RA 2017)	27	80

Note :

BDL - Below Detection Limit; DL - Detection Limit

Carbon Monoxide as CO in mg/m3

National Ambient Air Quality (NAAQ) Standards, CPCB, Notification dated 18th November 2009.

NIOSH -6604:1996

.....End of Report.....

BDL (DL:1.14)

2

vices India Pvt. Ltd.,

Authorized Signatory

R.Sivakumar)

Verified by

05

(M.Beer Mohamed)

Note: § This report relates only to the particular sample submitted for test. § Any correction not attested shall invalidate this report. § This report shall not be reproduced in full or part without our written approval. § The test samples will not be retained for more than 7 days from the date of issue of test report unless otherwise requested by the customer.

Registered Office & Laboratory:

	ISO/IEC 17025:2017 Accredited Test	ting Laboratory by NABL (QCI) V	ide Certificate Number T	C-5664	
		<u>Test Report</u>			
Report Custom & Addr	er Name I M/s. CHENNAI METRO	D RAIL LIMITED Date of Reg uilding, Sample Coo Test Com	istration 20.07.202 le E-4455 lenced on 20.07.202 leted on 24.07.202	on 20.07.2021 E-4455 on 20.07.2021 n 24.07.2021	
Samplir Samplir Categor Ambien Relative	Description ng Location ng Plan/Procedure ry of Area/Zone at Temperature during the Sampling (Aver e Humidity during the Sampling (Aver nd Hours of Sampling	Ambient Ai Karayanch ESIPL/SOF Commercia Average) : 31.8°C	r Quality wadi (AAQ-1) /C-AA/01		
S.No.	Parameters	Test Method	Result AAQ-1	NAAQ STANDARD	
	Respirable Suspended Particulate				
01	Matter in $\mu g/m^3$	IS :5182 Part 23-2006-(RA 2017	81	100	
01 02		IS :5182 Part 23-2006-(RA 2017 ESIPL/SOP/C-AA/03	36	100 60	
	Matter in µg/m ³ Particulate Matter (Size Less				
02	Matter in $\mu g/m^3$ Particulate Matter (Size Less than 2.5 μ m) in $\mu g/m^3$	ESIPL/SOP/C-AA/03	36	60	

Note :

BDL - Below Detection Limit; DL - Detection Limit

National Ambient Air Quality (NAAQ) Standards, CPCB, Notification dated 18th November 2009.

.....End of Report.....

Note: § This report relates only to the particular sample submitted for test. § Any correction not attested shall invalidate this report. § This report shall not be reproduced in full or part without our written approval. § The test samples will not be retained for more than 7 days from the date of issue of test report unless otherwise requested by the customer.

Registered Office & Laboratory:

No.1/134, Dhanakotiraja Street, Sundar Nagar, Ekkaduthangal, Guindy, Chennai – 600032, Tamil Nadu, India Phone: (044) 30683067/43102232 E-mail: info@ecoservices.in, Web: www.ecoservices.in

Verified by

m. Doce (M.Beer Mohamed

ISO/IEC 17025:2017 Accredited Testing Laboratory by NABL (QCI) Vide Certificate Number TC-5664

	Tes	t Report				
Report No. Customer Nam & Address	ESIPL/EMS/2021/07/3306 M/s. CHENNAI METRO RAIL LI CMRL Depot, Admin Building, Poonamalle High Road Koyambedu, Chennai – 600 107.	MITED	Date of Monitoring Date of Registration Sample Code Test Commenced on Test Completed on Report Issuing Date	1	19.07.2021 20.07.2021 E-4456 20.07.2021 24.07.2021 26.07.2021	- 20.07.2021
Sample Descrip		:	Ambient Air Quality	_		
Sampling Location Sampling Plan/Procedure Category of Area/Zone		1	Mullaithottam (AAQ-	2)		
		1	ESIPL/SOP/C-AA/01	_,		
		1	Commercial Area			
Ambient Tempe	rature during the Sampling (Average)	:	31.6°C	-		
Relative Humid	ity during the Sampling (Average)	:	59%			
Time and Hours	s of Sampling	1	24 Hrs			
e No		1502.5550	0.0 0	Re	sult	

Parameters	Test Mathed	Result	NAAQ	
	i est meniou	AAQ-2	STANDARD	
Respirable Suspended Particulate Matter in µg/m ³	IS :5182 Part 23-2006-(RA 2017)	69	100	
Particulate Matter (Size Less than 2.5 µm) in µp/m ³	ESIPL/SOP/C-AA/03	24	60	
Sulphur Dioxide as SO_2 in $\mu g/m^3$	IS :5182 Part 2-2001-(RA 2017)	7.3	80	
Oxides of Nitrogen as NO_2 in $\mu g/m^3$	IS :5182 Part 6-2006-(RA 2017)	28	80	
Carbon Monoxide as CO in mg/m ³	NIOSH -6604:1996	BDL (DL:1.14)	2	
	Matter in µg/m ³ Particulate Matter (Size Less than 2.5 µm) in µp/m ³ Sulphur Dioxide as SO ₂ in µg/m ³ Oxides of Nitrogen as NO ₂ in µg/m ³	Respirable Suspended Particulate Matter in µg/m³IS :5182 Part 23-2006-(RA 2017)Particulate Matter (Size Less than 2.5 µm) in µp/m³ESIPL/SOP/C-AA/03Sulphur Dioxide as SO2 in µg/m³IS :5182 Part 2-2001-(RA 2017)Oxides of Nitrogen as NO2 in µg/m³IS :5182 Part 6-2006-(RA 2017)	ParametersTest MethodAAQ-2Respirable Suspended Particulate Matter in µg/m³IS :5182 Part 23-2006-(RA 2017)69Particulate Matter (Size Less than 2.5 µm) in µg/m³ESIPL/SOP/C-AA/0324Sulphur Dioxide as SO2 in µg/m³IS :5182 Part 2-2001-(RA 2017)7.3Oxides of Nitrogen as NO2 in µg/m³IS :5182 Part 6-2006-(RA 2017)28	

BDL - Below Detection Limit; DL - Detection Limit

National Ambient Air Quality (NAAQ) Standards, CPCB, Notification dated 18th November 2009.

.....End of Report.....

Verified by

mplet (M.Beer Mohamed)

Services India Pvt. Ltd., NW 1/134 hanakolinta BATRIEL. undar Not tuthane

Physic. (R.Sivakumar) Authorized Signatory

Note: § This report relates only to the particular sample submitted for test. § Any correction not attested shall invalidate this report. § This report shall not be reproduced in full or part without our written approval. § The test samples will not be retained for more than 7 days from the date of issue of test report unless otherwise requested by the customer.

Registered Office & Laboratory:

80

80

2

						TG-5064
	ISO/IEC 17025:2017 Accredited Te	sting Laboratory by N	ABL (QCI) Vide Cert	ificate I	Number TC	-5664
		Test Repor	<u>t</u>			
Report Custom & Addr	er Name 1 M/s. CHENNAI METH	RO RAIL LIMITED Building,	Date of Monitoring Date of Registration Sample Code Test Commenced on Test Completed on	1 1 1 1	19.07.2021 20.07.2021 E-4457 20.07.2021 24.07.2021 26.07.2021	- 20.07.2021
Samplin Samplin Categor Ambien Relative	Description ng Location ng Plan/Procedure ry of Area/Zone t Temperature during the Sampling e Humidity during the Sampling (Ave ad Hours of Sampling		Report Issuing Date Ambient Air Quality Poonamallee By Pas ESIPL/SOP/C-AA/0 Commercial Area 31.6°C 59% 24 Hrs	y s (AAQ		
S.No.	Parameters	Test M	ethod	Resi AAQ		NAAQ STANDARD
01	Respirable Suspended Particulate Matter in µg/m ³	IS :5182 Part 23-2	006-(RA 2017)	70		100
02	Particulate Matter (Size Less than 2.5 µm) in µg/m ³	ESIPL/SOP/C-AA	/03	26		60

IS :5182 Part 2-2001-(RA 2017)

IS :5182 Part 6-2006-(RA 2017)

NIOSH -6604:1996

National Ambient Air Quality (NAAQ) Standards, CPCB, Notification dated 18th November 2009.

Ve	elf.	lod	by
		neu	0.9

03

04

05

m.Du (M.Beer Mohamed)

Note :

than 2.5 µm) in µg/m3

Sulphur Dioxide as SO_2 in $\mu g/m^3$

Oxides of Nitrogen as NO2 in µg/m3

Carbon Monoxide as CO in mg/m3

BDL - Below Detection Limit; DL - Detection Limit

.....End of Report.....

ervices India Pvt. Ltd., R.Sivakumar) Authorized Signatory

8.3

29

BDL (DL:1.14)

Note: § This report relates only to the particular sample submitted for test. § Any correction not attested shall invalidate this report. § This report shall not be reproduced in full or part without our written approval. § The test samples will not be retained for more than 7 days from the date of issue of test report unless otherwise requested by the customer.

Registered Office & Laboratory:

ISO/IEC 17025:2017 Accredited Testing Laboratory by NABL (QCI) Vide Certificate Number TC-5664

		Test Repor	t		
& Add	ier Name : M/s. CHENNAI METE ress : CMRL Depot, Admin Poonamalle High Road Koyambedu, Chennai -	RO RAIL LIMITED Building,	Date of Monitori Date of Registrat Sample Code Test Commence Test Completed Report Issuing D	tion : 20.07.20 : E-4458 d on : 20.07.20 on : 24.07.20	021 021
Samplin Samplin Categor Amblen Relative	Description ng Location ng Plan/Procedure ry of Area/Zone at Temperature during the Sampling e Humidity during the Sampling (Ave ad Hours of Sampling	(Average) : erage) :	Ambient Air Qui Poonamallee Bus ESIPL/SOP/C-A. Commercial Ares 31.6°C 59% 24 Hrs	s Terminus (AAQ- A/01	-4)
S.No.	Parameters	Test Me	ethod	Result	NAAQ
				AAQ-4	STANDARD
01	Respirable Suspended Particulate Matter in $\mu g/m^3$	IS :5182 Part 23-2006-(RA 2017)		83	100
02	Particulate Matter (Size Less than 2.5 μ m) in μ g/m ³	ESIPL/SOP/C-AA/03		39	60

	Note :		1	
05	Carbon Monoxide as CO in mg/m ³	NIOSH -6604:1996	BDL (DL:1.14)	2
04	Oxides of Nitrogen as NO_2 in $\mu g/m^3$	IS :5182 Part 6-2006-(RA 2017)	25	80
03	Sulphur Dioxide as SO_2 in $\mu g/m^3$	IS :5182 Part 2-2001-(RA 2017)	7.8	80
	than 2.5 μm) in μg/m ³	LSII L/301/C-AA/03	39	60

Note :

BDL - Below Detection Limit; DL - Detection Limit

• National Ambient Air Quality (NAAQ) Standards, CPCB, Notification dated 18th November 2009.

.....End of Report.....

Verified by

m.P (M.Beer Mohamed)

ervices India Pvt. Ltd., NVICA (R.Sivakumar) Authorized Signatory

Note: § This report relates only to the particular sample submitted for test. § Any correction not attested shall invalidate this report. § This report shall not be reproduced in full or part without our written approval. § The test samples will not be retained for more than 7 days from the date of issue of test report unless otherwise requested by the customer.

Registered Office & Laboratory:

ISO/IEC 17025:2017 Accredited Testing Laborator	y by NABL (QCI) Vide Certificate Number TC-5664
---	---

Report No. Customer Name & Address	Test R ESIPL/EMS/2021/07/3309 M/s. CHENNAI METRO RAIL LIMIT CMRL Depot, Admin Building, Poonamalle High Road Koyambedu, Chennai – 600 107.		Date of Monitoring Date of Registration Sample Code Test Commenced on Test Completed on	 19.07.2021 - 20.07.2021 20.07.2021 E-4459 20.07.2021 24.07.2021 26.07.2021
Sample Descriptio Sampling Locatior		;	Report Issuing Date Ambient Air Quality	20.07.2021
Sampling Plan/Pro Category of Area/2	cedure	:	Casting Yard (AAQ-5) ESIPL/SOP/C-AA/01	
Ambient Tempera	ture during the Sampling (Average)		Commercial Area 31.6°C	
Relative Humidity Time and Hours of	during the Sampling (Average) Sampling	:	59% 24Hrs	

S.No.	.No. Parameters	Test Method	Result	NAAQ STANDARD
		Test Method	AAQ-5	
01	Respirable Suspended Particulate Matter in $\mu g/m^3$	IS :5182 Part 23-2006-(RA 2017)	60	100
02	Particulate Matter (Size Less than 2.5 μ m) in μ g/m ³	ESIPL/SOP/C-AA/03	22	60
03	Sulphur Dioxide as SO_2 in $\mu g/m^3$	IS :5182 Part 2-2001-(RA 2017)	5.2	80
04	Oxides of Nitrogen as NO_2 in $\mu g/m^3$	IS :5182 Part 6-2006-(RA 2017)	23	80
05	Carbon Monoxide as CO in mg/m ³	NIOSH -6604:1996	BDL (DL:1.14)	2

BDL - Below Detection Limit; DL - Detection Limit

National Ambient Air Quality (NAAQ) Standards, CPCB, Notification dated 18th November 2009.

.....End of Report.....

Verified by

(M.Beer Mohamed)

services India Pvt. Ltd., (R.Sivakumar) Authorized Signatory

Note: § This report relates only to the particular sample submitted for test. § Any correction not attested shall invalidate this report. § This report shall not be reproduced in full or part without our written approval. § The test samples will not be retained for more than 7 days from the date of issue of test report unless otherwise requested by the customer.

Registered Office & Laboratory:

(Laboratory Services Division)

HIG - 6152, TNHB Phase I & II, Kamarajar Boad, Ayapakkam, Chennal - 600 077. Ph : +91 44 2682 3190 / +91 73977 96831 Email: lab@pollucareindia.com Web : www.pollucareinida.com

TEST REPORT Accredited by NABL & NABET, Certified ISO 9001/2015, ISO 14001/2015 & ISO 45001 ; 2018

Report No	: PCEI/TR-W-3545	Report Date		: 22.06.2022
Charles South and a lot of		and the second se	1	1 2 2.000, 2002 E
Issued to	: M/S ITD Cemer	tation India Limited,		
	R.M.S Tower ,No.	2. Mahalakshmi Street,		
	T.Nagar, Chennal	-600 017.		
Project Name	CMRL/CON/PH	ASE-II/C4/UG-1/2022		
Sampling Method	: 15 3025 (Part 1) 1	987 (RA 2019)		
Sampled by	Laboratory			
Sample Collected Date	16.06.2022	Sample Reference No		PCEL/W-186-06-22
Sample Description	: Ground Water	Sample Received On		17.06.2022
Qty of Sample Received	: 2 Litra	Test Commenced On		1 17.06.2022
Sample Condition	: Fit for Analysis	Test Completed On		: 32.06.2022
Sampling Location	: Light House Loo	ation	_	

i.No	Parameters	Units	Test Hethod	Results
1	Tu/bdity	NTV	IS 3025 (Part 10) 1984 (RA 2017)	0.9
2	pH Value @ 25 °C		15 3025 (Part 11) 1983 (RA 2019)	7.33
3	Electrical Conductivity @ 25°C	µ5/cm	IS 3025 (Part 14) 1984 (RA 2019)	985
4	Total Dissolved Solids @ 180ºC	mg/1	IS 3025 (Part 16) 1984 (RA 2019)	644
5	Total Suspended Solids @ 105°C	mg/l	15 3025 (Part 17) 1984 (RA 2019)	BDL(DL:2.0)
6'	Oil & Grease	ma/l	IS 3025 (Part 39) 1991 (RA 2019)	BDL(DL:5.0)
1	Total Phosphorous (as P)	mg/l	15 3025 (Part 31) 1988 (RA 2019)	BDL(DL:0.1)
8	Total Nitrogen (as N)	ma/I	15 3025 (Part 34) 1988 (RA 2019)	11.3
9	Volatile Organic Compound (VDC)	ng/i	USEPA Method \$201A	BDL(DI, 1.0)
10	Dissolved Oxygen (as DO)	mg/l	15 3025 (Part 38) 1989 (RA 2019)	6.8

Page 1 of 2

Authorised Signatory

51

Note: LThe text results are only to the sample submitted for test. 2. Any Correction of the test report in full or part shall invalidate the report. 3. Sample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by client. 4. Perishable samples will be discarded immediately after reporting. 5. Under ne circumstances tab accepts any fiability or loss/damage caused by use or misuse of test report after involcing or issued of test report.

(Laboratory Services Division) # HG + 6152, TVHB Phase + 6 H, Xamatajar Road, Ayapakkam, Channai - 600 077, PK + +91 44 2682 3190 / +91 73977 96831 Email: LabBroolficaremidia.com Web : www.pathaaremidia.com

TEST REPORT

Accredited by NABL & NABET, Certified ISO 9001 2015, ISO 14001 2015 & ISO 45001 2018

Repor	t No	: PCEI/TR/W-3545	Report Date	: 22.06.2022
5.110	Parameters	Units	Test Hethod	Results
11	Manganese (as Mn)	mg/l	15 3025 (Part 2) 2004	BDL(DL:0.05)
13	Scienium (as Se)	ma/l	15 3025 (Part 2) 2004	0,10
13	Banum (as Da)	mg/l	15.3025 (Part 2) 2004	8DL(DL:0.05)
14	Silver (as Ag)	mg/i	IS 3025 (Part 2) 2004	9DL(DL:0.01)
15	Aluminium (as Al)	mg/4	15 3025 (Part 2) 2004	0.06
16	Boron (as 0)	mg/l	15 3025 (Part 2) 2004	8DL(DL:0.05)
17	Copper (as Cu)	mg/t	. IS 3025 (Part 2) 2004	BDL(DL:0.01)
10	Zine (as Zn)	mg/l	IS 3025 (Part 2) 2004	0.00
19	Cadmium (as Cd)	ng/l	IS 3025 (Part 2) 2004	8DL(DL:0.001)
20	Cyanide (as CN)	mg/l	APHA 23rd Edition,4500 CN+ 8,E: 2017	00L(DL:0.02)
21	Load (as Pb)	ng/l	15 3025 (Part 2) 2004	BDL(0L:0.01)
22	Morcury (as Hg)	mg/l	15 3025 (Part 2) 2004	BDL(DL:0.001)
23	Nickel (as Ni)	ma/i	15 3025 (Part 2) 2004	80L(0L:0.01)
24	Arsenic (as As)	mg/i	15 3025 (Part 2) 2004	0.13
25	Total Chromium (as Cr)	mg/i	15 3025 (Part 2) 2004	80L(0L)0.01)
26	Escherichia coli (MPN)	Present/Absent	IS 15185 : 2016	Present

Note: BDL - Below Detection Limit: DL - Detection Limit.

Page 2 of 2

Authorised Signatory

Note: 1. The test results are only to the sample submitted for test. 2. Any Correction of the test report in full or part shall invalidate the report. 1. Sample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by cliont. 4. Perishable samples will be discarded immediately after reporting. 5. Under no circumstances lab accepts any liability or loss/damage caused by use or misuse of test report after invoicing or issued of test report.

(Laboratory Services Division) # HG - 6152, THHS Phase 1.8.8, Kamarajar Road, Ayapatham, Chennai - 600.027. Ph.: +91.44.2682 3100 / +91.71977 96831 Email: labilpollucareinidia.com Web : www.pollucareinidia.com

Accredited by NABL & NABET, Certified ISO 9001;2015, ISO 14001;2015 & ISO 45001; 2018

Report No	: PCE1/TR-W-3547	Report Date	22.06.30	22
Issued to	: M/S ITD Cemen	tation India Limited,		
	R.M.S Tower ,No.	2, Manalakshmi Street,		
	T.Nagar, Chennai			
Project Name	CMBL/CON/PH	ASE-II/C4/UG-1/2022		
Sampling Method	15 3025 (Part 1) 1			
Sampled by	: Laboratory			
Sample Collected Dato	16.06.2022	Sample Reference No	: PCEI/W-	188-06-22
Sample Description	: Ground Water	Sample Received On	: 17.06.20	22
Qty of Sample Received	: 2 Litre	Test Commenced On	: 17.06.20	22
Sample Condition	: Fit for Analysis	Test Completed On	1 22.06.20	22
Sampling Location	Kutechery Road	Location		

5.80	Parameters	Units	Yest Hethod	Results
1	Turbidity	NTU	IS 3025 (Part 10) 1984 (RA 2017)	80L(DL:0.5)
ż	pH Value @ 25 °C		15 3025 (Part 11) 1983 (RA 2019)	6.03
)	Electrical Conductivity @ 25°C	µ\$/cm	IS 3025 (Part 14) 1984 (RA 2019)	1403
4	Total Dissolved Solids @ 180°C	mg/l	15 3025 (Part 16) 1984 (RA 2019)	920
5	Total Suspended Solids @ 105°C	mg/l	15 3025 (Part 17) 1984 (RA 2019)	BOL(DL12-0)
6	Oil & Grease	mg/l	15 3025 (Part 39) 1991 (RA 2019)	80L(0L 5.0)
7	Total Phosphorous (as P)	mg/l	15 3025 (Part 31) 1988 (RA 2019)	80L(0L10.1)
0	Total Nitrogen (as N)	mg/l	15 3025 (Part 34) 1988 (RA 2019)	21.4
9	Volatile Organic Compound (VOC)	ng/i	USEPA Method 5201A	6DL(DI, 1.0)
10	Dissolved Oxygen (as DO)	mg/l	15 3025 (Part 38) 1989 (RA 2019)	7.1

Page 1 of 2

Authorised Signatory

51

Note: 1. The text results are only to the sample submitted for text. 2. Any Correction of the text report in full or part shall invalidate the report. 3. Sample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by client. 4. Perishable samples will be discarded immediately after reporting. 5. Under no circumstances lab accepts any liability or lass/damage caused by use or misuse of test report after involcing or issued of test report.

(Laboratory Services Division)

(Labor at 019 Services Orvisio a HiG - 6152, TNHIL Phase L& I, Kamarajar Road, Ayapakkam, Chemai - 600 077. Ph : +91 44 2682 3190 / +91 73977 96831. Email: lab@pollucareindia.com Web : www.pollucareinida.com

TEST REPORT

Ð

UCARE

dution for pollution

Accredited by NABL & NABET, Certified ISO 9001/2015, ISO 14001/2015 & ISO 45001 / 2018

Repor	tNo	: PCE1/TR-W-3547	Report Date	22.06.2022
5.Ho	Parameters	Units	Test Hethod	Rosults
11	Manganese (as Mn)	mg/i	15 3025 (Part 2) 2004	BOL(DL:0.05)
12	Selonium (as Se)	mg/1	15 3025 (Part 2) 2004	0.68
11	Barium (as Ba)	mg/i	15 3025 (Part 2) 2004	80L(DL 0.05)
14	Silver (as Ag)	mg/i	15 3025 (Part 2) 2004	80L(DL:0.01)
15	Aluminium (as Al)	mg/l	15 3025 (Part 2) 2004	0.05
16	ttoron (as 8)	ing/i	15 3025 (Part 2) 2004	0.11
17	Copper (as Cu)	m(g/1	15 3025 (Part 2) 2004	0.02
18	Zinc (as Zn)	mg/l	15 3025 (Part 2) 2004	80L(DL:0.01)
19	Cadmium (as Cd)	mg/l	IS 3025 (Part 2) 2004	BOL(DL 0.001)
20	Cyanide (at CN)	mg/l	APHA 23rd Edition,4500 CN- 8,E: 2017	BDL(DL:0.02)
21	Lead (as Pb)	mg/l	IS 3025 (Part 2) 2004	_ 80L(DL:0.01)
22	Mercury (as Hg)	mg/l	15 3025 (Part 2) 2004	BOL(DL:0.001)
23	Nickel (as Ni)	mg/l	15 3025 (Part 2) 2004	8DL(DL:0.01)
24	Arsenic (as As)	mg/I	IS 3025 (Part 2) 2004	0.24
25	Total Chromium (as Cr)	mg/1	15 3025 (Part 2) 2004	BDL(0L:0.01)
26	Escherichia coli (MPN)	Present/Absent	15 15185 : 2016	Present
ACCRETE ADDRESS	A REAL PROPERTY AND A REAL	NAME AND ADDRESS OF TAXABLE PARTY OF TAXABLE PARTY.		

Note: BDL - Below Detection Limit: DL - Detection Limit

End of Report Page 2 of 2

Authorised Signatory

Note: 1.The test results are only to the sample submitted for test. 2. Any Correction of the test report in full or part shall invalidate the report. 3.5ample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by client. 4.Perishable samples will be discarded immediately after reporting. 5. Under no circumstances lab accepts any liability or loss/damage caused by use or misuse of test report after involcing or issued of test report.

(Laboratory Services Division)

HIG - 6152, TNHIB Phase I & II, Famarajar Road, Ayapakkam, Chennai - 600 077. Ph I +91 44 2682 3190 / +91 73977 96831 Email: lab@pollucareindia.com Web I www.pollucareinida.com

Accredited by NABL & NABET, Certified ISO 9001/2015, ISO 14001/2015 & ISO 45001 / 2018

Report No	: PCEI/TR-W-3548	Report Date	1	22.06.2022
Issued to	M/S ITD Cemen	tation India Limited,		
	R.M.S Tower ,No.	2, Mahalakshmi Street,		
	T.Nagar, Chennal	600 017.		
Project Name	CMRL/CON/PH	SE-II/C4/UG-1/2022		
Sampling Method	: 15 3025 (Part 1) 1	987 (RA 2019)		
Sampled by	: Laboratory			
Sample Collected Date	: 16.06.2022	Sample Reference No		: PCEI/W-189-06-22
Sample Description	Ground Water	Sample Received On		17.06.2022
Qty of Sample Received	2 Litre	Test Commenced On		1 17.06.2022
Sample Condition	Fit for Analysis	Test Completed On		1 22.06.2022
Sampling Location	Alwerpet Locati	on		

5.No	Paramotors	Units	Test Method	Results
1	Yurbidity	NTU	15 3025 (Part 10) 1984 (RA 2017)	56.0
2	pH Value @ 25 °C		15 3025 (Part 11) 1983 (RA 2019)	6.99
3	Electrical Conductivity @ 25"C	µ5/cm	15 3025 (Part 14) 1984 (RA 2019)	1365
4	Total Dissolved Solids @ 180°C	mg/l	IS 3025 (Part 16) 1984 (RA 2019)	894
5	Total Suspended Solids @ 105°C	mg/i	15 3025 (Part 17) 1984 (RA 2019)	27.0
6	Of & Grease	mg/l	15 3025 (Part 39) 1991 (RA 2019)	8DL(OL:5.0)
,	Total Phosphorous (as P)	mg/l	15 3025 (Part 31) 1988 (RA 2019)	BDL(DL:0.1)
8	Total Nitrogen (as N)	mg/1	15 3025 (Part 34) 1988 (RA 2019)	18.6
ų	Volatile Organic Compound (VOC)	ng/l	USEPA Method 5201A	BDL(DL 1.0)
10	Dissolved Oxygen (as DO)	mg/I	15 3025 (Part 38) 1989 (RA 2019)	6.7
_	And additional and a state of the subscription	the second s	the second se	

Page 1 of 2

Authorised Signatory

SI

Note: 1. The test results are only to the sample submitted for test. 2. Any Correction of the test report in full or part shall invalidate the report. 3. Sample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by client. 4. Perishable samples will be discarded immediately after reporting. 5. Under no circumstances lab accepts any liability or loss/damage cased by use or misuse of test report after involcing or issued of test report.

(Laboratory Services Division) #HIG - 6152, TNHB Phase I & II, Xamarajar Road, Ayapakkam, Chennal - 600 077.

Chennai - 600 077. Ph : +91 44 2682 3190 / +91 73977 96831 Email: tab@ pollucareindia.com Web : www.pollucareinida.com

Accredited by NABL & NABET, Certified ISO 9001:2015, ISO 14001:2015 & ISO 45001 | 2018

Repor	t No :	PCEI/TR-W-3548	Report Date	22.06.2022
5.Ho	Paramaters	Units	Test Method	Results
11	Manganese (as Mn)	mg/i	15 3025 (Part 2) 2004	80L(0U:0.05)
12	Selenium (as Se)	mg/t	15 3025 (Part 2) 2004	0.06
13	Banum (as Bà)	mg/l	IS 3025 (Part 2) 2004	8DL(DL:0.05)
14	Silvor (as Ag)	mg/l	IS 3025 (Part 2) 2004	BDL(OL:0.01)
15	Aluminium (as Al)	mg/l	15 3025 (Part 2) 2004	0.04
16	Boron (as B)	mg/l	IS 3825 (Part 2) 2004	0.09
17	Copper (as Cu)	mg/l	IS 3025 (Part 2) 2004	BOL(OL:0.01)
18	Zinc (as Zn)	mg/l	IS 3025 (Part 2) 2004	(IDL(OL:0.01)
19	Cadmium (as Cd)	mg/l	15 3025 (Part 2) 2004	8DL(0L:0.001)
20	Cyanide (as CN)	mg/i	APHA 23rd Edition,4500 CN- B,E: 2017	80L(DL:0.02)
21	Load (as Pb)	mg/i	15 3025 (Part 2) 2004	00L(OL:0.01)
22	Mercury (as Hg)	mg/l	15 3025 (Part 2) 2004	80L(OL:0.001)
23	Nickel (as Ni)	mg/i	15 3025 (Part 2) 2004	80L(DL:0.01)
24	Arsenic (as As)	(hig/l	IS 3025 (Part 2) 2004	0.21
25	Total Chromium (as Cr)	mg/l	IS 3025 (Part 2) 2004	BOL(DL:0.01)
26	Escherichia coli (MPN)	Present/Absent	15 15185 : 2016	Present
		the second s		and the second se

Note: BDL - Relow Detection Limit; DL - Detection Limit

...... End of Report Page 2 of 3

vertilet

Authorised Signatory

Note: 1.The test results are only to the sample submitted for test. 2. Any Correction of the test report in full or part shall invalidate the report. 3. Sample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by zlient. 4. Perishable samples will be discarded immediately after reporting. 5. Under no circumstances lab accepts any liability or loss/damage caused by use or misute of test report after invoicing or issued of test report.

(Laboratory Services Division) # HIG = 6152, TNHD Phase I & II, Kamarajar Road, Ayapakkan, Chennal - 600 077 Ph.: +91 44 2682 3190 / +91 23877 96831 Email: Izb@pollucareindia.com Web : www.pollucareinida.com

Accredited by NABL & NABET, Certified ISO 9001/2015, ISO 14001/2015 & ISO 45001 : 2018

Report No	PCEI/TR-W-3546	Report Date	: 22.06.2022
Issued to		ation India Limited, . Mahalakshmi Stroot, 600 017.	
Project Name Sampling Method Sampled by	CMRL/CON/PHA IS 3025 (Part 1) 19 Laboratory	58-11/C4/UG-1/2022 87 (8A 2019)	
Sample Collected Date	: 16.06.2022	Sample Reference No	PCEL/W-187-06-22
Sample Description	: Ground Water	Sample Received On	17.06.2022
Qty of Sample Received	1 2 Litre	Test Commenced On	17.06.2022
Sample Condition	Fit for Analysis	Test Completed On	22.06.2022
Sampling Location	Bharathidasan B		

11.110	Paramotors	Units	Test Method	Results
i	Turbidity	NTU	15 3025 (Part 10) 1984 (RA 2017)	31.1
z	pH Value @ 25 °C		IS 3025 (Part 11) 1983 (RA 2019)	7.29
3	Electrical Conductivity @ 25°C	µS/cm	IS 3025 (Part 14) 1984 (RA 2019)	1795
à	Total Dissolved Solids @ 180°C	mg/l	IS 3025 (Part 16) 1964 (RA 2019)	1173
5	Total Suspended Solids @ 105°C	mg/l	IS 3025 (Part 17) 1984 (RA 2019)	76.4
6	Oil & Grease	mg/l	IS 3025 (Part 39) 1991 (RA 2019)	80L(DL:5.0)
×	Total Phosphorous (as P)	mg/l	15 3025 (Part 31) 1988 (RA 2019)	80L(DL(0.1)
8	Total /litragen (as H)	mg/t	IS 3025 (Part 34) 1988 (RA 2019)	10.1
9	volatile Organic Compound (VOC)	ng/1	USEPA Method 5201A	80L(0L 1.0)
10	Dissolved Oxygen (as DO)	mg/l	15 3025 (Part 36) 1969 (RA 2019)	6.6

Page 3 of 2

Authorised Signatory

Note: 1 The test results are only to the sample submitted for test. 2 Any Correction of the test report in full or part shall invalidate the report 3.5 ample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by client. 4. Perishable samples will be discarded immediately after reporting. 5. Under no circumstances lab accepts any liability or isos/damage caused by use or misure of test report after invoicing or issued of test report.

(Laboratory Services Division) # HBG + 6152, TNHB Phase 18-11, Kamarajar Road, Ayapatkium, Chennal - 600 077, Ph : + 91 44 2582 3100 / +91 73977 96831 Email: labil@pollucareindis.com

TEST REPORT

Accredited by NABL & NABET, Certified ISO 9001:2015, ISO:14001:2015 & ISO 45001 : 2018

Repo	t No :	PCEI/TR-W-3546	Report Date	: 22.06.2022
5.110	Parameters	Units	Yest Mathod	Results
11	Manganeso (as Mn)	mg/l	15 3025 (Part 2) 2004	80L(DL:0.05)
12	Selenium (as Se)	mg/l	15 3025 (Part 2) 2004	0.12
13	Banum (as Ba)	mg/l	IS 3025 (Part 2) 2004	0.07
14	Silver (as Ag)	mg/i	15 3025 (Part 2) 2004	8DL(DL:0.01)
15	Aluminium (as Al)	mg/t	IS 3025 (Part 2) 2004	0.09
16	Boron (as B)	mg/l	15 3025 (Part 2) 2004	0.15
17	Copper (as Cu)	mg/i	15 3025 (Part 2) 2004	0.04
10	Zinc (as Zn)	mg/l	IS 3025 (Part 2) 2004	@DL(DL:0.01)
19	Cadmium (as Cd)	mg/l	IS 3025 (Part 2) 2004	80L(DL:0.001)
20	Cyanide (as CN)	mg/l	APHA 23rd Edition,4500 CN- 8,E: 2017	BOL(DL:0.02)
21	Load (ds Pb)	тал	15 3025 (Part 2) 2004	0.02
22	Marcury (as Hg)	mo/i	15 3025 (Part 2) 2004	BDL(DL:0.001)
23	Nickol (as Ni)	mg/i	15 3025 (Part 2) 2004	BDL(DL:0.01)
24	Arsenic (as As)	mg/i	15 3025 (Part 2) 2004	0.33
25	Total Chromium (as Cr)	mg/i	15 3025 (Part 2) 2004	BOL(OL)0.01)
26	Escherichia coli (MPN)	Present/Absent	15 15185 : 2016	Present

Note: DDL - Below Detection Limit: DL - Detection Limit

Page 2 of 2

Authorised Signatory

S.

Note: 1.The test results are only to the sample submitted for test. 2. Any Correction of the test report in full or part shall invalidate the report. 3.5 ample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by client. 4. Perishable samples will be discarded immediately after reporting. 5. Under no circumstances lab accepts any liability or loss/damage caused by use or misuse of test report after involving or issued of test report.

(Laboratory Services Division) # HIG - 6152, 75HB Phase I & II, Kamarajar Road, Ayapakkam, Chennai - 600 077. Ph : +91 44 2682 3190 / +91 73977 96831 Email: lab@ pollucareindia.com Web : www.pollocareinida.com

Accredited by NABL & NABET, Certified ISO 9001:2015, ISO 14001:2015 & ISO 45001 : 2018

Report No	E PCE1/TR-W-3488	Report Date	Ý.	: 18.06.2022
Issued to	M/S ITD Cements	ation India Limited ,		
	R.M.S Tower, No.2,	Mahalakshmi Street,		
	T.Nagar, Chennal -	500 017.		
Project Name	CMRL/CON/PHAN	se-11/C4/UG-2/2022		
Sampling Method	: 15 3025 (Part 1) 19	87 (RA 2019)		
Sampled by	1 Laboratory			
Sample Collected Date	: 14.06.2022	Sample Reference No		: PCEI/W-130-06-22
Sample Description	: Ground Water	Sample Received On		14.06.2022
Qty of Sample Received	1 2 Litro	Test Commenced On		14.06.2022
Sample Condition	: Fit for Analysis	Test Completed On		18.06.2022
Sampling Location	: Panagal Park Los	ration		

1.910	Parameters	Units	Test Method	Results
1	Turbidity	NTU	15 3025 (Part 10) 1984 (RA 2017)	00L(0L:0.5)
2	pH Value @ 25 °C		15 3025 (Part 11) 1903 (RA 2019)	6.02
3	Electrical Conductivity @ 25°C	µ\$/cm	15 3025 (Part 14) 1904 (RA 2019)	:013
4	Total Dissolved Solids @ 180°C	mg/l	IS 3025 (Part 16) 1984 (RA 2019)	655
5	Total Suspended Solids @ 105°C	mg/l	IS 3025 (Part 17) 1984 (RA 2019)	BDL(DL:2.0)
6	Oil & Groaso	mg/l	15 3025 (Part 39) 1991 (RA 2019)	BDL(DL:5.0)
,	Total Phosphorous (in P)	mg/i	15 3025 (Part 31) 1988 (RA 2019)	BDL(DL:0.1)
8	Total Nitrogen (as N)	mg/l	15 3025 (Part 34) 1988 (RA 2019)	10.2
9	Volatile Organic Compound (VOC)	ng/l	USEPA Method 5201A	0DL(DL 1.0)
10	Disselved Oxygen (as DO)	mg/l	IS 3025 (Part 30) 1989 (RA 2019)	6.7

Page 1 of 1

Authorised Signator

Note: 1. The test results are only to the sample submitted for test. 2. Any Correction of the test report in full or part shall invalidate the report. 3. Sample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by client. 4. Perishable samples will be discarded immediately after reporting. 5. Under no circumstances lab accepts any liability or loss/damage caused by use or misuse of test report after involcing or issued of test report.

(Laboratory Services Division) #186 - 6152, 7NH8 Phase I & II, Ramarajar Road, Ayapakkam, Chennal - 600 077, Ph : +91 44 2682 3190 / +91 73977 96831 Ersail: tab@pollucareindia.com Web : www.pollucareinida.com

TEST REPORT

Accredited by NABL & NABET, Certified ISO 9001:2015, ISO 14001:2015 & ISO 45001 : 2018

(6)

JCARE

olution for pollution

Repor	t No	1 PCEL/TR-W-3488	Report Date	18.06.2022
8.No	Parameters	Unita	Tost Hathod	Results
11	Manganese (as Mn)	mg/l	15 3025 (Part 2) 2004	6DL(DL:0.05)
12	Selenium (au So)	ma/l	IS 3025 (Part 2) 2004	80L(0L)0.01)
13	Barium (as Ba)	mg/l	IS 3025 (Part 2) 2004	0.12
14	Silver (as Ag)	mg/l	IS 3025 (Part 2) 2004	BDL(DL:0.01)
15	Aluminium (as Al)	nig/1	15 3025 (Part 2) 2004	0.05
15	Boron (as 8)	mg/l	15 3025 (Part 2) 2004	BDL(DL:0.05)
17	Copper (as Cu)	mg/l	15 3025 (Part 2) 2004	BDL(DL:0.01)
18	Zinc (as Zn)	mg/l	15 3025 (Part 2) 2004	BDL(DL(0.01)
19	Cadmium (as Cd)	mg/1	15 3025 (Part 2) 2004	8DL(DL(0.001)
20	Cyanide (as CN)	mg/l	APHA 23rd Edition,4500 CN- 0,E: 2017	BDL(DL(0.02)
21	Lead (as Pb)	mg/l	15 3025 (Part 2) 2004	0DL(DL:0.01)
22	Morcury (as Hg)	mg/l	15 3025 (Part 2) 2004	0DL(DL:0.001)
23	Nickel (as Ni)	mg/i	IS 3025 (Part 2) 2004	0DL(DL:0.01)
24	Arsenic (as As)	mg/l_	15 3025 (Part 2) 2004	BDL(DL(0.001)
25	Total Chromium (as Cr)	mg/l	15 3025 (Part 2) 2004	BOL(OL:0.01)
26	Escherichia coli (MPN)	Present/Absent	15 15185 + 2016	Present

Note: BDL - Bolow Detection Limit: DL - Detection Limit

..... End of Report Page 2 of 2

i

Authorised Signatory

Note: 1.The test results are only to the sample submitted for test. 2. Any Correction of the test report in full or part shall invalidate the report. 3. Sample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by client. 4. Perishable samples will be discarded immediately after reporting. 5. Under no circumstances lab accepts any liability or loss/damage caused by use or misuse of test report after invoicing or issued of test report.

(Laboratory Services Division) #195 - 6152, TNHE Phase LA II,

Kamaraja/ Road, Ayapakkam, Chennol - 600 877. Ph : +91 44 2682 3190 / +91 73977 96831 Email: lob@pollucareinida.com Web : www.pollucareinida.com

Accredited by NABL & NABET, Certified ISO 9001:2015, ISO 14001:2015 & ISO 45001 : 2018

Report No	: PCEI/TR-W-3490	Report Date	- 3	18.05.2022
Issued to		tation India Limited , 2, Mahalakshmi Street, -600 012.		at 214246464
Project Name	CMRL/CON/PH	ASE-11/C4/UG-2/2022		
Sampling Method	1 15 3025 (Part 1) 1	987 (RA 2019)		
Sampled by	Laboratory			
Sample Collected Date	14.06.2022	Sample Reference No	,	PCEI/W-132-06-22
Sample Description	Ground Water	Sample Received On		: 14.06.2022
Qty of Sample Received	2 Litre	Test Commenced On		14.06.2022
Sample Condition	Fit for Analysis	Test Completed On		: 18.06.2022
Sampling Location	Nandanam Loca	tion		

5.No	Parameters	Units	Test Hethad	Results
1	Turbidity	NTU	IS 3025 (Part 10) 1984 (RA 2017)	1.0
2	pH Value @ 25 °C		IS 3025 (Part 11) 1983 (RA 2019)	7.59
3	Electrical Conductivity @ 25°C	µ5/cm	15 3025 (Part 14) 1984 (RA 2019)	577
4	Total Dissolved Solids @ 180°C	mg/i	15 3025 (Part 16) 1984 (RA 2019)	362
5	Total Suspended Solids @ 105°C	mg/t	15 3025 (Part 17) 1984 (RA 2019)	BDL(DL:2.0)
6	Oil & Grease	mg/l	15 3025 (Part 39) 1991 (RA 2019)	BOL(DL:5.0)
7	Total Phosphorous (as P)	mg/l	15 3025 (Part 31) 1988 (RA 2019)	BOL(DL:0.1)
6	Total Nitrogen (as N)	mg/l	15 3025 (Part 34) 1980 (RA 2019)	6.5
9	Volatile Organic Compound (VOC)	ng/l	USEPA Method 5201A	BOL(DL 1.0)
10	Dissolved Oxygen (as DO)	mg/l	15 3025 (Part 38) 1989 (RA 2019)	6.2
_	and the second se			

Page 1 of 2

Authorised Signatory

SI

Note: 1. The test results are only to the sample submitted for test. 2. Any Correction of the test report in full or part shall invalidate the report - 3. Sample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by client. - 4. Perishable samples will be discarded immediately after reporting. - 5. Under no circumstances lab accepts any liability or loss/damage caused by use or misuse of test report after involcing or issued of test report

(Laboratory Services Division) # HIG - 6152, THHB Phase I & II, Kamarajar Road, Ayapakkam, Chennai - 600 077. Ph : +91 44 2682 3190 / +91 73977 96831 Email: tab@pollucareindia.com Web : www.pollucareinida.com

TEST REPORT

Accredited by NABL & NABEY, Certified ISO 9001:2015, ISO 14001:2015 & ISO 45001 : 2018

(6)

LUCARE

olution for pollution

Repor	t No	+ PCEI/TR-W-3490	Report Dațe	18.05.2022
5.No	Parameters	Units	Text Hothod	Rosulta
ti.	Manganese (as Mn)	ing/l	15 3025 (Part 2) 2004	80L(DL:0.05)
12	Selenium (as Se)	mä/l	IS 3025 (Part 2) 2004	0.05
13	Barium (as Ba)	mg/I	15 3025 (Part 2) 2004	8DL(DL:0.05)
14	Silvor (as Ag)	mg/l	. 15 3025 (Part 2) 2084	8DL(DL:0.01)
15	Aluminium (as Al)	mg/l	t5 3025 (Part 2) 2004	0.27
16	Boron (as B)	mg/1	15 3025 (Part 2) 2004	BDL(DL:0.05)
17	Copper (as Cu)	mg/l	15 3025 (Part 2) 2004	8DL(DL:0.01)
1.8	Zinc (as Zn)	ing/I	15 3025 (Part 2) 2004	BDL(DL:0.01)
19	Cadmium (as Cd)	mg/i	IS 3025 (Part 2) 2004	BDL(DL:0.001)
20	Cyanide (as CN)	mg/l	APHA 23rd Edition,4500 CN- 0,E: 2017	8DL(DI.)0.02)
21	Lead (as Pb)	mg/i	15 3025 (Part 2) 2004	6DL(DL.0.01)
22	Morcury (as Hg)	mg/1	15 3025 (Part 2) 2004	BDL(DL:0.001)
23	Nickel (as Ni)	ma/i	15 3025 (Part 2) 2004	8DL(DL:0.01)
24	Arsonic (as As)	mg/l	15 3025 (Part 2) 2004	0.06
25	Total Chromium (as Cr)	mg/l	15 3025 (Part 2) 2004	BDL(DL:0.01)
26	Escherichia coli (MPN)	Present/Absent	15 15185 2016	Present

Note: BOL - Delow Detection Limit: DL - Detection Limit

End of Report Page 2 of 2

versioner

Authorised Signatory

51

Note: 1. The test results are only to the sample submitted for test. 2. Any Correction of the test report in full or part shall invalidate the report. I.Sample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by client. 4. Perishable samples will be discarded immediately after reporting. 5. Under no circumstances lab accepts any fiability or loss/damage caused by use or misuse of test report after involcing or issued of test report.

(Laboratory Services Division) # HIG - 6152, TNHB Phase I & II, Kamarajar Road, Ayapakkam, Chennai - 600 077. Ph : +91 44 2682 3190 / +91 71977 96831 Email: Iab@pollucareledia.com

Web : www.pollucareinida.com

TEST REPORT

Accredited by NABL & NABET, Certified ISO 9001:2015, ISO 14001:2015 & ISO 45001 : 2018

Report No	: PCE1/TR+W+3409	Report Date	×	18.06.2022
Issued to	M/S ITD Cemer	tation India Limited,		
	R.M.5 Tower ,No. T.Nagar, Chennal	2, Mahalakshmi Street, -600 017.		
Project Name	CMRL/CON/PH	ASE-II/C4/UG-2/2022		
Sampling Method	: 15 3025 (Part 1) 1	987 (RA 2019)		
Sampled by	: Laboratory			
Sample Collected Date	: 14.06.2022	Sample Reference No		: PCEI/W-131-06-22
Sample Description	: Ground Water	Sample Received On		14.06.2022
Qty of Sample Received	1 2 Litre	Test Commenced On		14.06.2022
Sample Condition	: Fit for Analysis	Test Completed On		18.06.2022
Sampling Location	Boat Club Locat	ion		

5.40	Parameters	Units	Test Method	Results
1	Turbidity	NTU	15 3025 (Part 10) 1984 (RA 2017)	80L(DL:0.5)
2	pH Value @ 25 °C		IS 3025 (Part 11) 1983 (RA 2019)	6.93
3	Electrical Conductivity @ 25°C	µ≦/cm	IS 3025 (Part 14) 1984 (RA 2019)	456
4	Total Dissolved Solids @ 180°C	mg/l	IS 3025 (Part 16) 1984 (RA 2019)	294
5	Total Suspended Solids @ 105°C	mg/l	15 3025 (Part 17) 1984 (RA 2019)	90L(0L:2.0)
6	Oit & Grease	mg/l	IS 3025 (Part 39) 1991 (RA 2019)	BDL(DL:5.0)
,	Total Phosphorous (as P)	ma/l	15 3025 (Part 31) 1988 (RA 2019)	BDL(DL:0.1)
1	Total Nitrogen (as N)	m.g./1	15 3025 (Part 34) 1988 (RA 2019)	6.26
9	Volatile Organic Compound (VOC)	ng/l	USEPA Method 5201A	8DL(DL 1.0)
10	Dissolved Oxygen (as DO)	ma/l	15 3025 (Part 38) 1989 (RA 2019)	7.1

Page 1 of 2

Authorised Signitory

61

Note: 1. The test results are only to the sample submitted for test. 2. Any Correction of the test report in full or part shall invalidate the report. 3. Sample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by client. 4. Perishable samples will be discarded immediately after reporting. 5. Under no circumstances lab accepts any liability or loss/damage caused by use or misute of test report after invoicing or issued of test report.

(Laboratory Services Division) #HIG - 6152, TNH8 Phase L& IL

Kamarajar Road, Ayapalikam, Chennal - 600 077. Ph | +91 44 2682 3190 / +91 73977 96831 Email: lab@pollucareindia.com Web : www.pollucareinida.com

TEST REPORT

Accredited by NABL & NABET, Certified ISO 9001:2015, ISO 14001:2015 & ISO 45001 : 2018

Ð

ARE

olution for pollution

Repor	t No	: PCEI/TR-W-3489	Report Date	18.06.2022
8.80	Parameters	Units	Tast Hethod	Results
11	Manganese (as Mn)	mg/l	19 3025 (Part 2) 2004	BOL(DL:0.05)
12	Selenium (as Se)	nig/l	15 3025 (Part 2) 2004	8DL(DL:0.01)
13	Barium (as Ba)	nig/l	15 3025 (Part 2) 2004	00L(DL(0.05)
1-1	Silver (as Ag)	/mg/l	15 3025 (Part 2) 2004	80L(DL:0.01)
15	Aluminium (as Al)	mg/i	15 3025 (Part 2) 2004	0.03
16	Boron (as B)	mg/i	15 3025 (Part 2) 2004	80L(DL:0.05)
17	Copper (as Cu)	nig/l	IS 3025 (Part 2) 2004	8DL(0L:0.01)
10	zinc (as Zn)	mg/l	IS 3025 (Part 2) 2004	80L(0L(0.01)
19	Cadmium (as Cd)	mg/l	15 3025 (Part 2) 2004	80L(OL(0.001)
20	Cyanide (as CN)	mg/i	APHA 23rd Edition,4500 CN- 8,E: 2017	BDF(DF:0.05)
21	Lead (as Pb)	mg/i	15 3025 (Part 2) 2004	BDL(DL:0.01)
22	Morcury (as Hg)	mg/l	15 3025 (Part 2) 2004	BDL(DL:0.001)
23	Nickel (as Ni)	mg/l	IS 3025 (Part 2) 2004	80L(0L:0.01)
24	Arsenic (as As)	mg/l	15 3025 (Part 2) 2004	BDL(DL:0.001)
25	Total Chromium (as Cr)	mg/l	15 3025 (Part 2) 2004	80L(DL:0.01)
26	Eschorichia coli (MPN)	Present/Absent	15 15185 2016	Present

Note: BDL - Below Detection Limit: DL - Detection Limit

...... End of Report Page 2 of 2

verfiled

Authorised Signatory

S

Note: 1.The test results are only to the sample submitted for test. 2.Any Correction of the test report in full or part shall invalidate the report. 3. Sample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by client. 4.Penshable samples will be discarded immediately after reporting. 5. Under no circumstances lab accepts any liability or loss/damage caused by use or misuse of test report after invoicing or issued of test report.

12

(Laboratory Services Division) #HIG - 6152, TNH8 Phase L6 II,

Kamarajar Road, Ayapakkam, Chennar - 600 077. Ph | +91 44 2682 3190 / +91 73977 96831 Email: lab@pollucareinida.com Web | www.pollucareinida.com

Accredited by NABL & NABET, Certified ISO 9001:2015, ISO 14001:2015 & ISO 45001 : 2018

TEST REPORT

Report No	PCEI/TR-W-3487	Report Date		18.06.2022
Issued to	M/S ITD Cemen	tation India Limited ,		
1640.063006	R.M.S Tower ,No.:	2, Mahalakshmi Street,		
	T.Nagar, Chennai	-600 017,		
Project Name	CMRL/CON/PH/	ASE-11/C4/UG-2/2023	2	
Sampling Method	: 15 3025 (Part 1) 1	987 (RA 2019)		
Sampled by	Laboratory			
Sample Collected Date	14.06.2022	Sample Reference I	No	: PCEI/W-129-06-22
Sample Description	Ground Water	Sample Received O	n	: 14.06.2022
Qty of Sample Received	: 2 Litre	Test Commenced O	n	+ 14.06.2022
Sample Condition	: Fit for Analysis	Test Completed On		18.06.2022
Sampling Location	; Koddambakkam	Location		

S.Nu	Parameters	Units	Test Mathod	Results
1	Turbidity	NTU	15 3025 (Part 10) 1984 (RA 2017)	8DL(DL:0.5)
8	pH Value @ 25 °C		IS 3025 (Part 11) 1983 (RA 2019)	7.11
3	Electrical Conductivity @ 25°C	µ\$/cm	15 3025 (Part 14) 1984 (RA 2019)	1997 -
4	Total Dissolved Solids @ 180%C	mg/l	15 3025 (Port 16) 1984 (RA 2019)	1304
5	Total Suspended Solids @ 105°C	ma/1	15 3025 (Part 17) 1984 (RA 2019)	BDL(DL:2.0)
6	Oil & Grease	mg/l	15 3025 (Part 39) 1991 (RA 2019)	00L(DL:5.0)
7	Total Phosphorous (as P)	mg/l	15 3025 (Part 31) 1988 (RA 2019)	BOL(DL:0.1)
8	Total Nitrogen (as N)	mg/l	15 3025 (Part 34) 1988 (RA 2019)	20.6
9	Volatile Organic Compound (VDC)	ng/1	USEPA Method 5201A	80L(DL 1.0)
10	Dissolved Oxygen (as DO)	mg/l	15 3025 (Part 38) 1989 (RA 2019)	7.2
-			The state of the s	

Page 1 of 2

Authorised Signatory

81

Note: 1.The test results are only to the sample submitted for test. 2. Any Correction of the test report in full or part shall invalidate the report. 3. Sample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by client. 4. Perishable samples will be discarded immediately after reporting. 5. Under no circumstances lab accepts any liability or loss/damage caused by use or misuse of test report after involcing or issued of test report.

(Laboratory Services Division) NHIG - 5152, TNHB Phase L& II, Kemanijar Road, Ayapakkam, Chennal - 600 077.

Ph : +91 44 2682 3190 / +91 73977 96831

fmail: lab@pollucareindia.com

TEST REPORT

Accredited by NABL & NABET, Certified ISO 9001:2015, ISO 14001:2015 & ISO 46001 : 2018

Repo	t No	: PCEI/TR-W-3972	Report Date	: 30.06.2022
5.No	Parameters .	Units	Test Hothod	Results
11	Manganese (as Mn)	mg/l	IS 3025 (Part 2) 2004	80L(OLI0.05)
12	Solenium (as So)	mg/l	15 3025 (Part 2) 2004	BDL(0L10.01)
13	Barium (as Ba)	mig/l	15 3025 (Part 2) 2004	80L(0L:0.05)
14	Silver (as Ag)	790/7	IS 3025 (Part 2) 2004	80L(OL:0.01)
15	Aluminium (as Al)	mg/l	15 3025 (Part 2) 2004	0DL(DL:0.01)
16	Boren (as 8)	m0/1	15 3025 (Part 2) 2004	0DL(0L)0.05)
17	Copper (as Cu)	mg/l	15 3025 (Part 2) 2004	80L(0L10.01)
18	Zinc (as Zn)	mg/l	15 3025 (Part 2) 2004	80L(0L:0.01)
19	Cadmium (asi Cd)	mg/l	15 3025 (Part 2) 2004	00L(0L:0.001)
50	Cyanide (as CN)	mg/l	APHA 23rd Edition,4500 CN+ 8,E: 2017	80L(DL:0.02)
21	Lead (as Pb)	mg/l	IS 3025 (Part 2) 2004	80L(0L:0.01)
22	Mercury (as Hg)	mg/l	15 3025 (Part 2) 2004	BDL(DL:0.001)
23	Nickel (as Ni)	mg/l	15 3025 (Part 2) 2004	0DL(DL:0.01)
24	Arsenic (as As)	mg/I	15 3025 (Part 2) 2004	BDL(DL:0.001)
25	Total Chromium (as Cr)	mg/l	15 3025 (Part 2) 2004	0DL(0L:0.01)
26	Escherichia coli (MPN)	Present/Absent	IS 15185 : 2016	Present
and in case of the local division of the loc	and the second se	NAME AND ADDRESS OF TAXABLE PARTY.	the set of	

Note: BOL - Below Detection Limit: DL - Detection Limit

...... End of Report Page 2 of 2

Authorised Signatory

81

Note: 1.The test results are only to the sample submitted for test. 2. Any Correction of the test report in full or part shall invalidate the report. 3. Sample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by client. 4. Perishable samples will be discarded immediately after reporting. 5. Under no circumstances lab accepts any liability or loss/damage caused by use or misuse of test report after invoicing or issued of test report.

POLLUCARE ENGINEERS INDIA PVT.1TD., (Laboratory Services Division)

TEST REPORT

T the laber factor for the Web www.police.com/Second

 Book (2013) (Ministration Contransformer (2013) (2013)
 Charles (2013)
 Charles (2013)

tellint, Blaes, Stear of the Breeks

Apprecised by NABL & NABET, Centified: SO 9001 2015, (SO 14001/2019 & ISO 45001 ; 2018

Képart Nu	1991 - 41 March	Report 0.40	11 · · · · · ·		
fssued to	H/s Larsen & To	H/s Larsen & Toabro Linister Neavy Civil Infrastructure 10			
	575 C.A.H. N. S.	15 mg			
	14A Art 1 Acy 1 S	Surger (
	Sec. 8 (1997)				
Sempling Method	(N 17 at 1, 17	A			
Sampled by	1212010				
Sample Collected Date	1	Sample Reference No	1110 W 111 122		
Sample Description	Borewell Water	Sample Received On	1		
Qty of Sample Received	1.5.165	Test Commenced On	:. ·. >		
Sample Condition	Dec calegory	Test Completed On	11 A.M. M.		
Sumpling Location	Vadapatanie Vasan Eye Case				

6 M.C	the opening.	that,	Ted MelNat	Research
:	1	·	1000 2000 000 1000 - 2000 - 2000	
:	n An san an An		General Antonio Services	
	n en		perfected and aver	
	n Tha the second states	· · · · · · · · · · · · · · · · · · ·	an a	
•	n an an an tao an an tao an	· · ·	A STATISTICS AND A STATISTICS	
	a statut	· /	18	8 1197
:	n An an the the task as the		 A state of the sta	- 1. · .
	n De tal tetreger de l'A		te e se san de terre servició	
	n New York Contract Complete Processory	:	- An the second	·····
	n An an	·	a se ava e para san s	·

Roge 1 of 2

verified By

۲ با در کی Authorised Signal orly

Note: 1.77 electrosalts are only ionfle sub-note a far test. **2.4** Py Correction of the test report in full at part shall in rabourent eleptric. **3 Sample** will be retained for 15 days from the date of reporting exception as not regulatory complexies specifically instructed by a simplexies will be dorabled another birdy after reporting. 5.Under no occumstances to pocepts any hability as low/euring caused by averance is so an exception atter invoking private of test report.

(Laboratory Services Division)

TEST REPORT

Abyrough by NABL & NABET. Centifies: SD 9001 2015, ISO 14001 2015 & ISO 45001 ; 2018

Report Na		 C10.667 (18) 	Report Date	:
5 'lo	Pertimetrys	Unit L	Tric Helmin	Results
1"""	sy 1 - s 2	ייר איר	is full setting of	····
: • •	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	· · · · · ·	Le Marchettin, 198	:
: i i	- 10. m	· · · ·	(Station fuer in 1947)	2.42
	a- 47]		i sus cestions.	2.5
		 	n an	• : 5
1. e.e.	18 A.	· · · · · · · · · · · · · · · · · · ·		54 1
: •	:		Port of the Port of the	
:•	 e 2	· · · ·	n an	:
.* '4:**		· · · ·	263.000 C C	. :
1.1	· · · · · ·		- Ar-4 2011 - Ar - N B - 11	et da e a
		· · ·	is at sets a set	
×	 1	· · · · · · · · · · · · · · · · · · ·		1. 1. juli
en deren	15	 	1830115410004	N.
 .	 кА.	: · ·	n Tais at ann	
	te i verse e	i	and we have a	
	s in this	т. наста Архоно. Полиста Архоно.	a serve state	Provide Contract

End of Report Page 2. 4.7

Note: the set of the state of the set of system.

Verified By

Aprilia Signatory

Note 3 The test modes are only to the sample submoted for test -2 Arry Correct Crief the test report in full or part shall invalidate the report of Sample will be retained for 15 days from the date of reporting except in user of regulatory samples or specifically disructed by chent. A Perishbole sample's will be distanted after reporting -5 Onder no concernation design due to the ball of oss/Calindy exception to specifical report after involving or issued of test report.

(Laboratory Services Division) P - G - SCC TABLE Provement For many Party Agendance

The set of biggs spectrum of the state set from the state biggs of a set of

TEST REPORT

REFORE ANA PROVIDE UP

0.000 000000

Accreting by NABL & NABET, Centries ISO 9001 2015, ISO 14001 2015 & ISO 45001 : 2018

Report No	er en la Arrest - Report Date	1129. <u>5.</u>		
Essand to	Mys Larsen & Toobro Condett Heavy Civit Infrastructure IC			
	All and the processing the second			
	residence de la construir de la	na stan na stan stan stan stan stan stan		
	- 100 - 110 (10)			
Sanipling Method	No. 5 Carton Core SAL 114			
Sampled by	Linux She			
Sample Collected Date	Sample Reference No	91212 AV 1274 (241		
Sample Description	Borewell Water - Sample Received On	1 × 4 × 2 × 4		
Qty of Sample Received	2.4 Test Coordinated Ba	11091A1		
Sumple Condition	For the Arrest Text Completed On	17 (3.3)31		
Sumpling Location	Kedampakkam Power House- Ram Theatre			

5 40	Parameters	j UA 14	Tosi Nettori	Results
	Tues esc.		REPORT OF STREET	
	μr ^a na san		n Dyawt yatil 1924 €41409	188
	n Marende en forse (11)		n 1949 - M. Fan 196, 1999, 1940, 1940, 1940 1959 - M. Fan 196, 1999, 1940, 1940, 1940	
	н Под Пред С. В. 1926 — 1926 — — — — — — — — — — — — — — — — — — —		n grupdi famile bysk favuds	
÷	n Markan ar an shekar	-	- Counterfactor and Materia	20 Jan 20
÷	n An Anna an		n 19 Metri Jan Martala I Santa -	- n (t) (t)
	n n The Anna Susana	n::/	- Drawn (1997) 1997 BALCOM	et 11 - 20.
2			Street i terrar terrar (Algebra)	
	isang pedar pedar sing p			en Catalog
:.	n an an State and State	ne:	te de la companya de	14

Page 5 of 2

t íu Venified By4

Authorised Signatory

Noter in the less results are only to the sample submitted fortuat. 2 Any Correction of the report in full or particulal invalidate the report in Kaunple will be not need for 15 data from the date of report in 2 standor to take of regulations an speculically instructed by clean in a tenshable samplet will be discarded immediately after reporting if 5 Under nonneum stances inblatceons any hability or loss/damage caused by use or insure of this report after involuting on shand of tensheport.

(Laboratory Services Division)

TEST REPORT

(a) and the grade of the second s

n els listra indigenales el El margia el aglitude com Clienta i company

Media A Manager Labor Total

Accreated by NABL & NABET, Centiled ISO 9001.2015, ISO 14001:2015 & 50 45001 (2018

Report No		$w \in 1 \times W_{0} \times \cdots$	Report Date	1104. L
v.h 2	Parameters	Quite	First Mitched	REALIN
to Marta	seven ye Mr		Research Balling and	
	1. Salar	· · · ·	IS SHOP TO ALCO DE	8.1 d
 :::		· · _ ·	19 - Con Barris Con A	
ja ster	, N ;		Review Barty 1914	н 1. алын айм
·· 4.2	 	··· ·	Board Barts 1994	
in Bara	194 - C.	· · · ·	INTER BRIEFIN	
- 3111	- A -	· · · ·	$p_{i}(x_{i}) = p_{i}(x_{i}) = 0$	
 ., 7., .	 ax7	· · · ·	in Parl and Long	
- - 472	· · · ·	· -· ·		· · ·
	eller fr	· · ·	A MUMBER WARK AN APPEND	en e
. : The for		· · ·	the state of the s	-
en in De Merrie		· · · · · ·	 Solid and a constraints 	• ••
19 A.K.	ar N	· -: ·	the canada in A	- 1.e
n 1911 - Meria II.	н. С лек ФС	·	(1,1,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1	
in Na Nga		· ··.	(and the second	
2. 100 m. 1	and a state of	en e	1012-050 Julie	Sector 1

Note a first case and the discussion of the

Fod of Propert Mage 2 of 2

Verified By

approved Supratory

Note: 1 The trustee only to the sample submitted for terb. 2 Ary Correction of the test report in full aspart shall involtable the record. A Numble will be retained for 35 days from the date of reporting except in rate of regulatory sumples or hereichte averaged by stand. A Perchable samples will be discarded on mediately after reporting. 5. Under no proclamationary labelic, or forsy/damage caused by use or measure of rest report after revording resources at a frequencies.

(Laboratory Services Division)

TEST REPORT

Accredited by NABL & NABET, Cett (611SO 9001 2015, ISO 14001 2015 & ISO 45001 ; 2018

lepart No		400 1440 C	Report Date	.*. •
\$.hc	S.II prosters	Jo.1+	fest Nethal	Kesu N
0.900	e e e la Mi	r" ;	Descar Concernation	
с. 2000.	retact is		- De 1919 al 1919 - A	
	1.21	· ·.	Delative to the A	· :·
4 ¹⁰ 11	25.43	· · ·	n an de wran We	100 T + 11
() A(*)	e se la participa de la construcción	·	n Distrik neta asti	•
(; . b r)	L.P.	m;1	5 - 21 - et 11 - 4	·
n are	as fa	ا _{ال} ا	is a constraint of the	2.2.2.2.2.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1
:- <i>(</i> 11)	<21	·	n Portan satta 1994	
	n (est)	• • •	the shared diffe	
••••	Cax N		- A —A 2015 Frank (1916) - 1916 C. (191	· · · · · ·
.: eat a	. :-	·····	Na 200 attitue 14	· · · .
	, and g	· · · ·	no no servicio dal 1970.	· :•
1996 -	85 C		De altra datta da 40	
: A. 191	1.7.1		18 des and 2004	: •.
· _ · · · · · · ·	····	· · ·	на продати. Постал (в 150 до 9)	
	enare suo	n an transformation and the second se	DN 19179-12109	-

Malve Real Second Second States and the second

Chairf Report Page 2 of 2

Kenducid ff

Authorised Signature

Active Life test term is are only to the sample submitted has test in 2 Acy Connection of the lead apport in full or part shall have to be the report. Altern the example so the result of the sample so the samples of section of the samples of the samples of section of the sample samples are set to the sample samples of section of the sample samples of the samples o

POLLUCARE ENGINEERS INDIA PVT.LTD., (Laboratory Services Division)

TEST REPORT

Amerikati se se da mening me Webi wawata da meningan se se

P.S. (20) TRANSPORT
 R. (20) TRANSPORT
 R. (20) TRANSPORT
 R. (20) TRANSPORT
 R. (20) TRANSPORT

en en de 2007 avec des tractioners a

Accredited by NABL & NABET, Certified ISO 9001 2015, ISO 14001/2015 & ISO 45901 (2019)

Report No	230 No. 11 No. 14	Acport Dale	
Issued to	H/s Larsen 6 To	philo Fronted Heavy Civil Entraste	nicture IC
	- Criticaet (A. 197	5-04-C-	
	nas yra na she	h dar	
	$\Gamma(0, \gamma(0)) = 130$		
Sampling Method	: :::::::::::::::::::::::::::::::::::::	- 7 RA 2 14	
Sampled by	and the second		
Sample Collected Date	(175212)	Sample Reference No	 K1 & 177 (2012)
Sample Description	Borowell Water	Sample Received On	1210-2020
Qty of Sample Received	21.4.2.16	Test Commenced On	17 to subject
Sample Condition	service Archives	Test Completed On	11.02.11
Sampling Location	Viragabakka 🕬	Avichi School	

5 ha.,	Europerro s	Units	Text NotPod	Posulo
1	muth (51	N R 24 (471) 1968 (46) (4	14.8
	ter a sur a stra		1997 (* 1997) 1997 - 1997 (* 1997) 1997 - 1997 - 1997 (* 1997)	713
	nelese factorio 21		16 2113 2013 4 1, 54 (A. 19)	
1		· · · ·	н 19 - 27 раско стор 20 - 1 - 1	
1	n Yeth Massachus (1919) (1919)	т: т:	Sector and the sector sector and the	An 2012
.	n Aver en	·	en e	Р.,
.	ting kangang managari	*:	 Benzie and District Works 	···. ·. · .
-	fat fattes, en las fa	·-:	1. (177) Robert Schuler, Mark 19, 2011.	•.
	where the state of the	•:	. MIRA Meth. (1979-174)	$\lambda_{i}(t) = 1$
	Description of the	s:	Belling and the state of the state of the	- /

Page 3 O 2

Venined By

Authorised Signa

Note 1 Feats stresults are only to the sound to discuss 12 Any context on of the test report shall invalidate the report 13.5 imple will be retained for 15 cass from the date of reporting exception case of regulatory samples or specifically instructed by clean 11 Peatshake name as will be discurded instructed when reporting, 5 preechour internations on tablety is hereford by use of such of test report after involved of test report

(Laboratory Services Division) = environment Accurately = connected Accurately

TEST REPORT

Oran Jan. M. 202
 Selection (1997) - Statistical (1997) (1998)
 Oran J. 2008 - Orange Control (1997) (1998)
 William Association (1998) (1998)

Accredited by NABL & NABET, Certified (SC 9001 2015), ISO 14001 2015 & ISO 45001 (2018).

Regart No		ROUTE A 1984	Report Date	(7.37.2.
Ş.ho	Parameters	016	1evi Hellioð	Rosults
- 1947) - 1947)			Sant entrane	
	1999 C		S	# 6.1 b
:		·	$(g_{ij}, g_{ij}) \in \{g_{ij}, g_{ij}\} \in \{g_{ij}\}$	· · · · ·
i e She	- 4;	· · ·	Sec. 2. 00102 (2004)	2. A. C.
a a e	·	- · ·	Second Charles	2 Ne
 .* 1***	24.5	· · · · · · · · · · · · · · · · · · ·	The second second second	
11. Julie	e lette	· · · ·	58.1.1 (A.M. 201074)	
- 10 A		· ·	18.116.054 N.16M	a 40
in the		······	14-229-26-51-27-5	· · · —
A Sec.	le le Ch		ASSA 23-11-01-04362 (N-931-1)	in a contract
21 - 10 - 12 21 - 10 - 12	13 ¹ 7	 m:	is of Petropole	• • • •
	a	· · ·	ing and the start of the start	
N Sec.	e 5	n nationalista. Nationalista	1899 20 Aut 2020 4	·
in and	1. 18 - Ma		to the second sec	
a la co	Organismi aktor		1.112 Part 1.1223	
in the ter	an an a May	сана Селоде Аристе	The DR Bank Collector	5 25

Note: The second state of a Discount of the second

End of Report 11.... Page 2 of 2

Venfield By

Authorised Signator

Note 1. The lest multivation of y lating cample submotion for lest 12 Any Complexiting lest importantic transmission of the respect of the source of the second second

(Laboratory Services Division)

TEST REPORT

A. C. A. CANE PROPERTY AND A CONTRACT STREET, AND A CONTRAC

Accredited by NABL & NABET, Certiled ISO 9001 2015, ISO 14001 2015 & ISO 45001 - 2018

Report No	50.00 A A 100	Report Owle	17 . K. N.
Essed UP	M/s Larsen & To	ubro Limited Heavy Cool Infrast	ra <ture ic<="" td=""></ture>
	500 T 200 D 201	14 JUL 1	
	144.55 144.55 (5)	e tra pro-	
	Note that they		
Samplyng Method	[8] S. J. Cox I. Phys. 75 (19)		
Sampled by	indication of		
Sample Collected Oate	11 1 1	Sample Reference No	 A 1/6/671
Sample Description	. Borewell Water	Sample Received On	12.154.112
Qiy of Sample Received	2.1 50	Test Commenced On	1.14.5 (0.17.3
Sample Condition	250 A.C.	Test Completed Dri	111111111
Sampling Location	Xarapakkam Sta	tion- CTA Star Verde	

 • ••>	Para no tera	an is	Test Heited	Provila
	taun.	5 .	5 M. C. Ray 11, 1986 (A.2.1)	
2	The second se		 A Marca 199 (2019) A Marca 19 	110
:	Tarte a gan that a she	рХ.	(Algorith and a family state of the	1.007
 .	a ter estare el cara 12,55. A		 S. S., W. S. & D. 1998, RA 2020 	114
, ·	n an airte Nachailteach	,	050120 AN 12 1974 RAIL 0	ad. 1 1
-	te Alexan	· .1	15 (1 <u>29</u>) - 666, 335, (1361) - 667, 1135,	1. 1. 55
-	ter togenesis in	m; 1	os enzis carto de los estas MALECO.	·: :. ::
	te nouvinain	ч.	 Solution and the other states of the solution 	:
.,	i wa nina ta Landa C	:	ν 1994 - β.Σ. Ματάντας του Πάλλου 19	::.: :
	y source of periods 17	r:;	 generative states and search the search th	÷ •

Page 1 of 2

Verified B

1 414 Authorised Sign Alugy

Note: 1. The test feads are only to the same explorition for the U. A my Correction of the feat report to Lor parts by Turn, addute Incorport. Up ample a submitted for 15 data from the data of reporting necessarily of reporting necessarily addition of the feat of the parts of the test report. The data of the feat of the parts of

POLLUCARE ENGINEERS INDIA PVT.LTD., (Laboratory Services Division)

TEST REPORT

Dense and 200 ACC
 Dense and 200 ACC<

eres (182 Park Mayora) Analysis Park Asipakan

Accredited by NABL & NABET, Certified, SO 9001 2015, ISO 14301/2015 & (SO 45001 - 2016

Report No		NEW CLIPPING STREET	Report Date	110000
5.90	Duenstein	Dools	Test Mellind	Avaalla
:: Y: -	1 a W	·· .	Lordz - Satur 2014	
a de se	an		the product of the	8. L.C.1
in in the second		· · · ·	n DestVellativ v S	· · · ·
			1999 Ben at 2029-4	-
	and Al	- · _ ·	18 (20) 600 (2014) 18 (20) 600 (2014)	1.45
20 3.54	as 91		(see all contractions) 4	· •
1. 1. 1.	1. 100 - 1. 1. 1. 1. 100	· · ·	to and the process	Burlin -
	S.A.	· · · · · · · · · · · · · · · · ·	14 - 12 - 12 - 12 - 14 14 - 12 - 12 - 12 - 14	
12 1.200	a an ai	**	17 - 18 That 1 - 4	
11	·	· · · ·	2008 2001 (Sec. 46, 103, 31, 21)	1
in the s	e e Ma		 1999 - Northel Mark	• • •
				· · ·
1. 4.10	2.12	· · · ·	18 June Weige Little	•
,:		· ·	(and the second	И
	n an an an an a'		(6.3123) (Set 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	· · ·
	ne ut 1944	n An ing Amerika	17, 1818 (0.11)	1977 - 19

Nuter of the second of the last the last fitters

Verified By

Authorised Sign-Lory

tenter L'De test multivaie auly toto complexation de differtent. 2 Any 2 percessioné d'unite d'important d'unite d'action report à Sample will be retained for 15 d'ags from the date of reporting except in case of regulatory samples en specificativy instructed by cluent « Percessation avec et au de discuséed ommédiately alter reporting : 5 ande reports d'actions optimiser provide autory termage converting any permit avec fire d'action age travelet action por source et anne especi

POLLUCARE ENGINEERS INDIA PVT.LTD., (Laboratory Services Division)

TEST REPORT

Web www.portstarmenta.com

Apple [12] (194-9) Strategies
 Strategies (195-9) Strategies
 Strategies (195-9) Strategies

And Ale Sector Constraints and Ale Sector.
 An and Ale Sector Constraints and Ale Sector Constraints.

Accredited by NABL & NABET, Centrod (SQ 9001 2015), SQ 14001:2015 & SQ 45001 12018

Report No	AUG 4- A (194	Report Dale	<u> </u>
I sport to	H/s Larsen & To	upro Londed Heavy Civil Intrastr	ottone of
	PERSONAL SECOND	- 199 - 19	
	(45-5) gr (5-6), ex (5-7)		
	4 data (* 1913). 19		
Sampling Method	12 Although and	57 R41 12	
Sampled by	1.15 JULY 10		
Sample Collected Date	11000	Sample Reference No	1 - C & C SH - C
Sample Description	Ronwell Water	Sample Received On	12.000 (2010)
Qty of Sample Received	211.00	Test Commenced On	12 11 2 2 2
Sample Condition	Philip Analysis	Test Completed On	17052020
Sampling Location	Valasaravakkam	· Kesavardini	

5.No	Report Office	heids	Tou Netled	Results
	· · · ·		10 8 (% (0 + 1)) (0 + 4) (4 - 1)	.:
	n in		period and the part was a	7 A
!	en e	.e	n an an an an an Araba an Araba. An anns an Araba an Araba	
	igis menjarah sebuah 17	1.1	 A state of the sta	· – _ 198
	na an a	···.	South State Lange Carlo Dec	•• <u>•</u> . •
	Tan de lateres		is we are provided as a first	·:: · .
	The meeting of the set		5 A.23 - 35 12 (5-55 - 84 707)	
¢	in the second		(a) 10 (1970) 2008 [B477 19]	
	ing the new inspired of 2 to		1 - 2 0 A 24 (m (A) 2 A 1 A 	
::			and the states are specified to	

Page 2 of 2

Ver-hed.

authoused Signatory

Note 1; Thy test recolls are only to the sumple submitted for tests. 2 Any Consultor, of the test report in Lind part shall invalidate the report 13.54 mple will be retained for LS days from the date of reporting exception case of regulatory samples or specifically instructed by Grent 14 Perchable samples will be doubted and exception of the doubted and exceptin

(Laboratory Services Division)

and and all young as we have not the end

TEST REPORT

k na shekara a san a tan a Antis waxa pelitara sada cen

Marian (n. 2012) Alastaan (n. Marian (n. 2011) 201

Actred/ted by NABL & NABET, Certified, SO 9001 2015, SO (4001 2015 & SO 45001 - 2018

Report No		2010 X & 217	Aeport Oute	17 (17 2)
\$ ni -	\$mrters	Unix	Fr < Helhori	Kena Its
tter Maria	e o la Ma		149121 Tet 2 4	5.41
0.200	en ester		is interactions	: (¹)
:	an A	······	in the second of the	• • • •
in Albert	.15 A.		the area well and a	9.3. I
р	an a		to a construction of	• • • •
10.08.70	II	· · ·	Constant and Annual Annual	: 14
an as pe	and d	н. 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 -	i in the second second second	
18 17	×21	· ··	i i i i i i i i i i i i i i i i i i i	
1 Carrier	e and g		i i <u>i i i i i i i i i i i i i i i i i </u>	
. : y. 3	N K.T.	 	$\mathbb{E} \left[(\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}) + (\mathbf{e}_{2}, \mathbf{e}_{3}) + (\mathbf{e}_{2}, \mathbf{e}_{3}) + (\mathbf{e}_{3}, \mathbf{e}_{3}) \right]$	-
		· · · ·	tere at lean a sink	
	· ·-·	i	and a state of the	• · ·
10 A.200	3- 6		111 (111 (111 (111 (111 (111 (111 (111	. •
	. a. 6	· · ·	1997 - 1997 A. 1997 A. 1997	-
	· · ···	· ···· · · · · ·	- 18 12 Part - 19	/
	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	1. eset1 /: -m}	18 J. 18 1. J. 19	e Leonar

Note: even we avoid a prior to the Report of the

..... . Lod of Report Page 3 of 2

Vervised B)

Apphassed Signatory

Note 2 The tensions is usefully to the sample value the fill over 2 Aux consistence import of the option of the second state of reports of Sample will be reported for 15 days from the date of reporting exception case of regulatory samples or specifically instructed by there. Alter shake a single case of regulatory building or specifically instructed by the other states and second attention of the other states of the date of regulatory building or specifically instructed by the other states and single case of the date of the other states of the date of

(Laboratory Services Division) a = Context, Performentation

COLAR 2682 STAD TO COLEMPT 49-21

TEST REPORT

Security Security Control (Control) With twane per 13, Minida con-

nerra, Port Aparent Parta (SSS)

Accred Md by NABL & NABET, Comited (\$0,9001 2015), SD 14001 2015 & ISO 46001 12019

Report No	5 60776 W 1053	Report Date	17 Sec. Sci.
Tustued to	M/s Carson & To	ubro Univited Heavy Civil Infraste	racture IC
	1.2 T. AV. 187 91	·	
	State in Case 1.	e Neder.	
	1 K.M. (11 11)		
Sampling Method	Second and provided of the		
Sampled by	140 J. Mar.		
Sample Collected Date	Ne 1962 11	Sample Reference No	16.11 A 107 N 1
Sample Description	Borowell Water	Sample Received On	11.1.1.1.1.1.1.1
Quy of Sample Received	2.5 . 26	Text Commenced On	11 fee a wit
Sample Condition	and the Alicenses	Test Completed On	17.052.02
Sampling Location	Porto Station-Ra	99 BC0	

<.N:,	Par progléns	Units	Task Mittaal	Regard V
-		57.0	All and the state of the state of the	1.2
:	n na stranistica. The na strange	- !	n a 20 Jan 10, 100 Rei (200	5. DT
	- Rei ve verta nationali (k. 16	· · · ·	18 - 19 - a 1 14 (19 4) k4 (19)	.161
-;	n 1975 - Madaerska Kolling, f	- ·	is the weight level \$1, 10	.1
ę	Der Samtalassa (111)	· ·:	18 128 - 19 1 - 1 - 1 - 4 12 12	8
	- Ni de stware	-	1993 - March Barry, 1991 - A.J. 19	41
;	e Antonio Agrico da Andre		the state way by these the state	47. s.f.:
×	- Nan dia wana ka	• •:	per 15 dan se love Privile	174
	- Norder Chippend Gring Historie (10		1990 - Marine M. (1994)	
::	n and the second second	 та		· · · · · · · · · · · · · · · · · · ·

Page 4 of 2

Ventied V

Anthonised Signatort

Note: 1. The rest results are in a stathe sample submitted for test. 2 day Correction of the test report in 6, we particle the report in 6 Sumple Will be report of 0 or 15 days from the data of reporting exception case of regulatory sample that precidently instructed by cheest. 4 Per shable samples will be disacted anteroxidy after reporting. 5 Under no precident states to be disacted at the reporting of the report of the test reporting of the test report of the test reporting. 5 Under no precise to be accepts and report of the test report of test report of test report.

(Laboratory Services Division) Production Accession Contract and Accession Product Accession Product Accession Product Accession We have product accession We have product accession

TEST REPORT

Accreated by NABL & NABET, Centerd ISO 3001 2015, ISO 14001 2015 & ISC 45001 (2016)

Repse	 1 No	References (SAN)	Report Date	17.299.97
\$ ho	ջատությո	Durit	Lens Method	fiesofis.
1:	Mar paneter at Mr	-	(c) ye sheld a the	···.
:.	a an an as ter	- <u>-</u>	A HORE DUE NOT HE	
:.	a de la companya de la	ал. 1949 - С	i na	
:•	Selate a caleg		La contraction de la c	14
•:	a este de la ca	- P.,	te da de la se	• • •
:~	e e e e e e e e e e e e e e e e e e e	<u> </u>	a the second second	···:
	n an	94.9 1	1997 - 1997 - 1997 - 1998 1997 - 1997 - 1997 - 1998	-
	<u></u>		n - Eise Aleman - Eise	
	functional de la companya de la comp	 r.gt	анан алан алан алан алан алан алан алан	start in
. '	n in the state of		an - Alisend Rock, AMOUND FREE 2007	an an tea
.:	Der dinge Ad	· - ·	 A state of a state 	
- · 	- <u>-</u> <u>-</u> - <u>-</u>		n an	
	An ann an A	·	8 8 9 8 8 9 1 1 30 1	· · · · · · · · · · · · · · · · · · ·
-	a a contra l'ago de	 	$(p_{ij})_{ij} \in \{p_{ij}\}_{ij} \in \{p_{ij}\}_{ij$	•
'	Di Matson de la companya de la comp	· · ·	1997) N. Bartana 199	1999 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
	i su cha an tan	- An territ Abres 7	biotest and the	Ca−an

Note: The Providence of the Contract of the Co

Find of Reprint Page 2 of 2

Ventiland Sy

i Authorised Signatory

hate 1 The restrictures are only to the supple submated for rest. 7 Any Correction of the test report in to the number of the supplet of the supplet will be determined as a specific supplet to the determined of the supplet of the s

(Laboratory Services Division) Extension State Service & Service Service Service & Service Service

TEST REPORT

Web www.cl.uuven.cu.v

a due to hyper above the RCN.

Accreated by NABL & NABET, Cerbfied ISO 3001 2015, ISO 14004(2015 & ISO 45001 , 2018

Rejioit No	2010/2016 16:00 20	Report Date	17 19 28 2		
Issuel to	M/s Larsen & Toubro United Heavy Curil Infrastructure IC				
	(13.7) A + 81.5	We then			
	144 A., 110 at 11	t Negar			
	April Antonio				
Sampling Method	1,8120,004,000	N- 14.00			
Sampled by					
Sample Collected Oate	10/13/26/30	Sample Reference No	2021 A 128 1311		
Sample Description	Borewell Water	Sample Received On	5.00 × 14		
Qty of Sample Received	1.5.15	Test Commenced On	12.65 (22)		
Sample Condition	Pic Na Artigon	Test Completed On	1700 2011		
Sampling Encation	Alapakkam- Indi	an O-I			

4.N1	Marveders .	ucity	rest Method	Newsita
:	:	N ¹	on the set of the set	1 e
			terre a Statut dese Salada	
1 × 10		. ÷	X (12) are 13 (12-11-21) [S]	1181
a 100	n and the production	· ·	ing the Wart 10 the Rower the	<i>n.</i>
>		· · · · ·	Notice and sub-state the	a.+
	. Cheven	95	1.5 Contract Southern AM202	45. (1. s) 1
 .	PD + 1 × 06 × 16 (1)	n : :	CARTER CARTER AND A THE SAME OF	:
- 19	121949 (1997) 1997 - 1997)	: 	Construction Draw Report	128
·	nengessberg set ster		1965 A 86 M (d. 5201A)	-14-11-1
- 1 1 - 1444	te no vydek te di	**:*	Do brou la tres consideration	23

Page 3 of 2

Verified By

н Authorised Signatory

Note 1 The test results are subtracted to submit a fer last 12 Any Correction of the test report in failor parties and a cutol hersport 3 Sumple will be reasined for 15 Gays from the date of reporting exception case of negativory samples of spiralinality extracted by a web 16 Percentation complex will be a warded monore atopy after reporting 16 Under no informative estation, wability criciss/damage tax and by use or misus on instreport after a voicing or source of reporting exception, wability criciss/damage tax and by use or misus on instreport after a voicing or source of restreport.

_		Test Report			Page1 of 3
Report No.ESIPL/EMS/2021/07/3315Customer NameM/s. CHENNAI METRO RAIL LIMITED& AddressCMRL Depot, Admin Building, Poonamalle High Road Koyambedu, Chennai – 600 107.		Date of Samj Date of Regis Sample Code Test Comme Test Comple Report Issuin	19.07.2021 19.07.2021 E-4465 19.07.2021 24.07.2021 26.07.2021		
Sam	ple Description pling Location pling Plan/Procedure	1	Surface Wat Porur Lake ESIPL/SOP/		
6.No.	Parameter	Method	Result		it / limit As per 500/2012 Permissible
01	Colour in Hazen	IS: 3025: Part: 4 (Reaff:2017)	BDL(DL:5.0)	5 Hazen	15 Hazen
02	Odour	IS: 3025: Part: 5-1983 (Reaff:2017)	Agreeable	Agr	reeable
03	Turbidity in NTU	IS 3025: Part: 10 1884(Reaff:2014)	BDL (DL: 1.0)	1 NTU	5 NTU
04	Taste	IS 3025: Part: 8 (Reaff:2017)	Agreeable	Agr	eeable
05	pH @ 25°C	IS:3025 (Part 11) : 1983 (RA.2017)	7.67	6.5-8.5	No relaxation
06	Total Dissolved Solids in mg/l	IS:3025 (Part 16) : 1984 (RA.2017)	756	500 mg/l	2000 mg/l
07	Total Hardness as CaCO3 in mg/l	IS:3025 (Part 21) : 2019	235	200 mg/l	600 mg/l
08	Calcium as Ca in mg/l	IS:3025 (Part 40) : 1991 (RA.2019)	55	75 mg/l	200 mg/l
09	Magnesium as Mg in mg/l	IS:3025 (Part 46) : 1994 (RA.2019)	24	30 mg/l	100 mg/l
10	Total Alkalinity as CaCO3 in mg/l	IS:3025 (Part 23) : 1986 (RA.2019)	200	200 mg/l	600 mg/l
11	Chloride as Cl in mg/l	IS:3025 (Part 32) : 1988 (RA.2019)	224	250 mg/l	1000 mg/l
12	Sulphate as SO4 in mg/l	IS:3025 (Part 24) : 1986 (RA.2019)	16	200 mg/l	400 mg/l
13	Phenolic Compound as C ₆ H ₅ OH in mg/l	IS:3025 (Part 4) : 1992 (RA.2019)	BDL (DL: 0.1)	0.001	0.002
14	Aluminium as Al in mg/l	IS:3025 (Part 55) : 2003 (RA.2019)	BDL (DL: 0.5)	0.03	0.2
15	Fluoride as F in mg/l	IS:3025 (Part 60) : 2008 (RA.2019)	0.2	1,0	1.5

BDL - Below Detection Limit; DL - Detection Limit

Bureau of Indian Standards IS 10500, Amendment No.3, second Revision - May 2012 - Drinking Water-Specification.End of Page 1.....

Verified by

(M.Beer Mohamed)

(R.Sivakumar)

Note: § This report relates only to the particular sample submitted for test. § Any correction not attested shall invalidate this report. § This report shall not be reproduced in full or part without our written approval. § The test samples will not be retained for more than 7 days from the date of issue of test report unless otherwise requested by the customer.

Registered Office & Laboratory:

No.1/134, Dhanakotiraja Street, Sundar Nagar, Ekkaduthangal, Guindy, Chennai - 600032, Tamil Nadu, India Phone: (044) 30683067/43102232 E-mail: info@ecoservices.in, Web: www.ecoservices.in

ISO/IEC 17025:2017 Accredited Testing Laboratory by NABL (QCI) Vide Certificate Number TC-5664

S.No	Parameter			Page 2 of 3 Requirement / Limit As per IS: 10500 / 2012		
_	(Characteristic)	Method of Test	Test Result	Requirement (Acceptable Limit)	Permissible Limit in the Absence of Alternate Source	
16	Boron as B in mg/l	IS:3025 (Part 57) : 2003 (RA.2017)	BDL (DL: 0.1)	0.5	1.0	
17	Ammonia as NH3 in mg/l	IS 3025: Part 34 (Reaff.2019)	BDL (DL: 1.0)	0.5	No relaxation	
18	Nitrate as NO3 in mg/l	IS:3025 (Part 34) : 1988 (RA.2019)	5.6	45	No relaxation	
19	Nickel as Ni in mg/l	IS:3025 (Part 54) : 2003 (RA.2019)	BDL (DL: 0.3)	0.02	No relaxation	
20	Sulphide as H ₂ S in mg/l	IS:3025 (Part 29) :(RA.2003)	BDL (DL: 0.1)	0.05	No relaxation	
21	Iron as Fe in mg/l	IS:3025 (Part 53) : 2003 (RA.2019)	BDL(DL:0.1)	0.3 mg/l	No relaxation	
22	Copper as Cu in mg/l	IS:3025 (Part 42) : 1992(RA.2009)	BDL (DL: 0.3)	0.05	1.5	
23	Manganese as Mn in mg/l	IS:3025 (Part 59) : 2006(RA.2012)	BDL (DL: 0.1)	0.1		
24	Dissolved Oxygen in mg/l	IS 3025 (Part 38) : 1989 (RA 2017)	6.5		0,3	
25	Chemical Oxygen Demand in mg/l	IS:3025 (Part 58) : 2006(RA.2017)	26	*		
26	Biochemical Oxygen Demand @ 27 °C for 3 Days	IS:3025 (Part 44) : 1993 (RA 2019)	5,4			

BDL: Below Detection Limit; DL: Detection Limit

Bureau of Indian Standards IS 10500, Amendment No.3, second Revision - May 2012-Drinking Water-Specification.

......End of Page 2.....

Verified by

(M.Beer Mohamed)

Note: § This report relates only to the particular sample submitted for test. § Any correction not attested shall invalidate this report. § This report shall not be reproduced in full or part without our written approval. § The test samples will not be retained for more than 7 days from the date of issue of test report unless otherwise requested by the customer.

Registered Office & Laboratory:

No.1/134, Dhanakotiraja Street, Sundar Nagar, Ekkaduthangal, Guindy, Chennai – 600032, Tamil Nadu, India Phone: (044) 30683067/43102232 E-mail: info@ecoservices.in, Web: www.ecoservices.in

Test Report

	Parameter				ment / Limit : 10500 / 2012
S.No	(Characteristic)	Method of Test	Test Result	Requirement (Acceptable Limit)	Permissible Limit in the Absence of Alternate Source
27	Anionic Detergents as MBAS in mg/l	Annex F of IS:13428	BDL(DL:0.1)	0.2	1.0
28	Cadmium as Cd in mg/l	1S: 3025 Part-41-(RA.2003)	BDL (DL:0.01)	0.003	No relaxation
29	Barium as Ba in mg/l	IS : 15302-2003	BDL(DL:0.5)	0.7	No relaxation
30	Mineral Oil in mg/l	IS:3025 (Part 39) :1991(RA.2003)	BDL (DL: 0.01)	0.5	No relaxation
31	Cyanide as CN in mg/l	4500-CN-E-APHA	BDL (DL:0.05)	0.05	No relaxation
32	Silver as Ag in mg/l	APHA 22nd Edition 3111B	BDL (DL:0.01)	0.1	No relaxation
33	Mercury as Hg in mg/l	IS 3025 Part 48 - 1994	BDL(DL:0.001)	0.001	No relaxation
34	Lead as Pb in mg/l	IS 3025 Part 47	BDL (DL:0.01)	0.01	No relaxation
35	Selenium as Se in mg/l	IS 3025 Part 56 - 2003	BDL (DL:0.005)	0.01	No relaxation
36	Zinc as Zn in mg/l	IS 3025 Part 49	BDL (DL:0.02)	5	15

Note

BDL: Below Detection Limit; DL: Detection Limit

The above parameters from serial No.27 to 36 not covered in our NABL Scope and subcontracted to other Laboratory.

Bureau of Indian Standards IS 10500, Amendment No.3, second Revision - May 2012-Drinking Water-Specification.

......End of Report.

Verified by

merels (M.Beer Mohamed)

Kee Services India Pvt. Ltd.,

(R.Sivakumar)

Authorized Signatory

Note: § This report relates only to the particular sample submitted for test. § Any correction not attested shall invalidate this report. § This report shall not be reproduced in full or part without our written approval. § The test samples will not be retained for more than 7 days from the date of issue of test report unless otherwise agreed with the customer.

Registered Office & Laboratory:

No.1/134, Dhanakotiraja Street, Sundar Nagar, Ekkaduthangal, Guindy, Chennai – 600032, Tamil Nadu, India Phone: (044) 30683067/43102232 E-mail: info@ecoservices.in, Web: www.ecoservices.in

		<u>Test F</u>	<u>Report</u>		
-	omer Name : M/s. CH dress CMRL 1	EMS-M/2021/07/3315 IENNAI METRO RAIL LIMIT Depot, Ammonization Building nalle, High Road,Chennai – 600		Date of Sampl Date of Regist Sample Code Test Commen Test Complet Report Issuing	ration 20.07.2021 E - 4465 aced on 20.07.2021 ed on 26.07.2021
Samp	le Description		I	Surface Water	
Sampl	ling Location			Porur Lake	
Sampl	ing Plan/Procedure		\$	IS 1622 : 1981	Reaff 2019
S.No.	Test Parameters	Test Method	Unit	Result	Requirement / Limit As per IS: 10500 / 2012
01	Total coliform	IS 1622 : 1981 Reaff 2019	MPN/100ml	27	Absent/100ml
02	Escherichia coll	IS 1622 : 1981 Reaff 2019	MPN/100ml	2	Absent/100ml
ote: Bi	ureau of Indian Standar 1. MPN – Most Prob	ds IS 10500 - 2012, Drinking Wau able Number.	ter-Specification		
ote: Bi	ureau of Indian Standar 1. MPN – Most Prob	able Number.	ter-Specification		
ote: Bi	ureau of Indian Standar 1. MPN – Most Prob	able Number.			Eco Services India Pvt.Lte (Dr.D.Loganathan Authorized Signator

No.1/134, Dhanakotiraja Street, Sundar Nagar, Ekkaduthangal, Guindy, Chennai – 600032, Tamil Nadu, India Phone: (044) 30683067/43102232 E-mail: info@ecoservices.in, Web: www.ecoservices.in

(Laboratory Services Division) # HIG - 6152, TNH 0 Phase I & II, Kamarajar Road, Avjapakkam, Chennal - 600 077, Ph 1 +91 44 2682 3190 / +91 73977 96831 Email: label/pollucareinidia.com Web I www.pollucareinidia.com

TEST REPORT

Accredited by NABL & NABET, Certilied ISO 9001:2015, ISO 14001:2015 & ISO 45001 : 2018

Report No	: PCEI/TR-Soll-3549	Report Date	: 22.06.2022
Discipline	: Chemical	Group	: Pollution & Environment
Issued to		ation India Limited , Mahalakshmi Street, 505 017.	
Project Name	CMRL/CON/PHAS	SE-II/C4/UG-1/2022	
Sampling Method	15	911.002 Mar. 104.023 - 200.02490 / 200.926	
Sampled by	Laboratory		
Sample Collected Date	16.06.2022	Sample Reference No	: PCEI/Soil-190-06-22
Sample Description	Soil	Sample Received On	: 17.06.2022
Qty of Sample Received	12 Kg	Test Commenced On	: 17.06.2022
Sample Condition	Fit for Analysis	Test Completed On	: 22.06.2022
Sampling Location	: Light House Loca	tion	

S.No	Parameters	Units	Test Method	Results
1	pH value @ 25°C		IS 2720 (Part 26) 1987 (RA 2016)	6,14
2	Water Soluble Salts Electrical Conductivity @ 25°C	µS/cm	IS 14767:2000 (RA 2016)	. 320
3	Organic Matter	96	IS 2720 (Part 22) 1972	0.41
4	Moisture Content @105º C	94	IS 2720 (Part 2) 1973	3,94
5	Chloride (as Cl-)	meg/L	PCEI/SOP/SOIL/015	0.83
6	Sulphates	mg/kg	PCEI/SOP/SOIL/010	0.11
7	Manganese (as Mn)*	mg/kg	USEPA 3050 B	2.97
8	Copper (as Cu)*	mg/kg	USEPA 3050 B	0.13
9	Cadmium (as Cd)*	mg/kg	USEPA 3050 B	0.08
10	Lead (as Pb)*	mg/kg	USEPA 3050 B	0.16
11	Chromium (as Cr)*	mg/kg	USEPA 3050 B	1.10
12	Selenium (as Se)*	mg/kg	USEPA 3050 B	1.51
13	Arsenic (as As)*	mg/kg	USEPA 3050 B	0.62
14	Nickel (as Ni)*	mg/kg	USEPA 3050 B	0.39
15	Boron (as B)*	mg/kg	USEPA 3050 B	0.80
16	Zinc (as Zn)*	mg/kg	USEPA 3050 B	1.17

Note :*Mentioned Parameters are not Covered Under Our Scope

Page 1 of 1

Authorised Signatory

Note: 1. The test results are only to the sample submitted for test. 2. Any Correction of the test report in full or part shall invalidate the report. 3. Sample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by client. 4. Perishable samples will be discarded irrimediately after reporting. 5. Under no circumstances tab accepts any liability or loss/damage caused by use or misuse of test report after involcing or issued of test report.

(Laboratory Services Division) # HG = 6152, TNHB Phase L& II, Kamarsjar Road, Ayapakkan, Chennai - 600 077. Ph : +91 44 2682 3190 / +91 73977 96831 Email: lab@pollucareindia.com Web : www.pollucareinidia.com

Accredited by NABL & NABET, Certified ISO 9001:2015, ISO 14001 2015 & ISO 45001 : 2018

Report No	: PCEI/TR-Soil-3551	Report Date	: 22.06.2022
Discipline	: Chemical	Group	: Pollution & Environment
Issued to		ation India Limited , Mahalakshmi Street, 100 017.	
Project Name	CMRL/CON/PHAS	E-II/C4/UG-1/2022	2)
Sampling Method	2.4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Sampled by	: Laboratory		
Sample Collected Date	: 16.06.2022	Sample Reference No	: PCEI/Soil-192-06-22
Sample Description	: Soil	Sample Received On	: 17.06.2022
Qty of Sample Received	: 2 Kg	Test Commenced On	: 17.06.2022
Sample Condition	: Fit for Analysis	Test Completed On	1 22.06.2022
Sampling Location	: Kutechery Road L	ocation	

S.No	Parameters	Units	Test Method	Results
1	pH value @ 25%C		IS 2720 (Part 26) 1987 (RA 2016)	6.91
2	Water Soluble Salts Electrical Conductivity @ 25°C	u\$/cm	15 14767:2000 (RA 2016)	508
3	Organic Matter	%	15 2720 (Part 22) 1972	0.66
4	Moisture Content @105º C	9%	IS 2720 (Part 2) 1973	6.25
5	Chloride (as Cl-)	meq/L	PCEI/SOP/SOIL/015	1.31
6	Sulphates	mg/kg	PCEL/SOP/SOIL/010	0.17
2	Manganese (as Mn)*	mg/kg	USEPA 3050 B	4.69
8	Copper (as Cu)*	mg/kg	USEPA 3050 0	0.2
9	Cadmium (as Cd)*	mg/kg	USEPA 3050 0	0.13
10	Lead (as Pb)*	mg/kg	USEPA 3050 8	0.24
11	Chromium (as Cr)*	mg/kg	USEPA 3050 B	1.65
12	Selenium (as Se)*	mg/kg	USEPA 3050 B	2.27
13	Arsenic (as As)*	mg/kg	USEPA 3050 B	0.93
14	Nickel (as Ni)*	mg/kg	USEPA 3050 B	0.58
15	Boron (as B)*	mg/kg	USEPA 3050 B	1.19
16	Zinc (as Zn)*	ma/ka	USEPA 3050 B	1.72

Note :*Mentioned Parameters are not Covered Under Our Scope

Page 1 of 1

211 **Authorised Signatory**

Note: 1. The test results are only to the sample submitted for test. 2. Any Correction of the test report in full or part shall invalidate the report: 3. Sample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by client. 4. Perishable samples will be discarded immediately after reporting. 5. Under no circumstances lab accepts any liability or loss/damage caused by use or misuse of test report after involcing or issued of test report.

(Laboratory Services Division)

HIG - 6152, TNHB Phase (& I), Euroarasur Boad, Avapakkam, Chennai - 600 077. Ph : +91 44 2682 3190 / +91 73077 96831 Email: lab@pollucareindia.com Web : www.pollucareinida.com

Accredited by NABL & NABET, Certified ISO 9001:2015, ISO 14001:2015 & ISO 45001 : 2018

Report No	: PCEI/TR-Soil-3552	Report Date	1 22.06.2022
Discipline	: Chemical	Group	: Pollution & Environment
Issued to		ition India Limited , Mahalakshmi Street, 00 017.	
Project Name	CMRL/CON/PHAS	E-11/C4/UG-1/2022	
Sampling Method	1-	안 것 못 것 같은 것 것 같은 것 같은 것 같이 없다.	
Sampled by	: Laboratory		
Sample Collected Date	: 16.06.2022	Sample Reference No	: PCEI/Soil-193-06-22
Sample Description	: 504	Sample Received On	: 17.06.2022
Qty of Sample Received	± 2 Kg	Test Commenced On	: 17.06.2022
Sample Condition	: Fit for Analysis	Test Completed On	: 22.06.2022
Sampling Location	: Alwerpet Location		101000

S.No	Parameters	Units	Test Method	Results
1	pH value @ 25°C		IS 2720 (Part 26) 1987 (RA 2016)	6.82
2	Water Soluble Salts Electrical Conductivity @ 25°C	μS/cm	IS 14767/2000 (RA 2016)	494
3	Organic Matter	46	15 2720 (Part 22) 1972	0.64
4	Moisture Cantent @105º C	9%	15 2720 (Part 2) 1973	6.07
5	Chloride (as Cl-)	meg/L	PCEI/SOP/SOIL/015	1.27
6	Sulphates	mg/kg	PCEI/SOP/SOIL/010	0.16
7	Manganese (as Mn)*	mg/kg	USEPA 3050 B	4.41
8	Copper (as Cu)*	mg/kg	USEPA 3050 B	0.18
9	Cadmium (as Cd)*	mg/kg	USEPA 3050 B	0.11
10	Lead (as Pb)*	mg/kg	USEPA 3050 B	0.21
11	Chromium (as Cr)*	mg/kg	USEPA 3050 B	1.41
12	Selenium (as Se)*	mg/kg	USEPA JOSO B	2.20
13	Arsenic (as As)*	mg/kg	USEPA 3050 B	0.9
14	Nickel (as Ni)*	mg/kg	USEPA 3050 8	0.56
15	Boron (as B)*	mg/kg	USEPA 3050 B	1.14
16	Zinc (as Zn)*	mg/kg	USEPA 3050 8	1.63

Note : *Mentioned Parameters are not Covered Under Our Scope

Page 1 of 1

Authorised Signatory

S

Note: 1. The test results are only to the sample submitted for test. 2. Any Correction of the test report in full or part shall invalidate the report. 3. Sample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by client. 4. Perishable samples will be discarded immediately after reporting. 5. Under no circumstances lab accepts any liability or loss/damage caused by use or misuse of test report after invoicing or issued of test report.

(Laboratory Services Division) # HIG - 6152, TNHE Phase 1 & II, Eamarajar Road, Ayapakkam, Chennai - 600 077. Ph : +91 44 2682 3190 / +91 73977 96831 Email: lab@pollucareindia.com With : www.pollucareinida.com

Accredited by NABL & NABET, Certified ISO 9001:2015, ISO 14001:2015 & ISO 45001 : 2018

Report No	: PCEI/TR-Soil-3550	Report Date	1 22.06.2022
Discipline	: Chemical	Group	: Pollution & Environment
Issued to		ation India Limited , Mahalakshmi Street, 100 017.	
Project Name	CMRL/CON/PHAS	IE-II/C4/UG-1/2022	
Sampling Method	1+		
Sampled by	: Laboratory		
Sample Collected Date	: 16.06.2022	Sample Reference No	: PCEI/Soll-191-06-22
Sample Description	Soil	Sample Received On	: 17.06.2022
Qty of Sample Received	1 2 Kg	Test Commenced On	: 17.06.2022
Sample Condition	Fit for Analysis	Test Completed On	: 22.06.2022
Sampling Location	Bharathidasan Ro	ad Location	

5.No	Parameters	Units	Test Method	Results
1	pH value @ 25%		IS 2720 (Part 26) 1987 (RA 2016)	7.28
2	Water Soluble Salts Electrical Conductivity @ 25°C	u5/cm	IS 14767:2000 (RA 2016)	646
. 3	Organic Matter	96	IS 2720 (Part 22) 1972	0.83
4	Meisture Content @1059 C	946	15 2720 (Part 2) 1973	7.96
5	Chloride (as Cl-)	meq/L	PCEI/SOP/SOIL/015	1.67
6	Sulphates	mg/kg	PCEI/SOP/SOIL/010	0.21
7	Manganese (as Mn)*	mg/kg	USEPA 3050 8	5.98
8	Copper (as Cu)*	mg/kg	USEPA 3050 B	0.26
9	Cadmium (as Cd)*	mg/kg	USEPA 3050 B	0.16
10	Lead (as Pb)*	mg/kg	USEPA 3050 B	0.32
11	Chromium (as Cr)*	ma/ka	USEPA 3050 B	2.20
12	Selenium (as Se)*	mg/kg	USEPA 3050 B	3.03
13	Arsenic (as As)*	mg/kg	USEPA 3050 B	1.24
14	Nickel (as Ni)*	mg/kg	USEPA 3050 B	0.78
15	Boron (as B)*	mg/kg	USEPA 3050 B	1.61
16	Zinc (as Zn)*	mg/kg	USEPA 3050 B	2.35

Note :*Mentioned Parameters are not Covered Under Our Scope

...... End of Report Page 1 of 1

10 Authorised Signatory

Note: 1. The test results are only to the sample submitted for test. 2. Any Correction of the test report in full or part shall invalidate the report. 3. Sample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by client. 4. Perishable samples will be discarded immediately after reporting. 5. Under no circumstances lab accepts any Rability or loss/damage caused by use or misuse of test report after invoicing or issued of test report.

(Laboratory Services Division) # HG - 6152, TNHB Phase 1 & II, Kamarajar Road, Ayapakkam, Chennai - 600 077. Ph :+91 44.2652 3390 / +91 73977 96831 Email: lab@pollucareindia.com

TEST REPORT

Accredited by NABL & NABET, Certified ISO 9601:2015, ISO 14001:2015 & ISO 45001 : 2018

Report No	: PCEI/TR-Soil-3406	Report Date	18.06.2022
Discipline	: Chemical	Group	: Pollution & Environment
Issued to		ation India Limited , Mahalakshmi Street, 00 017.	
Project Name	CMRL/CON/PHAS	E-II/C4/UG-2/2022	
Sampling Method	1 =		
Sampled by	: Laboratory		
Sample Collected Date	14.06.2022	Sample Reference No	PCEI/Soil-128-06-22
Sample Description	Soil	Sample Received On	1 15.06.2022
Qty of Sample Received	1.2 Kg	Test Commenced On	: 15.06.2022
Sample Condition	Fit for Analysis	Test Completed On	: 18.06.2022
Sampling Location	Panagal Park Loc	ation	CO HALL MAYNE STO

S.No	Parameters	Units	Test Method	Results
1	pH value @ 25%C		15 2720 (Part 26) 1987 (RA 2016)	6.71
2	Water Soluble Salts Electrical Conductivity @ 25°C	u5/cm	IS 14767:2000 (RA 2016)	458
3	Organic Matter	94	IS 2720 (Part 22) 1972	0.57
4	Moisture Content @105º C	96	IS 2720 (Part 2) 1973	5.61
5	Chloride (as G-)	meg/L	PCEI/SOP/SOIL/015	1.20
6	Sulphates	mg/kg	PCEI/SOP/SOIL/010	0.13
7	Manganese (as Mn)*	mg/kg	USEPA 3050 B	4.22
8	Copper (as Cu)*	mg/kg	USEPA 3050 B	0.16
9	Cadmium (as Cd)*	mg/kg	USEPA 3050 B	0.10
10	Lead (as Pb)*	mg/kg	USEPA 3050 B	0.18
11	Chromium (as Cr)*	mg/kg	USEPA 3050 B	1.59
12	Selenium (as Se)*	mg/kg	USEPA 3050 B	2.17
13	Arsenic (as As)*	mg/kg	USEPA 3050 B	0.88
14	Nickel (as Ni)*	mg/kg	USEPA 3050 B	0.53
15	Boron (as 8)*	mg/kg	USEPA 3050 B	1.08
16	Zinc (as Zn)*	mg/kg	USEPA 3050 B	1.60

Note : *Mentioned Parameters are not Covered Under Our Scope

..... End of Report Page 1 of 1

Ve

Authorised Signatory

Note: 1. The test results are only to the sample submitted for test. 2. Any Correction of the test report in full or part shall invalidate the report. 3. Sample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by client. 4. Perishable samples will be discarded immediately after reporting. 5. Under no circumstances lab accepts any liability or loss/damage caused by use or misuse of test report after invoicing or issued of test report.

(Laboratory Services Division) # HIG - 6152, TMHB Phase I & B, Kamarajar Boad, Ayapakkam, Chennai - 600 077. Ph : +91 44 2682 3190 / +91 73977 96831 Email: lab@pollucareindia.com Web : www.pollucareinida.com

TEST REPORT

- 1	Accredited by	NABL &	NABET, O	Cartified ISO 9001	2015, ISO	14001:2015 &	ISO 45001	2018

Report No	: PCEI/TR-Soil-3483	Report Date	: 18.06.2022
Discipline	: Chemical	Group	Pollution & Environment
Issued to		ation India Limited , Mohalakshmi Street, 500 017.	
Project Name	:CMRL/CON/PHA	SE-11/C4/UG-2/2022	
Sampling Method	1+		
Sampled by	: Laboratory		
Sample Collected Date	14.06.2022	Sample Reference No	: PCEI/Soil-125-06-22
Sample Description	Soll	Sample Received On	15.06.2022
Qty of Sample Received	2 Kg	Test Commenced On	: 15.06.2022
Sample Condition	: Fit for Analysis	Test Completed On	: 18.06.2022
Sampling Location	: Nandanam Locat	ion	480200JA00800

S.No	Parameters	Units	Test Method	Results
1	pH value @ 25°C		15 2720 (Part 26) 1987 (RA 2016)	6.03
2	Water Soluble Salts Electrical Conductivity @ 25°C	uS/cm	15 14767:2000 (RA 2016)	142
3	Organic Matter	96	IS 2720 (Part 22) 1972	0.16
4	Moisture Content @105º C	96	IS 2720 (Part 2) 1973	1.72
5	Chioride (as CI-)	meq/L	PCEI/SOP/SOIL/015	0.37
6	Sulphates	mg/kg	PCEI/SOP/SOIL/010	0.04
7	Manganese (as Mn)*	mg/kg	USEPA 3050 B	1.36
8	Copper (as Cu)*	mg/kg	USEPA 3050 B	0.05
9	Cadmium (as Cd)*	mg/kg	USEPA 3050 B	0.02
10	Lead (as Pb)=	mg/kg	USEPA 3050 B	0.05
11	Chromium (as Cr)*	mg/kg	USEPA 3050 B	0.42
12	Selenium (as Se)*	mg/kg	USEPA 3050 B	0.58
13	Arsenic (as As)*	mg/kg	USEPA 3050 B	0.24
14	Nickel (as Ni)*	mg/kg	USEPA 3050 B	0.15
15	Boron (as 8)*	mg/kg	USEPA 3050 B	0.31
16	Zinc (as Zn)*	mg/kg	USEPA 3050 B	0.45

Note :*Mentioned Parameters are not Covered Under Our Scope

alution for pallution

..... End of Report Page 1 of 1

ŧ

Authorised Signatory

S

Note: 1. The test results are only to the sample submitted for test. 2. Any Correction of the test report in full or part shall invalidate the report. 1. Sample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by client. 4. Perishable samples will be discarded immediately after reporting. 5. Under no circumstances lab accepts any liability or loss/damage caused by use or misuse of test report after invoicing or issued of test report.

141

(Laboratory Services Division) # HIG - 6152, THHB Phase I & B, Kamarajar Road, Ayapakkam, Chennal - 600 077, Ph : +91.44 2682 3190 / +91 73977 96831 Email: lab@pollucareindia.com Web : www.pollucareindia.com

Accredited by NABL & NABET, Certified ISO 9001:2015, ISO 14001:2015 & ISO 45001 : 2018

Report No	:PCEI/TR-Soil-3485	Report Date	18,06,2022
Discipline	; Chemical	Group	: Pollution & Environment
Issued to	: M/S ITD Cementa R.M.S Tower ,No.2, T.Nagar, Chennai -6		
Project Name	CMRL/CON/PHAS	E-II/C4/UG-2/2022	
Sampling Method	1=		
Sampled by	: Laboratory		
Sample Collected Date	:14.06.2022	Sample Reference No	: PCEI/Soil-127-06-22
Sample Description	Soll	Sample Received On	1 15.06.2022
Qty of Sample Received	: 2 Kg	Test Commenced On	: 15.06.2022
Sample Condition	: Fit for Analysis	Test Completed On	: 18.06.2022
Sampling Location	Boat Club Locatio	n	1210202000000

S.No	Parameters	Units	Test Method .	Results
1	pH value @ 25%		15 2720 (Part 26) 1987 (RA 2016)	6.08
2	Water Soluble Salts Electrical Conductivity @ 25 ⁶ C	µ5/cm	15 14767:2000 (RA 2016)	1.25
3	Organic Matter	96	IS 2720 (Part 22) 1972	0.14
4	Moisture Content @105º C	94	IS 2720 (Part 2) 1973	1.51
5	Chloride (as Cl-)	meg/L	PCEI/SOP/SOIL/015	0.32
6	Sulphates	mg/kg	PCEI/SOP/SOIL/010	0.04
7	Manganese (as Mn)*	mg/kg	USEPA 3050 B	1.10
8	Copper (as Cu)*	mg/kg	USEPA 3050 B	0.04
9	Cadmium (as Cd)*	mg/kg	USEPA 3050 B	0.03
10	Lead (as Pb)*	mg/kg	USEPA 3050 B	0.04
11	Chromium (as Cr)*	mg/kg	USEPA 3050 8	0.35
12	Selenium (as Se)*	mg/kg	USEPA 3050 B	0.46
13	Arsonic (as As)*	mg/kg	USEPA 3050 B	0.19
14	Nickel (as Ni)*	mg/kg	USEPA 3050 8	0,11
15	Boron (as B)*	mg/kg	USEPA 3050 8	0.23
16	Zinc (as Zn)*	mg/kg	USEPA 3050 8	0.36

Note :*Mentioned Parameters are not Covered Under Our Scope

Page 1 of 1

Authorised Signatory

Note: 1. The test results are only to the sample submitted for test. 2. Any Correction of the test report in full or part shall invalidate the report 3. Sample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by client. 4. Peristable samples will be discarded immediately after reporting. 5. Under no circumstances lab accepts any liability or loss/damage caused by use or misuse of test report after involcing or issued of test report _____

12

(Laboratory Services Division) # HIG - 6152, TNHB Phase L& II, Kamarajar Road, Ayapakkam, Chennal - 600 077. Phi + 91 44 2682 31907 +91 73977 96831 Email: lab@softwcareindia.com Web : www.poftacareinidia.com

Accredited by NABL & NABET, Certified ISO 9001:2015, ISO 14001:2015 & ISO 45001 : 2018

Report No	: PCEI/TR-Soll-3484	Report Date	: 18.06.2022
Discipline	: Chemical	Group	: Pollution & Environment
Issued to		ation India Limited , Mahalakshmi Street, 00 017.	
Project Name	: CMRL/CON/PHAS	E-11/C4/UG-2/2022	
Sampling Method	4-		
Sampled by	: Laboratory		
Sample Collected Date	: 14.06.2022	Sample Reference No	1 PCEI/Soil+126-06-22
Sample Description	Soil	Sample Received On	1 15.06.2022
Qty of Sample Received	: 2 Kg	Test Commenced On	1 15.06.2022
Sample Condition	Fit for Analysis	Test Completed On	18.06.2022
Sampling Location	Koddambakkam l	ocation.	5 II. 1 CI2005 II. 2020 1

S.No	Parameters	Units	Test Method	Results
1	pH value @ 25%		15 2720 (Part 26) 1987 (RA 2016)	7.12
2	Water Soluble Salts Electrical Conductivity @ 25°C	u5/cm	IS 14767:2000 (RA 2016)	704
3	Organic Matter	96	15 2720 (Part 22) 1972	0.89
4	Moisture Content @105º C	96	15 2720 (Part 2) 1973	8.75
5	Chloride (as Cl-)	meq/L	PCEI/SOP/SOIL/015	1.86
6	Sulphates	mg/kg	PCEI/SOP/SOIL/010	0.19
7	Manganese (as Mn)*	mg/kg	USEPA 3050 B	6.63
8	Copper (as Cu)*	mg/kg	USEPA 3050 8	0.25
9	Cadmium (as Cd)*	mg/kg	USEPA 3050 8	0.14
10	Lead (as Pb)*	mg/kg	USEPA 3050 B	0.26
11	Chromium (as Cr)*	mg/kg	USEPA 3050 8	2.32
12	Selenium (as Se)*	mg/kg	USEPA 3050 B	3,17
13	Arsenic (as As)*	mg/kg	USEPA 3050 B	1.31
14	Nickel (as Ni)*	mg/kg	USEPA 3050 B	0.78
15	Boron (as 8)*	mg/kg	USEPA 3050 B	1.61
16	Zinc (as Zn)*	mg/kg	USEPA 3050 B	2.34

Note I*Mentioned Parameters are not Covered Under Our Scope

Page 1 of 1

Authorised Signatory

SI

Note: 1.The test results are only to the sample submitted for test. 2. Any Correction of the test report in full or part shall involidate the report. 3.Sample will be retained for 15 days from the date of reporting except in case of regulatory samples or specifically instructed by client. 4.Pertshable samples will be discarded immediately after reporting. 5.Under no circumstances lab accepts any liability or loss/damage caused by use or misuse of test report after involcing or issued of test report.

(Laboratory Services Division) and the Maximum Provided and the manual second Appendiant (2005) (2006) (2005) (2006) (2007) (2005) (2006) (2007) (2007) (2007)

1941 Adv. 100300 (10000)

TEST REPORT

Accredied by NABL 3 NABET, Certified ISO 9001 2015, ISO 14001/2015 8 ISO 45001 - 2018

Report No	213 C. (K. W. 1994)	Report Date	16-0-271
Discipline	Crience (Group	Constant All Experiment
Issued to	. M/s Larsen B To	rubro Limmed Heavy Civil Lafras	at octure TC
	Raft (SAOT - NU A	ter Quite a	
	144 Art of Potentia	. Nexat	
	itere (600-104		
Sampling Method			
Sampled by	. :2: ·*.:* ·*.y		
Sample Collected Date	101-09-0021	Sample Reference No	 (2)1.52 (67.07.1
Sample Description	501	Sample Received On	1.11.12.2021
Qty of Sample Received	2 Kg	Test Commenced On	11.13 (30.11
Sample Condition	Et fait Amagina	Test Completed On	5.1614-2021
Sampling Location	Poror Station-Ra	isi&Co	

Ş.Na	Parameters	Units	fust Method	Results
:	in an early a 1966.	•	15.270 (1987-36, 1987) > 4.2005	1.14
	la de Stobe Solis de Bruzil. Poulo de transpo		(* 1476 / 2001) * A Onite -	:19
:	Omena Materia		14 2720 Part 22 1472	· · ·
÷	Monter Content (2006) - 1	<u> </u>	25770012810, 1973	5.5
9	Put spore st	່ ກາງ.	Port source of the second	: 51
	: Ten shurus	n.: ka	NEC SUP SOL, QLC	2.75
1	Theorem (1997)		C62 FW 2050 5	- :
5	tan si tasi 0	nig Ka	CEEPW 21 SC N	124
-	Catholic (1977)	no: Ag	1957 PA 21, SC 8	1.1
:0	ineal region?		(A: 24, 3050 B	5.05
:1	The mean fusion the	n na ca	19501% F050 b	. 86
::	Sector and a sector of	net en	USERW Post a	0.16
. '	An ann an tha Ann	sta ka	USUN OSLA	C : :
.4	Blood of the t	. કહારન	1.961W-2012 B	1.54
:5	and and t	963 AG	0.89176-805 - FS	1.91
:	1.111 (av. 11.1	- л.: еј	03214 303214	7.67

Non-Mental Address the average Course Course Course

..... Fod of Report

Page 1 of 1

Verified 8)

Authorised Signatory

.

Note: Unbetestreports are donated from an plenois and the less of the less report in full or parts half invalidate the report is 5 ample will be excurred for 15 due from the dute of reporting exception case of regulatory samples an specifically instructed by clean. A Personation samples will be docurded increducely after reporting. S.Under na circumistances as accepts any hubble to bro/Hamage causes by use or missed test report after invaloring or ssued of test report.

2

(Laboratory Services Division)

Provide and the property of the state with

TEST REPORT

En el lobo polizidadente aco
 M. D. nomente administrationes de Stati

n menager 6 April April 2007. Chen an 1971 - 220

Accredited by NABL & NABET, Certified ISC 9201:2015. (SO 14001:2015 & ISO 45001 - 2019

Report No	81.61.72.85 (162	Report Date	17.0000
Discipline	South Sol	Group	subjective and frequencies.
Issued to	M/s Larsen & Tou	bro Limited Heavy Civil Infras	tructure IC
	S 36 1786 (1.8 T 5 5	- 1296 (c)	
	14A Art M Road 14	14-14-1	
	Plucar (BC0010)		
Sampling Method			
Sampled by	Line waters		
Sample Collected Date	11,256,2663	Sample Reference No	(a) (a) (b) (b) (b) (b) (b) (b) (b) (b) (b) (b
Sample Description	501	Sample Received On	12 05 10 11
Qty of Sample Received	. 2 Ko	Test Commenced On	12.03.2021
Sample Condition	of the Archive	Test Completed On	11/04/201
Sampling Education	Alapakkam - Todia	n Oil	

5.N o	Parameters	Units	Test Method	Results
I	198 an 198 - 20 a	-	18 972 ° 9 H 761 9987 (857 987	2.8
7	Wittens (azərSəhvə Vertina) Olympication (ə. 200	a\$ or	14 14 767 (26 A00)	:/:
<	Oranii Migus	;	5240×3524.552	
:	Man and the California	-	1- 122 - 155 Z (1972	. 65
\$	n male a si	- 	Prezerve sila inter-	1947
6	n Badanar-s	i milka	The second se	· 9 :
	Man Latin et als Maria	, my ka	0.5 (94) (95, 1)	. 8
••	Konner in 11-	a.,24	0.8 (PA-2202)B	11.4
ì	, Rođeno Viličati:	n çi kij	0.6466.0960.8	0.15
:0	Den service	така	Conversion	1.75
· i	and the second second	, j tipka	1.4797. Solution	6.07
٠÷	an an an Anna a	na, ka	0.5794 (Ph. B	
: <	An an an an An	na kg	U 4694 1250 0	0.14
:4	n Narsen (g. 1911)	10g s.1	1.4594 (20.10	. 124
:*-	Server 1963 - 1	n	a 4 PA 2052 B	2.5
:••	r Men jas dole	ng tig	1.7794 (Du. I)	× 1-

when the transformer and the Course Course Courses

.... End al Report Page 1 of 1

Venfied B

1 . 1 -Authorised Signatory

• •

Note: 2 The existence of a constrained by constrained by exercise of the test report of the report of the report of Some 'existence' in the report of the re

(Laboratory Services Division)

TEST REPORT

Provide NATION Providence
Provide National Accession Comparison of the Accession of the Ac

Accredited by NABL & NABET, Certified: SO 9001.2015, ISO 14001 2015 & (SO 45001 12016

Report No	CONTENSIÓN (CA	Report Date	17 (A. 1973)
Discipline	. Chemica	Group	Patient & Chambert
Issued to	M/s Larsen & T	outro Limited Heavy Civil Infras	structure IC
	K35 7. AS 1147 S	Second and the second	
	[AA Arget 12 get :	s a fuegor	
	forter (#99.10)		
Sampling Method			
Sampled by	LADO MARKA		
Sample Collected Date	10.09.0000	Sample Reference No	 Solution (1991) (2011)
Sample Description	Soil	Sample Received On	0.041022
Qty of Sample Received	2.54	Test Commenced On	12.54.352
Sample Condition	The Constant Arrangement	Test Completed On	17 (es. 2017)
Sampling Location	Virugabakkam-	Avichi School	

5.No	Porameters	Units	Test Method	Results
:	12 - 14 00 - 14 M	· .	15 2729 (1.35 26) 1537 (94 50 26)	*
:	hza den Surunke Salas Boyto (ku) Integranise (v. 1926)	1 .5 67	15-142575000 PA 20165	
2	Change Butter	i	15 2720 (Lat 2011) 72	2.62
.+	Concernant Sector	····	(S 2729 (Fattle 1973)	6.6
~	(Or weder de 1911	- 10 C	COLORADO EDILICOS	1.7
÷	politika Na harber	no ka	DELECTION ALE	1 y 2
	n angunasa la Merti	n g Ka	12 - A 12	•. "
÷	na kana an	na ia	CHERALE MORE	11.5
•	Calmin a 151		51-w 3550 P	· · · · -
:•• ·	n na	n dag	1.90-95 (0.90.5	
•	an an the Carl and	int Ng	SERVICE S	
	Section of sector	n 0/01	6 (201 ACC) 6	· ; -
::]	Arwan (m. Art.	n::. k .	ESTEN RELIG	16.24
17	Active Art	្រំ ។ ដូចត	JAF 9 & 2050 P	
··. '	Press of APPL		ST70 (050 B	2.2.1
:••	Con the Post	071.54	0889 A 31 50 6	9.5

When them many a more than in Council Developed by

Page 1 of 1

Verified B

Authorised Signatory

hole: 1. Instastre alls are anly to Personalized for test. 2. InvCorrection of the test report in full or particles in realistate the report. U Sample will be retained for SC days from the date of reporting except in case of regulatory samples or specifically instructed by clent. A.Per shable samples will be excarded normediaply after reporting. SUbder no or constants taken and ubditive rists (damage caused by use or misus of test report after and or specifically instruction or constants taken and ubditive rists (damage caused by use or misus of test report after one single respect of test report.

(Laboratory Services Division)

TEST REPORT

 a. BC2 (Naré Criste, Art)
 b. State Parts, Ayaya Kati Company, 2000/27
 b. Company, 2000/20
 c. Company, 2000/20

Accres led by NABL & NABET, Commod ISO 5001 2015, ISO 14001/2015 & ISO 49001 (2018)

Report No	017 [119 sec] (21 14	Report Date	17
Discipline	October 1997	Group	belotion & Brynner t
Issued to	-	to Limited Heavy Civil Intrastru	actore IC
	ASA Mush Shi tas	1 ¹⁶ a v	
	144 August Paulas Aug	any 10 g	
1	What 618 109		
Sampling Method			
Sampled by	a Market Story		
Sample Collected Date	110 955 20	Sample Reference No	2.20 System 161 (28.25)
Sample Description	Soil	Sample Received On	1705 2021
Qty of Sample Received	12 Ma	Test Commenced On	La Constant C
Sample Condition	Et fan Anal Insis	Test Completed On	1706307123
Sampling Location	Katapakkain Statio	n- ETA Star Verde	

S.No	Parameters	Units	Test Mothod	Results
:	0.0 agos (n. 207)	:	IS 2720 THE REPORT FRANCE	1.55
	Autor of the same sector and Constant of the same sector and the same sector of the same	·	1 (* 1776/2010/1864-20106)	::.
	i Channe Mathe		15 3720 Sant 23 (1972)	27.
	Mial ture Coste di Li 10% 17		25 2726 3561 21 1973	
	a bionar as Que		11 AVELX04-402-4024	: "÷
6	n	1. 19 1. 16 1.	Here the Rest And Landson and	40
2	n Maarina googlas Marin	i coka	U CERA KAN B	42.6
÷	ACOPATION CONTRACTOR	1721 жү	DEPEN NAMES	11.14
C.	nedmoor acterio	n n Koj	NEWA 1211 B	0.05
::	. Cost (08-70) *	- trigi kr	0.4786 (57.0.3)	1.51
::	stromule accent	 -00 -su	1 4 PA A 6 3	12
:2	an shekara 28 ber 7		1520 AN 2 3	· :
:3	Andrew and Arth	e 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	New Service	:
14	7964 a. 9 f	- 	1410630613	
•••	Bassid.	in the second	479% 10%0 D	2.95
16	7 m 15 20 ct		191 M. 2021 B	- 4 1

New Merchael Rearrange are not Classed and Collins

...... End of Report Page 1 of 1

Venified B

ې اند مو Authorised Signatory

r

Note: 1 the featiless to accept to the safety of the steel of Any Correction of the test report in UC or Larsshall involve the report 13 Sumple will be related for 15 Geys from the date of reporting patient case of regulatory samples or specifically instructed by client 14 two studies samples will be distorded in the date of a few reporting 15 Under no or comstances ab accepts any has interclosed by use or misuse of test report alter involving or specifications.

(Laboratory Services Division)

Phillippi de sues com constructiones en

TEST REPORT

And Antibatistic to a second

ele (Contra Cher) (Contra Ch Ramana - Ren (Contra Cher) Cherna - Sey (217

Accredited by NABL & NABET, Certilied ISC 9001 2015, ISC 14901-2015 & ISO 45001 , 2018

Report No	1021 19 Sol 2145	Report Date	17 03 21 25		
Discipline	Storm is	Group	the drift Algebra should be		
Issued to	M/s Larsen & Tou	bro Limited Heavy Civil Infras	bucture IC		
	40.2 (1998) 124-154				
	1945 Ab Al - Carl, S. G. Cu				
	Reput to Define				
Sampling Method					
Sampled by	i desta de tra				
Sample Collected Date	11.35.025	Sample Reference No	(C12) [0.5 (2)]		
Sample Description	Sail	Sample Received On	12.00.2020		
Qty of Sample Received	17.60	Test Commenced On	12.00363		
Sample Condition	For Astronomy State	Test Completed On	12.02.00		
Sampling Location	Valasaravakkapu		• •		

5.No .	Parameters	Units	Test Method	Results
: 1	91 - 2016 - 2016 1		15 27-01 J T 2+ 1367 174 X897	2.4%
	an sange San Banadi Polatish san	2 ² (11)		
	n an		25-72-016-01-1972	2
•	textur ka terra berañ	·. ·		• :
	barde a dur 👘 👘		K EDS # S do Con	:11
· .	o charce	no ivi	(Set Section of a	1 e-1
	Marthur as May	nu; e:	8764 Charles	1.4.54
	000m 14 Ca.*	274 C.	0.1784.30.003	
11 g	ad channess of t		Q 14 0 1 4	:2
10 ge	a series and a series of the s	ma ka	De FA Digori	1 K -
ji ji	naunum neuror	ure jedi	1 1 6 A 2 1 - 1 B	1.20
12 Pe	vetera (as form	10.61	2016 (Are) S	1.1
: * <u>*</u> *	takine instanti		a Berger Alexandra de la	621
:- ja	edent un fait		A MARKA	2.89
:: j.,	nin gest	n. ka	SOFA PLO B	k (; ;)
$x^{-1}x$	n as Zent in in in its second s	mọ ku	0.4043.04.8	

An effective device and constrained on

...... Cod ol Report Page 1 of 1

Venfied B

Authorised Signatory

.. .

Note () the leftresu tware only to the submatted for real (2 Any Consistion of the lest report in Full or party to the report (4.5 ample will be in to red for 15 days from the date of sypoiling exception cave of segmentary to service of churched by them, (4.9 er shable samples will be distarted) mediately other reporting (5.0 not in constraint-submatter) to the of regulability of law/conservice of the resolution report of the service of the resolution of submatter to the service of the service of the report of a submatter of the submatter of the service of the service of the report of the submatter of the service of the service

(Laboratory Services Division) -Amon 1992 (Net Procedule)

Photodal Step (2011) Or 21-22 (0.84)

TEST REPORT

El a stroppt connetación Anti-accario cui carion

 Transform Robins, Ayan akwara Orawa ang 2001/20

Accred ted by NABL 8 NABET, Certified (SD 9001 2015, (SD 14001 2015 & (SD 45001 12015)

Report No	0.000 08 SC + 444	Report Date	17.64.2.21
Discipline	to testinge	G100p	Product Science and
Issued to	M/s Larsen & You	ibro Limited Heavy Civil Infras	tructure IC
	We forward with the		
	11A A175 Story, 11a	fragat.	
	U or 200115		
Somplang Method			
Sampled by	a thomas in the		
Sample Collected Date	11.09.2031	Sample Reference No	7071 (chi 1000) (chi 20
Sample Description	Sovi	Sample Received On	1 - 49 2901
Qty of Sample Received	2.44	Yest Commenced On	11/09/020
Sample Condition	1322 2019-00	Test Completed On	1759.709
Sampling Location	Vadapatani- Vasa	n Eve Care	

S.No	Parameters	Parameters Units Te		Results	
1	phone and second		18 2020 (End D = 1987 (FA DAG	1 : A	
2	an teo Selutio Salis Dostrata Structures and Boo	. 5	08-04767-0815-46-7505	:	
	Departs Patter		1		
	the new second visit of		the ANT Part of 1973	1.1	
•	Change (al.)	50% L	2.2 A 31 M/2 A.M. 915	1.j-	
	n na an	- 1993 - J	1000 SDR 1705 CDC	1.25	
	Manual Addition	n	100 A 2011 A	14.8	
$\sigma_{\rm c}$	Noper Classic T	•••••	0.52 -4 -525 - 5	:4 :	
ч	hadmide as da e			1.25	
::-	Televice to the second se	nn, kg	CALINA SULCIP	2.0	
::	memory (as inter	nici ka	0.8594-8040-8	3.24	
:·	Service the service se	:.; k [.] .	e serva solo p	9.57	
••	Atwend the Art	mg ka	USERA SOLO B		
:4	Research the	···	168 PM (255 B	. 4	
10°	entrander i	(50. s)		· ;	
:i -	Zan Sande -	···· • • •	0.8944 (0.95%)	······································	

When the data and a second case of the second case

Venified B

: 542617 Authorised Signatury

Note: The festive folls are only to their implexition itself on loss. 2 Any Control Juniof The festive part in follon parts in the report of Sumplement be retained for Lisingly from the date of reporting exception cave of reports on precisionly instructed by more. A Personable samples will be obstanded internet while a feating of the formation of the test report after invariant while retained while closed and gravity under reporting to Undermodific unstances for while the instruction of the test report after invariant you control that report

(Laboratory Services Division)

TEST REPORT

second 44.3 second and 20.2 constants stational subscription of And wave public in a surgery

ERG CLA PARENCE S Collars of Period Agrican Coll Charles (2016))

Accredited by NABL & NABET, Certified ISC 9001 2015, ISO 14001 2015 & ISO 45001 - 2018

Report No	PAGE 18-50-0147	Report Date	12.25.051		
Discipline	Chest cal	Group	Contract All the only t		
Issued to	M/s Larsen & Toubro Limited Heavy Civil Infrastructure IC 698 Tower INT 556 (266) 166 Accel Rose Factories 6. doi: 160.011				
Sampling Method Sampled by Sample Collected Date Sample Description QLy of Sample Received Sample Condition	Strangton 17 Codect Scil 17 Cog 2 Cog 2 Codect Analysis	Sample Reference No Sample Received On Test Commenced On Yest Completed On			
Sampling Location	Kodampakkam Pa	wer House- Ram Theatre			

5.No	Parameters	Parameters Units		Results
	a set in sete		S 2700 01 85 26, 1967 (94 26.7	a 1/5
	en frankelsk fra Neger († 1917) Lister († 2005)	1 "Sten	15-14-02:2010-384-2016-	
1 120	nic Mater	· · ·	14 2225 Jun 25 1922	7.47
A Mara	Greaters and a		5 17/6 Gat 2 1974	10
19 - C.M.	Contact of	1 mer :	eed enceduade	
1			Augusta society	
Par -	atema da tean	1.11.12	Grad Marson, P	4
	er av de la	menk (Line the polyton	,
in Gedri	nam jak (latin	1963 M	UNE PALE AGE B	0.71
5, 160	ue kaj f	101-6	s and a second	: 15
1. 1.440	n ann a' Grif. Tha an	90 a.s.	terber differe	: 7
12 Score	an igada t	inger e	140 PK 3410 A	r ·
11. Anx?	no 2004/17	1	1.91.96 (CC) 10	5.25 ¹
an an treast The sector	1.24 M 1	<u>i (e. k.</u>	(14) (A. 509) (-	
-	n51	:nc_ky		
16 712		9 a kg	0.50 4 0.00 F	4.15

Note 121, Constant of Constant and Constant Sector Sector

..... Fnd of Report Page 1 of 1

41 Venfied By

. ..

: ÷ 6.1 e ... Authorised Signatory

Note: Life test insubs are only to the vaniple submitted for test. 2 Any Current on of the test report in tuil or part shall invalidate the report in Stample will be refaired for 15 dwo from the date of reporting except in case of regulatory tamples or specifically instructed by client 14 Percyclobic samples will be dycarded, mondutely after reporting 5 under incriminances lab accepts and intrological solution by some misuse of test report after invasiong or wand of test report.

(Laboratory Services Division)

100 - 1005 1006 200 - 100 1 • 2000 - 1005 2010 - 100 1

Comp. 1620-001

TEST REPORT

Provide Contraction (Contraction) (Contra

Accredited by NABL & NABET, Centilise ISO 9001 2015, ISO 14001 2015 & ISO 45001 (2018)

Report No	# C 10 79 81 6 - 1046	Report Date	12.194.3010				
Discipline	(in must	Group	Product Sciences and				
Issued to	M/s Larsen & Tou	b=0 Limited Heavy Civil Infras	tructure IC				
	KGR 1949 - &1.55	G21 (c)					
	1 PALAN A MUSIC NO	1 PACAS STRUCTURE NOT A JUST					
	Contraction Contraction						
Sampling Method							
Sampled by	districtions.						
Sample Collected Date	13,429,2004	Sample Reference No	10 (1 × 1 × 1 × 1 × 1 × 2)				
Sample Description	Soil	Sample Received On	1104.200				
Qty of Sample Received	2.54	Test Commenced On	1.1.1.1.44.7a.11				
Sample Condition	Utifier Analysis	Yest Completed On	17.65 (597)				
Sampling Location	Alwarthirunagar -	C51 Church					

5.No	Parameters	. Linits	Test Method	Results	
·	brigana (1998)		 (CATE had by LECERARD) 	2.95	
	Nation Scoper Schweizerschlung Fein Franzeitschlungs (* 1		n in 1979-2010 RAYON I	-15	
	halaa Meter		15 2720 (art 25, 1923		
	n otare Carty to 200-Pic	ļ —	1 - 18 27-50 Part 2 (1973)	÷ . 6	
· :.	blinde bezikkin	i mas	RELACE FOR RE		
•	ugnate.		PO traval serie da	· · ·	
2.12	an iun ese la Strut	0.944	Color Annual A	12.1	
× (ang an ann an		1 Sec. (1 Sec. (1 Sec.	1. ⁻	
•••••	admum us Cott	0.0.2.1	USERV BOOK		
12 10	o to face option	en, kg	1.500±00.500	1 y.4	
1: jî	francura (s.c.)*	10.50	1 > 1 > 0 < 0 < 1 < 1 < 1	121	
12	and the second	ere Ag	16 - 276 A. 179	0.5	
17 1	nem levida M	m. 20	S. 95 CC 18	321	
14	An let te f	013-54	1867 & 45.19	.* *:	
.⊂ j⊳	Sec. 4.	1	PSLOVE COST R	· .•.	
1: 6	n waa	· · · · · · · · · · · · · · · · · · ·	088-04 (c. c. c	8.7	

In an AM multiple to the table is an exist Character and Support

...... End of Aepart Page 3 of 1

. . .

Verified B

Authorised Signatory

heter: Che test results are ani, 10 Mm v. mploov Smithes for test. 2 Any Correction of the test report in full or part shall invalidate the report. 3 Sample will be returned for 15 date from the date of reperiod exception case of regulatory weights or specifically instructed by chem. 4 Periodate is a "ploop" "Ible is warded in the disty of or reporting. 5 Under date recommunication is used in the type lass/date ige caused by inservice some of test report after investigations such of test report.

(Laboratory Services Division)

TEST REPORT

A D. J. A D. Constraints and the second state of the state processor.
 A D. J. A D. Constraints and the state of the second state of the seco

Accredited by NABL & NABET, Certified ISO 9001 2015, ISO 14001/2015 & ISO 45001 (2018)

Report No	N/1116/Soc.194	Report Date	17:19 202
Discipline	r Crown ys a	Յուսթ	A star where are t
Issued to	M/s Larsen & T	oubro Limited Heavy Civil Infras	tructure IC
	2008 Teach 281 S	ste GBRe	
	14A Artist Root, 1	 Neper 	
	Pithan (600-016)		
Sampling Method			
Sampled by	Jebor Sun		
Sample Collected Date	17/09/2010	Sample Reference No	ACTENDED REPORT
Sample Description	Soil	Sample Received On	0 8 129 V 0 V
Qty of Sample Received	12.67	Test Commenced On	15:09 (10:4
Sample Condition	 Unor Analysis 	Test Completed On	57 CA (2023)
Sampling Location	Saligramain- Se	oriya Hospital	

5.No	Parameters Units		Test Method	Results	
I.	gen han 200		15 7720 (R. H. H. 1987) (R. 2017)	× 13	
	Mater Schlade Side Contration Generation (principality		IN TRACT SPECIES AND	479	
ς.	Page 5 Million		S. 45 (601.57) 1972		
:	Presture dontent is Clath C	·.	5 7722 Part 2 (1973	 :22	
	Chipmen (as c)	erner) -	RECEIPTING BITTLE	• •	
ŧ.	n againatan an a	016 A.Q	FOLD SCR 508 LOD	·	
:	Webersela Melt	ny ka	1983 A. (1991) P	47.4	
-	Chipanet a service *	ng ka	1512 A 1650 B	4.14	
·.	Calminate and det	6		·	
	and a Chat	0 ky	Stew offer 19	2.45	
: 1	utroasoan oo bi t	11 A. C.	e sa na Marana	6. j	
Ľ.	Sectoral actives	··	$11^{6}(-2e^{-1})^{16}(-1)$	14:	
:•	Analysis and	053.53	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	. :	
.4	N° ka sa 1 N s	0.104	dr c = f M G	4:	
Ŀ.	man ar br	en 1 - 94	2805-20205	<u>ر</u> ې	
::	Z 14. 108 Z 12	1704 A.J.	0.35295 (2000) S		

A neither of the elsewise end of parts of new parts

...... End of Report Page 1 of 1

Verilled B

Authorised Signatory

· · · <u>.</u>...

Nob-1 The test for difference y to the sample submitted forcent. 2 Any Correction of the rest report of ultravel due the report 13 Sunglaws, the relation of the rest report of the participation of the partited of the participation of the pa

ECO SERVICES INDIA PVT. LTD.

(LABORATORY DIVISION)

ISO/IEC 17025:2017 Accredited Testing Laboratory by NABL (QCI) Vide Certificate Number TC-5664

	Test R	<u>eport</u>		
Report No. : ESIPL/EMS/2021/07/3304 Customer Name : M/s. CHENNAI METRO RAIL LIM & Address : CMRL Depot, Admin Building, Poonamalle High Road Koyambedu, Chennai – 600 107. Sample Description Sampling Location Sampling Plan/Procedure		IITED	Date of Sampling Date of Registration Sample Code Test Commenced on Test Completed on Report Issuing Date	Page 1 of 19.07.2021 19.07.2021 E-4454 19.07.2021 24.07.2021 26.07.2021
		1 1 1	Soil Near RMC Plant ESIPL/SOP/CA/SS/01	
S.No.	Test Parameters	-1	Method	Results
01	pH @ 25°C	IS 2720	Part 26:(Reaff:2016)	6.42
02	Electrical Conductivity @ 25°C in µmhos/cm	nductivity @ 25°C in µmhos/cm IS 14767: 2000 (Reaff.2016)		376
03	Water Content in %	IS 2720	- Part 2 (RA:2015)	5.8
04	Phosphorous as P in µg/g	ESIPL-S	SOP/C-S/20	5.2
05	Sodium as Na (Soluble) in mg/kg	ESIPL/S	SOP/C-S/07	48
06	Potassium as K in mg/kg	ESIPL-S	SOP/C-S/22	19
07	Total Kjheldal Nitrogen as N in %	IS 14684	4 (RA:2014)	0.027
08	Oil and Grease in mg/100g	ESIPL/S	SOP/C-S/24	BDL(DL:1)
09	Chromium as Cr in mg/kg	USEPA	3050A	0.62
10	Soil Texture in %			
	a. Percent Clay	FAO United Nations Rome,2007		59
	b. Percent Silt	FAO Un	ited Nations Rome,2007	32
	c. Percent Sand	FAO Un	ited Nations Rome,2007	8.7

Note:

BDL: Below Detection Limit; DL: Detection Limit

......End of Page 1.....

Verified by

(M.Beer Mohamed)

Note: § This report relates only to the particular sample submitted for test. § Any correction not attested shall invalidate this report. § This report shall not be reproduced in full or part without our written approval. § The test samples will not be retained for more than 7 days from the date of issue of test report unless otherwise requested by the customer.

Registered Office & Laboratory:

No.1/134, Dhanakotiraja Street, Sundar Nagar, Ekkaduthangal, Guindy, Chennai - 600032, Tamil Nadu, India Phone: (044) 30683067/43102232 E-mail: info@ecoservices.in, Web: www.ecoservices.in

ECO SERVICES INDIA PVT. LTD.

(LABORATORY DIVISION)

Test Report

Report No : ESIPL/EMS/2021/07/3304

S.No.	Test Parameters	Method	Page 2 of 2 Results	
11	Phenolic Compounds as C ₆ H ₅ OH in mg/kg	IS 3025 (Part-43) 1992	BDL(DL:0.5)	
12	Nickel as Ni in mg/kg	USEPA 3050B	1.9	
13	Manganese as Mn in mg/kg	USEPA 3050B	2.8	
14	Copper as Cu in mg/kg	USEPA 3050B		
15	Zinc as Zn in mg/kg USEPA 3050B		20.4	
16	Mercury as Hg in mg/kg	USEPA 3050B	BDL (DL: 0.05)	
17	Arsenic as As in mg/kg	USEPA 3050B	BDL (DL: 0.2)	
18	Lead as pb in mg/kg	USEPA 3050B	BDL(DL:0.3)	

Note:

1. BDL: Below Detection Limit; DL: Detection Limit

2. The above parameters from serial No.11 to 18 not covered in our NABL Scope and subcontracted to other Laboratory.

.....End of Report.....

Verified by

80.0 (M.Beer Mohamed)

Eleo Services India Pvt. Ltd.,

(R.Sivakumar) Authorized Signatory

NASW

Note: § This report relates only to the particular sample submitted for test. § Any correction not attested shall invalidate this report. § This report shall not be reproduced in full or part without our written approval. § The test samples will not be retained for more than 7 days from the date of issue of test report unless otherwise agreed with the customer.

Registered Office & Laboratory:

No.1/134, Dhanakotiraja Street, Sundar Nagar, Ekkaduthangal, Guindy, Chennai - 600032, Tamil Nadu, India Phone: (044) 30683067/43102232 E-mail: info@ecoservices.in, Web: www.ecoservices.in

Updated Environmental Impact Assessment

April 2024 Revision 1

India: Chennai Metro Rail Investment Project Corridor 4

Annexure 2

Prepared by the Chennai Metro Rail Limited (CMRL) for the Asian Development Bank.

Annexure 2: Environmentally Sensitive Receptors on Corridor 4

Environmentally sensitive receptors located within 200m on either side of alignment

SN	Name of Sensitive Receptor	Location	Type of Sensitive Receptor	LHS/ RHS	Distance from the outer most proposed tracks (m)	Latitude	Longitude
1	Queens Mary College	Light House Station - Fore shore Estate Road	College	LHS	94.57	13°02'40.4"N	80°16'44.5"E
2	Vinayagar Temple	Light House Station - Fore shore Estate Road	Temple	LHS	158.38	13°02'39.8"N	80°16'42.7"E
3	St. Thomas Mount church	Light House Station - Fore shore Estate Road	Church	LHS	1	13°02'00.9"N	80°16'40.2"E
	St. Bede's Anglo Indian Hr. Sec. School	Light House Station - Fore shore Estate Road	School	LHS	71.16	13°02'04.6"N	80°16'41.6"E
5	Santhome cathedral church	Foreshore Estate Road - Kutchery Road	Church	LHS	6.32	13°02'00.9"N	80°16'40.2"E
6	TNPLC Secretariat Church	Foreshore Estate Road - Kutchery Road	Church	RHS	46.2	13°01'58.7"N	80°16'39.3"E
7	St. Thomas English School	Foreshore Estate Road - Kutchery Road	School	RHS	203.89	13°01'53.2"N	80°16'41.2"E
8	Santhome School	Foreshore Estate Road - Kutchery Road	School	RHS	190.47	13°01'55.0"N	80°16'35.8"E
9	Aashraya Hospital	Foreshore Estate Road - Kutchery Road	Hospital	RHS	5.27	13°02'01.1"N	80°16'33.1"E
10	Rosary Church	Foreshore Estate Road - Kutchery Road	Church	LHS	1	13°02'02.6"N	80°16'31.7"E
	St. Raphael's Girls Hr.Sec. School	Foreshore Estate Road - Kutchery Road	School	LHS	6.07	13°02'03.8"N	80°16'34.6"E
12	ICAT Design & Media College	Foreshore Estate Road - Kutchery Road	College	LHS	140	13°02'05.7"N	80°16'37.4"E
1.1	Dominic Savio Matric Hr. Sec. School	Foreshore Estate Road - Kutchery Road	School	LHS	175.83	13°02'06.9"N	80°16'38.8"E
14	Rosary Matric Hr. Sec. School	Foreshore Estate Road - Kutchery Road	School	LHS	193.73	13°02'07.7"N	80°16'34.1"E
15	Bachawali Mosque	Foreshore Estate Road - Kutchery Road	Mosque	LHS	196.12	13°02'08.9"N	80°16'30.3"E
16	Thillai Vinayagar Temple	Foreshore Estate Road - Kutchery Road	Temple	LHS	98.62	13°02'06.6"N	80°16'26.3"E
17	Kabaleshwarar Temple	Kutchery Road - Thirumayilai Metro	Temple	RHS	182.99	13°02'02.2"N	80°16'11.9"E
	Arulmigu Sivasakthi Salaiamman Temple	Kutchery Road - Thirumayilai Metro	Temple	RHS	173.35	13°01'58.1"N	80°16'22.8"E
19	Chellamal Vidhyalaya Hr. Sec. School	Kutchery Road - Thirumayilai Metro	School	RHS	203.41	13°01'58.3"N	80°16'18.6"E

SN	Name of Sensitive Receptor	Location	Type of Sensitive Receptor	LHS/ RHS	Distance from the outer most proposed tracks (m)	Latitude	Longitude
20	Shree Jain Temple	Kutchery Road - Thirumayilai Metro	Temple	RHS	16.86	13°01'04.8"N	80°16'17.6"E
21	Majood Jamal	Kutchery Road - Thirumayilai Metro	Mosque	LHS		13°02'06.9"N	80°16'21.5"E
22	Masjid Fakhri	Kutchery Road - Thirumayilai Metro	Mosque	LHS	68.28	13°02'06.9"N	80°16'20.8"E
23	Mylai Angalamman Temple	Kutchery Road - Thirumayilai Metro	Temple	LHS	72.41	13°02'12.4"N	80°16'08.7"E
24	Jumma Mosque	Kutchery Road - Thirumayilai Metro	Mosque	LHS	11.87	13°02'04.8"N	80°16'11.6"E
25	VidhyaMandir School	Kutchery Road - Thirumayilai Metro	School	LHS	77.15	13°02'16.8"N	80°16'07.4"E
26	Majid Al Huda	Kutchery Road - Thirumayilai Metro	Mosque	LHS	49.1	13°02'12.9"N	80°16'06.9"E
27	Bharat Open University	Thirumayilai Metro - Alwarpet	College	LHS	119.47	13°02'19.4"N	80°15'52.6"E
28	NHN Clinic (Neuro, Head & Neck Clinic)	Thirumayilai Metro - Alwarpet	Hospital	RHS	8.75	13°02'14.7"N	80°15'41.0"E
29	St. Isabal's Hospital	Thirumayilai Metro - Alwarpet	Hospital	LHS	168.88	13°02'20.2"N	80°15'42.8"E
30	Luz Church	Thirumayilai Metro - Alwarpet	Church	LHS	76.43	13°02'17.6"N	80°15'44.7"E
31	Arulmigu Sri Pillayar Temple	Thirumayilai Metro - Alwarpet	Temple	RHS	115.99	13°02'12.7"N	80°15'37.1"E
	Arulmigu Aapadbhandava Perumal Temple	Thirumayilai Metro - Alwarpet	Temple	RHS	137.41	13°02'11.9"N	80°15'36.6"E
33	Our Lady of Light Shrine (Luz Church)	Thirumayilai Metro - Alwarpet	Church	LHS	199.63	13°02'21.4"N	80°15'45.5"E
34	Anjaneyar Temple	Alwarpet - Bharathidasan Road	Temple	RHS	9.66	13°02'18.7"N	80°15'31.5"E
35	Trinity Hospital	Alwarpet - Bharathidasan Road	Hospital	RHS	7.58	13°02'19.0"N	80°15'28.2"E
36	Anjaneyar Temple	Alwarpet - Bharathidasan Road	Temple	RHS	7.6	13°02'18.8"N	80°15'31.7"E
37	MCTM School	Alwarpet - Bharathidasan Road	School	RHS	42.73	13°02'16.7"N	80°15'32.5"E
38	Trinity Acute Care Hospital	Alwarpet - Bharathidasan Road	Hospital	RHS	31.73	13°02'18.3"N	80°15'29.7"E
39	MP Anandh School	Alwarpet - Bharathidasan Road	School	LHS	124.5	13°02'21.3"N	80°15'36.5"E
40	AVT Hospital	Alwarpet - Bharathidasan Road	Hospital	LHS	28.9	13°02'20.2"N	80°15'26.6"E
41	Apollo Spectra Hospital	Alwarpet - Bharathidasan Road	Hospital	RHS	165.62	13°02'10.2"N	80°15'25.9"E
42	Frontline Hospital	Bharathidasan Road - Adyar Gate	Hospital	LHS	47.05	13°02'56.9"N	80°15'06.1"E

SN	Name of Sensitive Receptor	Location	Type of Sensitive Receptor	LHS/ RHS	Distance from the outer most proposed tracks (m)	Latitude	Longitude
43	Muthu Mariamman Temple	Bharathidasan Road - Adyar Gate	Hospital	LHS	139.59	13°02'00.2"N	80°15'05.4"E
44	Girishwari Hospital	Bharathidasan Road - Adyar Gate	Hospital	LHS	157.02	13°02'06.7"N	80°15'06.9"E
45	Poyya Varasakthi Vinayagar Alayam	Bharathidasan Road - Adyar Gate	Temple	RHS	11.82	13°01'44.9"N	80°15'00.5"E
46	Olive Heart Clinic	Bharathidasan Road - Adyar Gate	Temple	LHS	95.58	13°02'04.5"N	80°15'08.8"E
47	MM Dental Care	Bharathidasan Road - Adyar Gate	Hospital	LHS	188.66	13°02'04.7"N	80°15'06.9"E
	Arulmigu Gangaiamman Aalayam	Adyar Gate Junction To Nandanam	Temple	LHS	11.05	130146.2N	801450.9E
	Shiva Temple	Adyar Gate Junction To Nandanam	Temple	RHS	46.98	130144.7N	801448.3E
50	Arulmigu Shri Chaokkanathar Aalayam	Adyar Gate Junction To Nandanam	Temple	LHS	20.15	130149.3N	801428E
	Om Shri Shakthi Samayapuram Temple	Adyar Gate Junction To Nandanam	Temple	LHS	40.19	130150.3N	801427.6E
52	Government College For Men	Adyar Gate Junction To Nandanam	College	RHS	138.33	130147.0N	801421.9E
53	SIET College	Adyar Gate Junction To Nandanam	College	LHS	31.17	130152.9N	801423.9E
54	Murugan Temple	Adyar Gate Junction To Nandanam	Temple	RHS	165.69	130142.9N	801434.7E
55	Venkateshwara Hospital	Nanadanam To Natesan Park	Hospital	RHS	38.23	1301476.7N	801438.8E
56	Government Arts College	Adyar Gate Junction To Nandanam	College	RHS	18.48	130156.6N	801421.3E
57	Bala Vinayagar Temple	Adyar Gate Junction To Nandanam	Temple	RHS	111.54	130142.9N	801448.5E
58	Grace Apostolic Church	Adyar Gate Junction To Nandanam	Church	LHS	100	130152.8N	801443.5E
59	WDEGPM	Adyar Gate Junction To Nandanam	Church	LHS	172.47	130156.5N	801441.7E
60	Holy Cross Church	Nanadanam To Natesan Park	Church	LHS	124.32	130200.4N	801412.1E
	Aspire College Of Expense	Nanadanam To Natesan Park	College	LHS	129.23	13033840N	80.239203E
62	Shri Muthumariyamman Temple	Nanadanam To Natesan Park	Temple	RHS	12.51	130157.1N	801419.8E
63	Agriculuture Engineering Department	Nanadanam To Natesan Park	College	RHS	42.77	130150.8N	801422.5E

SN	Name of Sensitive Receptor	Location	Type of Sensitive Receptor	LHS/ RHS	Distance from the outer most proposed tracks (m)	Latitude	Longitude
64	Little Oxford Matriculation Higher Sec School	Nanadanam To Natesan Park	School	RHS	73.81	130208.6N	801412.8E
65	Samridi Ayurvedic Hospital	Nanadanam To Natesan Park	Hospital	LHS	152.4	130212.2N	801414.6E
66	Thyagarayar Higher Secondary School	Nanadanam To Natesan Park	School	LHS	22.45	130210.6N	801413.9E
67	Sakthi Vinayagar Temple	Nanadanam To Natesan Park	Temple	LHS	33.45	130152.0N	801424.5E
68	Ethnic Health Care Natural Fertility Centre	Nanadanam To Natesan Park	Hospital	LHS	185.26	130216.6N	801414.7E
69	Thirumala Tirupathi Devasthanam	Nanadanam To Natesan Park	Temple	RHS	25.6	130209.7N	801412.1E
70	Lions Hospital	Natesan Park To Panagal Park	Hospital	LHS	42.97	130223.3N	801404.9E
71	Shri Vetri Vinayagar Alayam	Natesan Park To Panagal Park	Temple	LHS	44.58	130217.0N	8014049.7E
72	Sringeri Bharathi Vidhyashram	Natesan Park To Panagal Park	School	LHS	42.71	130218.4N	801407.5E
73	Anuratha Maternity Centre	Natesan Park To Panagal Park	Hospital	RHS	193.5	13.03686N	80.233534E
74	Arulmigu Muppathamman Aalayam	Panagal Park To Kodambakakm	Temple	RHS	15.13	130255.3N	801351.E
75	Sri Kallapuri Amman Temple	Panagal Park To Kodambakakm	Temple	RHS	17.95	1300246.8N	801350.0E
76	Arulmigu Muthumariyamman Temple	Panagal Park To Kodambakakm	Temple	RHS	75.62	130255.3N	1347.9E
77	Anuradha Womens Speciality Centre	Panagal Park To Kodambakakm	Hospital	LHS	11.16	130258.2N	80135051.4E
78	Nagathamman Kovil	Panagal Park To Kodambakakm	Temple	RHS	74.65	13027.7N	801348.2E
79	Rose Of Sharon Ac Church	Kodambakkam Metro To Meenakshi	Church	LHS	180.34	130320.5N	801347.5E
80	Elim Glorius Revival Church	Kodambakkam Metro To Meenakshi	Church	RHS	22.21	130313.3N	801349.4E
81	JV Hospital	Kodambakkam Metro To Meenakshi	Hospital	RHS	119.19	130303N	801347.7E
82	Sri Karmugil Kanna Perumal Temple	Kodambakkam Metro To Meenakshi	Temple	LHS	2.74	130303.5N	801351.7E
83	Sharathambal Temple	Kodambakkam Metro To Meenakshi	Temple	LHS	35.68	130316.2N	801340.1E

SN	Name of Sensitive Receptor	Location	Type of Sensitive Receptor	LHS/ RHS	Distance from the outer most proposed tracks (m)	Latitude	Longitude
84	Arulmigu Vinaitheertha Vinayagar Thirukoil	Kodambakkam Metro To Meenakshi	Temple	RHS	79.12	1303007.2N	801349.E
85	Vinayagar Temple	Kodambakkam Metro To Meenakshi	Temple	LHS	11.02	130308.4N	801355.9E
86	Venugopalaswamy Temple	Kodambakkam Metro To Meenakshi	Temple	RHS	92.22	130310.1N	80336.8E
87	Meenakshi College For Women	Meenakshi College To Power House	College	LHS	120.9	130318.7N	801337.6E
88	School	Meenakshi College To Power House	School	RHS	88.09	1303103N	80133.3E
89	Dimensional Academy Of Engineering	Meenakshi College To Power House	College	RHS	124.55	1303050N	80132.45E
90	Koncept Hospital	Meenakshi College To Power House	Hospital	RHS	33.78	13308.4N	801307.3E
91	Dimensional Academy Of Engineering	Meenakshi College To Power House	College	RHS	90.15	130305.1N	801312.6E
92	New Born Baby Unit	Meenakshi College To Power House	Hospital	LHS	190.89	130314.8N	801309.7E
93	CSI Church	Meenakshi College To Power House	Church	RHS	100	130309.8N	801336.8E
94	Vadakasi Amman Temple	Meenakshi College To Power House	Temple	LHS	108.67	130310.4N	801305.5E
95	Full Gospel Pente Coastal Church	Meenakshi College To Power House	Church	LHS	47.74	130310.0N	801312.1E
96	Thiruveedhi Amman Temple	Meenakshi College To Power House	Temple	LHS	86.75	130312.5N	801315.5E
97	One Accord In Prayer Fellowship Church	Meenakshi College To Power House	Church	RHS	14.57	130308.6N	801314.1E
98	Yesuvin Vallamai Uliyam	Meenakshi College To Power House	Church	RHS	20.64	130308.3	801313.8E
99	Chennai Higher Secondary School	Power House to Vadapalani	School	LHS	19.00	13°03'05.8"N	80°13'01.4"E
100	Vinayagar Temple	Power House to Vadapalani	Temple	RHS	92.56	13°03'03.0"N	80°13'03.7"E
101	Vallaba Sathurthy Vinayagar Temple	Power House to Vadapalani	Temple	LHS	121.35	13°03'03.6"N	80°12'59.3"E
102	Sri Panduranga Ashrama	Power House to Vadapalani	Temple	LHS	181.79	13°03'09.4"N	80°12'56.2"E
103	Pillaiyar Kovil	Power House to Vadapalani	Temple	LHS	103.41	13°03'06.8"N	80°12'55.9"E

SN	Name of Sensitive Receptor	Location	Type of Sensitive Receptor	LHS/ RHS	Distance from the outer most proposed tracks (m)	Latitude	Longitude
104	Sri Murugan Play School	Power House to Vadapalani	School	RHS	99.96	13°03'00.9"N	80°12'59.2"E
105	Sri Vinayagar Kovil	Power House to Vadapalani	Temple	RHS	105.60	13°03'59.5"N	80°12'55.9"E
106	Saraswathi Vidyalaya Hr. Sec. School	Power House to Vadapalani	School	LHS	78.98	13°03'05.0"N	80°12'52.8"E
107	Saraswathi Vidyalaya Sr. Sec. School	Power House to Vadapalani	School	LHS	12.79	13°03'02.6"N	80°12'52.6"E
108	Paranjothi Baba Temple	Power House to Vadapalani	Temple	LHS	133.75	13°03'05.3"N	80°12'48.8"E
109	Umar Bilali Home	Power House to Vadapalani	Mosque	LHS	113.91	13°03'04.0"N	80°12'45.4"E
110	Masjid E-Haqqani	Power House to Vadapalani	Mosque	LHS	56.20	13°03'02.2"N	80°12'45.8"E
111	New Life Mizpha Church	Power House to Vadapalani	Church	LHS	70.27	13°03'02.4"N	80°12'44.5"E
112	Kadumbadi Amman Temple	Power House to Vadapalani	Temple	RHS	132.20	13°02'57.3"N	80°12'51.9"E
113	Vangeeswarar Temple	Power House to Vadapalani	Temple	RHS	138.83	13°02'55.7"N	80°12'44.7"E
114	Sambhavnath Bagwam Jain Temple	Power House to Vadapalani	Temple	RHS	193.93	13°02'54.5"N	80°12'49.1"E
115	Pillaiyar Kovil	Power House to Vadapalani	Temple	RHS	181.69	13°02'53.8"N	80°12'41.7"E
116	Sri Dowbathi Amman Tirukoil	Power House to Vadapalani	Temple	RHS	36.47	13°02'58.3"N	80°12'40.4"E
117	SRM Hospital	Power House to Vadapalani	Hospital	LHS	166.34	13°02'05.3"N	80°12'42.0"E
118	SRM Institute of Science and Tech.	Vadapalani to Saligramam	College	LHS	197.50	13°02'05.7"N	80°12'37.4"E
119	Vijaya Hospital	Vadapalani to Saligramam	Hospital	LHS	15.70	13°02'58.5"N	80°12'03.06"E
120	Sri Alagar Perumal Kovil	Vadapalani to Saligramam	Temple	RHS	199.43	13°02'51.5"N	80°12'31.8"E
121	Navasakthi Vinayagar Tepmple	Vadapalani to Saligramam	Temple	RHS	197.70	13°02'52.0"N	80°12'32.8"E
122	Sri Ganapathi Temple	Vadapalani to Saligramam	Temple	LHS	6.00	13°02'57.3"N	80°12'27.9"E
123	Karthikeyan Matric School	Vadapalani to Saligramam	School	LHS	35.96	13°02'55.5"N	80°12'18.7"E
	Hamithiya Jamiya Pallivasal	Saligramam to Avichi School	Mosque	LHS	18.83	13°02'52.6"N	80°12'10.4"E
	Sri Devi Ponniyamman Alayam	Saligramam to Avichi School	Temple	LHS	113.53	13°02'54.9"N	80°12'07.1"E

SN	Name of Sensitive Receptor		Type of Sensitive Receptor	LHS/ RHS	Distance from the outer most proposed tracks (m)	Latitude	Longitude
126	Vidyakshetram Matric Hr. Sec. School	Saligramam to Avichi School	School	LHS	94.42	13°02'54.7"N	80°12'08.9"E
127	LGJ AG Church	Saligramam to Avichi School	Church	LHS	62.20	13°02'52.8"N	80°12'04.9"E
128	AG Church	Saligramam to Avichi School	Church	LHS	57.50	13°02'52.7"N	80°12'04.1"E
129	AVM Rajeshwari's The School	Saligramam to Avichi School	School	LHS	198.30	13°02'57.4"N	80°11'51.2"E
130	Avichi Hr. Sec. School	Saligramam to Avichi School	School	LHS	198.30	13°02'553"N	80°11'52.1"E
131	VHS Hospitals Pvt. Ltd	Saligramam to Avichi School	Hospital	RHS	121.90	13°02'46.8"N	80°11'52.8"E
132	Brahmasthanam Temple	Saligramam to Avichi School	Temple	LHS	7.95	13°02'51.3"N	80°11'48.4"E
133	Sakthi Sandi Amman Tirukoil	Avichi School to Alwar Thirunagar	Temple	LHS	123.95	13°02'54.9"N	80°11'44.9"E
134	Saligramam Christian Assembly	Avichi School to Alwar Thirunagar	Church	LHS	23.31	13°02'51.6"N	80°11'42.8"E
135	Brother Mission Church	Avichi School to Alwar Thirunagar	Church	LHS	4.50	13°02'51.1"N	80°11'42.6"E
136	Radhe Krishna Temple	Avichi School to Alwar Thirunagar	Temple	LHS	167.75	13°02'54.9"N	80°11'38.0"E
137	Arulmigu Sri Kaliamman Temple	Avichi School to Alwar Thirunagar	Temple	LHS	133.11	13°02'52.3"N	80°11'32.9"E
138	Sree Krishna Vidyalaya	Avichi School to Alwar Thirunagar	School	LHS	80.00	13°02'50.7"N	80°11'33.2"E
139	Santhoshi Madha Temple	Avichi School to Alwar Thirunagar	Temple	LHS	6.57	13°02'48.3"N	80°11'33.7"E
140	Shridi Saibaba Temple	Avichi School to Alwar Thirunagar	Temple	LHS	109.00	13°02'51.3"N	80°11'27.7"E
141	Vembuliamman Koil	Avichi School to Alwar Thirunagar	Temple	RHS	16.00	13°02'46.9"N	80°11'21.6"E
142	Sri Amman Temple	Avichi School to Alwar Thirunagar	Temple	RHS	123.36	13°02'43.0"N	80°11'20.5"E
143	Sri Reddamman Temple	Avichi School to Alwar Thirunagar	Temple	RHS	120.00	13°02'42.9"N	80°11'20.2"E
144	CSI Christ Church	Alwar Thirunagar to Valasarwakkam	Church	RHS	45.72	13°02'44.5"N	80°11'17.3"E
145	MAsjid E-Gowsia(Idgah)	Alwar Thirunagar to Valasarwakkam	Mosque	LHS	116.82	13°02'49.4"N	80°11'15.2"E
146	Glorius Zion Christian Assembly	Alwar Thirunagar to Valasarwakkam	Church	-	0.00	13°02'45.5"N	80°11'15.7"E
147	Narayanan E-Tecno School	Alwar Thirunagar to Valasarwakkam	School	LHS	14.17	13°02'46.4"N	80°11'16.6"E

SN	Name of Sensitive Receptor	Location	Type of Sensitive Receptor	LHS/ RHS	Distance from the outer most proposed tracks (m)	Latitude	Longitude
148	St. Jhon's Matriculation School	Alwar Thirunagar to Valasarwakkam	School	LHS	168.70	13°02'51.3"N	80°11'14.2"E
149	Aditya Kamaraj Eye Hospital	Alwar Thirunagar to Valasarwakkam	Hospital	LHS	89.80	13°02'47.1"N	80°11'11.6"E
150	Hindu School	Alwar Thirunagar to Valasarwakkam	School	LHS	165.50	13°02'48.6"N	80°11'09.4"E
151	La Chatelaine Junior College	Alwar Thirunagar to Valasarwakkam	College	RHS	82.63	13°02'37.3"N	80°11'06.3"E
152	Blossom Peach Play School	Alwar Thirunagar to Valasarwakkam	School	RHS	160.60	13°02'29.9"N	80°10'57.9"E
153	Lamak School	Alwar Thirunagar to Valasarwakkam	School	LHS	30.50	13°02'35.7"N	80°10'54.9"E
154	Selliamman Temple	Alwar Thirunagar to Valasarwakkam	Temple	LHS	29.26	13°02'35.0"N	80°10'54.3"E
155	Panchamugam Vinayager Temple	Alwar Thirunagar to Valasarwakkam	Temple	LHS	109.00	13°02'36.2"N	80°10'50.7"E
156	Sri Navasakthi Vinagar Temple	Valasaravakkam to Karambakkam	Temple	LHS	115.50	13°02'35.8"N	80°10'48.6"E
157	CIT Nagar ECI Church	Valasaravakkam to Karambakkam	Church	LHS	183.28	13°02'37.5"N	80°10'47.2"E
158	Sivan Kovil	Valasaravakkam to Karambakkam	Temple	RHS	64.06	13°02'29.6"N	80°10'39.4"E
159	HOPE Church	Valasaravakkam to Karambakkam	Church	RHS	27.49	13°02'30.2"N	80°10'35.6"E
160	Calvary Tabernacle	Valasaravakkam to Karambakkam	Church	RHS	120.30	13°02'26.9"N	80°10'35.5"E
161	Sri Venkateswara Perumal Temple	Valasaravakkam to Karambakkam	Temple	RHS	182.56	13°02'22.8"N	80°10'28.1"E
162	Vishwaroopa Sai Baba Temple	Valasaravakkam to Karambakkam	Temple	RHS	186.28	13°02'33.1"N	80°10'21.0"E
163	The Holy Cross Matric Hr. Sec. School	Valasaravakkam to Karambakkam	School	RHS	87.30	13°02'23.4"N	80°10'19.9"E
164	Venkatasubramaniaswamy Temple	Valasaravakkam to Karambakkam	Temple	RHS	135.70	13°02'22.8"N	80°10'22.2"E
165	Sri Prasenna Venkatesha Perumal Kovil	Valasaravakkam to Karambakkam	Temple	LHS	150.82	13°02'31.6"N	80°10'19.1"E
166	Bilal Masjid	Valasaravakkam to Karambakkam	Mosque	LHS	98.20	13°02'29.1"N	80°10'17.9"E
167	Sharon Church	Valasaravakkam to Karambakkam	Church	LHS	51.08	13°02'27.1"N	80°10'17.3"E

SN	Name of Sensitive Receptor	Location	Type of Sensitive Receptor	LHS/ RHS	Distance from the outer most proposed tracks (m)	Latitude	Longitude
108	Devi Academy Sr. Sec. School	Valasaravakkam to Karambakkam	School	LHS	96.43	13°02'28.2"N	80°10'16.3"E
169	Sri Vadapalani Vinayagar Temple	Valasaravakkam to Karambakkam	Temple	LHS	152.80	13°02'29.5"N	80°10'14.8"E
170	Majide Noor	karabakkam-Alapakkam Junction	Mosque	RHS	30.1		80° 10' 13.1232" E
171	Amirtha Engineering School	karabakkam-Alapakkam Junction	College	LHS	101.2	IN IN	80° 10' 10.2576'' E
172	Mother Teresa Modern school	karabakkam-Alapakkam Junction	School	LHS	103.6	I N	80° 10' 11.6868'' E
173	Kadambadi Amman Kovil	karabakkam-Alapakkam Junction	Temple	LHS	130.21	13° 2' 26.2752'' N	80° 10' 10.5816" E
174	Kamatchi amman temple	karabakkam-Alapakkam Junction	Temple	RHS	101.72	13° 2' 14.7696" N	80° 9' 55.152'' E
175	karumariamman Temple	Alapakkam Junction-Porur Junction	Temple	RHS	188.58	13° 2' 11.4684" N	80° 9' 49.5612'' E
176	Kalyana ganapathy temple	Alapakkam Junction-Porur Junction	Temple	RHS	140.7	13° 2' 11.526" N	80° 9' 39.5064'' E
177	Parvathy Hospital	Alapakkam Junction-Porur Junction	Hospital	LHS	57.56	13° 2' 17.6676" N	80° 9' 37.0152'' E
178	Vinayagar Temple	Alapakkam Junction-Porur Junction	Temple	LHS	119.15	13° 2' 20.742'' N	80° 9' 34.5348" E
179	Sai Baba Temple	Alapakkam Junction-Porur Junction	Temple	LHS	181.1	13° 2' 20.742'' N	80° 9' 30.6828'' E
180	Sri Angalaparameshwari Temple	Alapakkam Junction-Porur Junction	Temple	RHS	33.97	13° 2' 12.9912" N	80° 9' 30.6828" E
181	Jesus Savior Chruch	Alapakkam Junction-Porur Junction	Church	LHS	127.55	13° 2' 18.0636" N	80° 9' 30.2004" E
182	Masjid E-Mohamed	Porur Junction-Chennai Bypass Crossing	Mosque	LHS	16.94	13° 2' 10.2048'' N	80° 9' 24.4332'' E
183	Parvathy Hospital	Porur Junction-Chennai Bypass Crossing	Hospital	LHS	92.08	13° 2' 11.6124" N	80° 9' 23.6052'' E

SN	Name of Sensitive Receptor	Location	Type of Sensitive Receptor	LHS/ RHS	Distance from the outer most proposed tracks (m)	Latitude	Longitude
184	Masjid -ul-Ahad	Porur Junction-Chennai Bypass Crossing	Mosque	RHS	66.42	13° 2' 5.3952" N	80° 9' 15.5124'' E
185	Sri Ramachandra college of physiotherpy	Porur Junction-Chennai Bypass Crossing	College	LHS	115.68	13° 2' 12.5268" N	80° 9' 14.0832" E
186	St.Mathew Church	Porur Junction-Chennai Bypass Crossing	Church	RHS	159.12	13° 2' 3.7392" N	80° 9' 12.8304'' E
187	Sri Aadhigubara jalakanalayam	Porur Junction-Chennai Bypass Crossing	Temple	RHS	18.02	13° 2' 10.0608" N	80° 9' 6.7068'' E
188	Fur Gospal Church	Porur Junction-Chennai Bypass Crossing	Church	RHS	76.6	13° 2' 8.142" N	80° 8' 46.5468'' E
189	Muni subrat swami temple	Chennai Bypass Crossing-Ramchandra Hospital	Temple	LHS	73.22	13° 2' 12.9444" N	80° 8' 59.0172" E
190	House Church	Chennai Bypass Crossing-Ramchandra Hospital	Church	LHS	16.57	13° 2' 11.0904" N	80° 8' 47.9616" E
191	Sri Ramachandra Dental College	Chennai Bypass Crossing-Ramchandra Hospital	College	LHS	197.72	13° 2' 17.9376" N	80° 8' 41.0964'' E
192	Vinayagar Temple	Chennai Bypass Crossing-Ramchandra Hospital	Temple	LHS	58.69	13° 2' 14.2008" N	80° 8' 35.3436" E
193	Sai Baba Temple	Chennai Bypass Crossing-Ramchandra Hospital	Temple	LHS	145.08	13° 2' 17.5884" N	80° 8' 30.3612" E
194	Naga Muthu Maariamman Temple	Chennai Bypass Crossing-Ramchandra Hospital	Temple	LHS	54.34	13° 2' 12.2676" N	80° 8' 52.6344'' E
195	Ponniamman Temple	Ramchandra Hospital-Iyappanthangal Bus Depot	Temple	RHS	155.97	13° 2' 19.698" N	80° 8' 19.3632" E
196	Chinthamani Dental Hospital	Ramchandra Hospital-Iyappanthangal Bus Depot	Hospital	RHS	24.84	13° 2' 13.596" N	80° 8' 19.8672'' E
197	Lakshmi Hospital	Ramchandra Hospital-Iyappanthangal Bus Depot	Hospital	RHS	38.38	13° 2' 13.4736" N	80° 8' 18.312" E
	Suyambu amsara amman temple	Ramchandra Hospital-Iyappanthangal Bus Depot	Temple	LHS	31.1	13° 2' 15.9828" N	80° 8' 16.1088" E
199	Masjidul Hunda	Ramchandra Hospital-Iyappanthangal Bus Depot	Mosque	RHS	42.2	13° 2' 13.6284" N	80° 10' 0.6276" E
200	Small Pillayar Temple	Ramchandra Hospital-Iyappanthangal Bus Depot	Temple	LHS	7.89	13° 2' 16.4508" N	80° 8' 9.672" E

SN	Name of Sensitive Receptor	Location	Type of Sensitive Receptor	LHS/ RHS	Distance from the outer most proposed tracks (m)	Latitude	Longitude
201	Sri Karumari Amman Temple	Ramchandra Hospital-Iyappanthangal Bus Depot	Temple	RHS	75.2	13° 2' 15.0612" N	80° 8' 6.0252'' E
202	Sri Gangai Amman Temple	Ramchandra Hospital-Iyappanthangal Bus Depot	Temple	RHS	154	13° 2' 12.606" N	80° 8' 6.1692'' E
203	Sri Durgai Amman Temple	lyappanthangal Bus Depot-kattupakkam	Temple	LHS	10.6	13° 2' 21.7788" N	80° 7' 56.91" E
204	Adi Dravidar primary School	lyappanthangal Bus Depot-kattupakkam	School	RHS	121.75	13° 2' 28.518" N	80° 7' 48.72" E
205	Theruveethi Amman Kovil	lyappanthangal Bus Depot-kattupakkam	Temple	RHS	163.85	13° 2' 31.9992" N	80° 7' 43.4676'' E
206	Vaidheeswaran temple	lyappanthangal Bus Depot-kattupakkam	Temple	LHS	79.07	13° 2' 28.5864" N	80° 7' 31.9476'' E
207	Ettiamman temple	lyappanthangal Bus Depot-kattupakkam	Temple	RHS	139.11	13° 2' 26.9772" N	80° 7' 30.4032'' E
208	Sri Muthumariamman temple	lyappanthangal Bus Depot-kattupakkam	Temple	RHS	164.4	13° 2' 21.1992" N	80° 7' 42.312'' E
209	Melmaruvathur Aadhi prasakthi temple	lyappanthangal Bus Depot-kattupakkam	Temple	RHS	141.69	13° 2' 21.9336" N	80° 7' 42.528" E
210	Vaidheeswaran Temple	Kattupakkam To Kumanan Chavadi	Temple	RHS	64.75	13° 2' 28.6944" N	80° 2' 28.6944" E
211	Ettaiamman Temple	Kattupakkam To Kumanan Chavadi	Temple	RHS	129.74	13° 2' 26.97" N	80° 7' 31.0332" E
212	Sri LCVKS School	Kattupakkam To Kumanan Chavadi	School	RHS	127.96	13° 2' 27.564" N	80° 7' 29.4564'' E
213	Temple Around us	Kattupakkam To Kumanan Chavadi	Temple	RHS	47.76	13° 2' 38.724" N	80° 7' 9.3576" E
214	Vinayagar Chathurthi	Kattupakkam To Kumanan Chavadi	Temple	LHS	82.71	13° 2' 35.9844" N	80° 7' 26.9328'' E
215	Muneeshwaran Temple	Kattupakkam To Kumanan Chavadi	Temple	LHS	14.43	13° 2' 38.8392" N	80° 7' 14.2716'' E
216	Selli Amman Koyil	Kattupakkam To Kumanan Chavadi	Temple	LHS	209.66	13° 2' 45.7908" N	80° 7' 13.9656'' E
217	Sri Muthu Mariyamman Temple	Kumanan Chavadi To Karyan Chavadi	Temple	LHS	30.46	13° 2' 44.7108'' N	80° 6' 51.2028'' E

SN	Name of Sensitive Receptor	Location	Type of Sensitive Receptor	LHS/ RHS	Distance from the outer most proposed tracks (m)	Latitude	Longitude
218	RD Music School	Kumanan Chavadi To Karyan Chavadi	School	LHS	181.17	13° 2' 50.4168'' N	80° 6' 49.3632'' E
219	Annamalai University Study Center	Kumanan Chavadi To Karyan Chavadi	College	LHS	18.94	13° 2' 48.2208'' N	80° 6' 40.8312'' E
220	The Pentacostal Mission	Kumanan Chavadi To Karyan Chavadi	Church	RHS	32.27	13° 2' 39.9624" N	80° 7' 7.5828'' E
221	Abundant Life AG Church	Kumanan Chavadi To Karyan Chavadi	Church	RHS	32.79	13° 2' 41.2116" N	80° 6' 58.5288'' E
222	Messiah Church	Kumanan Chavadi To Karyan Chavadi	Church	RHS	80.65	13° 2' 40.8084" N	80° 6' 51.8184" E
223	Arulmigu Sendur Sri Kandu Mariyamman Aalayam	Kumanan Chavadi To Karyan Chavadi	Temple	RHS	21.53	13° 2' 43.5012" N	80° 6' 49.2804" E
224	Bon Secours Convent	Kumanan Chavadi To Karyan Chavadi	School	RHS	113.2	13° 2' 42.4896" N	80° 6' 43.0848" E
225	Guanella Seminary	Kumanan Chavadi To Karyan Chavadi	School	RHS	82.35	13° 2' 45.0096" N	80° 6' 39.9672" E
226	Sacred Heart Seminary	Karyan Chavadi To Mullai Thottam	School	RHS	174.43	13° 2' 43.2672" N	80° 6' 36.558" E
227	Amman Temple	Karyan Chavadi To Mullai Thottam	Temple	RHS	60.59	13° 2' 47.5404'' N	80° 6' 36.0324" E
228	Institute of Public Health	Karyan Chavadi To Mullai Thottam	Hospital	RHS	172.81	13° 2' 45.42" N	80° 6' 32.0688'' E
229	Poonamalle Blind School	Karyan Chavadi To Mullai Thottam	School	RHS	29.95	13° 2' 55.6008'' N	80° 6' 22.3416" E
230	Farm Apostolic Revival Church	Karyan Chavadi To Mullai Thottam	Church	RHS	168.75	13° 2' 51.9936" N	80° 6' 18.9" E
231	Rajathi Raja Sabai	Karyan Chavadi To Mullai Thottam	Church	RHS	165.89	13° 2' 53.8764'' N	80° 6' 14.4216'' E
232	Bala Vinayagar Temple	Karyan Chavadi To Mullai Thottam	Temple	RHS	108.68	13° 2' 55.8816" N	80° 6' 13.6188" E
233	Punitha Matha Statue	Karyan Chavadi To Mullai Thottam	Church	RHS	119.9	13° 2' 55.4604" N	80° 6' 13.8672'' E
234	Zion Church	Karyan Chavadi To Mullai Thottam	Church	RHS	103.05	13° 2' 56.1012" N	80° 6' 12.5784'' E

SN	Name of Sensitive Receptor	Location	Type of Sensitive Receptor	LHS/ RHS	Distance from the outer most proposed tracks (m)	Latitude	Longitude
235	HOPE Church	Karyan Chavadi To Mullai Thottam	Church	RHS	103.46	13° 2' 54.7548" N	80° 6' 18.27" E
236	Maranatha Church	Karyan Chavadi To Mullai Thottam	Church	LHS	163.47	13° 2' 53.3616" N	80° 6' 40.752'' E
237	Tamil Baptist Mission Church	Karyan Chavadi To Mullai Thottam	Church	LHS	21.24	13° 2' 54.2544" N	80° 6' 29.7396" E
238	Government High School	Karyan Chavadi To Mullai Thottam	School	LHS	121.82	13° 2' 58.1568" N	80° 6' 29.2356" E
239	District TB & MCH Centre	Karyan Chavadi To Mullai Thottam	Hospital	LHS	23.29	13° 2' 56.4216" N	80° 6' 25.5096" E
240	CSI Wesley Church	Karyan Chavadi To Mullai Thottam	Church	LHS	76.37	13° 3' 1.8396" N	80° 6' 13.2984" E
241	Poovai EBC Ministries	Karyan Chavadi To Mullai Thottam	Church	LHS	182.84	13° 3' 5.1408" N	80° 6' 15.5592" E
242	EBC Ministries	Karyan Chavadi To Mullai Thottam	Church	LHS	145.11	13° 3' 3.978" N	80° 6' 14.9616" E
243	CMF Church	Karyan Chavadi To Mullai Thottam	Church	LHS	204.72	13° 3' 5.3748" N	80° 6' 17.442'' E
244	Indian Pentacostal Church	Karyan Chavadi To Mullai Thottam	Church	LHS	177.1	13° 3' 3.1572" N	80° 6' 21.3912'' E
245	CSI St. Mary Magdalene Church	Karyan Chavadi To Mullai Thottam	Church	LHS	194.77	13° 3' 1.8" N	80° 6' 26.7732'' E
	Sarojini Varadappan Girls Hr. Sec. School	Karyan Chavadi To Mullai Thottam	School	LHS	179.18	13° 3' 2.6208" N	80° 6' 22.9896" E
247	Pannayatha Amman Koil	Mullai Thottam To Poonamalle Bus Terminus	Temple	RHS	14.62	13° 2' 58.9452" N	80° 6' 1.782" E
248	Sri Muthumariyamman Temple	Mullai Thottam To Poonamalle Bus Terminus	Temple	RHS	149.96	13° 2' 57.0912" N	80° 5' 53.3832" E
249	Sri Ankalamman Temple	Mullai Thottam To Poonamalle Bus Terminus	Temple	RHS	107.08	13° 2' 58.2432" N	80° 5' 54.6612'' E
250	Mangalam Hospital	Mullai Thottam To Poonamalle Bus Terminus	Hospital	RHS	23.85	13° 3' 2.646" N	80° 5' 45.4272'' E
251	Pillaiyaar Kovil	Mullai Thottam To Poonamalle Bus Terminus	Temple	RHS	101.4	13° 3' 0.198" N	80° 5' 44.5992'' E

SN	Name of Sensitive Receptor	Location	Type of Sensitive Receptor	LHS/ RHS	Distance from the outer most proposed tracks (m)	Latitude	Longitude
252	Sri Varasiddi Vinayaka Temple	Mullai Thottam To Poonamalle Bus Terminus	Temple	RHS	145.74	13° 2' 57.0336" N	80° 5' 54.7476'' E
253	Poonamalle Mosque	Mullai Thottam To Poonamalle Bus Terminus	Mosque	RHS	23.36	13° 3' 0.5724" N	80° 5' 56.85" E
254	Sri Veera Anjaneyar Thiru Kovil	Mullai Thottam To Poonamalle Bus Terminus	Temple	RHS	183.24	13° 2' 57.5412" N	80° 5' 44.448'' E
255	Poovirundhavalli Thayar Temple	Mullai Thottam To Poonamalle Bus Terminus	Temple	LHS	57.53	13° 3' 4.5" N	80° 5' 49.614'' E
256	Be Well Hospital	Mullai Thottam To Poonamalle Bus Terminus	Hospital	LHS	11.68	13° 3' 1.9764" N	80° 5' 55.176'' E
257	Sithar Adimai Koni Baba Temple	Mullai Thottam To Poonamalle Bus Terminus	Temple	LHS	66.37	13° 3' 3.5388" N	80° 5' 57.1848'' E
258	Government Hospital	Mullai Thottam To Poonamalle Bus Terminus	Hospital	LHS	18.01	13° 3' 1.7136" N	80° 5' 57.7464'' E
259	Annai Velankani Church	Poonamalle Bus Terminus To Poonamalle Bypass	Church	LHS	201.79	13° 3' 7.218" N	80° 5' 30.0552'' E
260	The Way of Shine Church	Poonamalle Bus Terminus To Poonamalle Bypass	Church	LHS	129.32	13° 3' 4.6296" N	80° 5' 29.7744" E
	Holy Cresent Matriculation Hr. Sec. School	Poonamalle Bus Terminus To Poonamalle Bypass	School	LHS	38.59	13° 3' 1.422" N	80° 5' 29.256" E
	Arulmigu Jegannadha Eeshwarar Sidhdhar Aalayam	Poonamalle Bus Terminus To Poonamalle Bypass	Temple	LHS	157.39	13° 3' 8.5536" N	80° 5' 40.3476'' E
262	St. Joseph Matriculation Hr.	Poonamalle Bus Terminus To Poonamalle Bypass	School	LHS	179.42	13° 3' 9.2772" N	80° 5' 41.4312'' E
.767	Bharath Post Graduate College	Poonamalle Bus Terminus To Poonamalle Bypass	College	RHS	45.09	13° 3' 1.728" N	80° 5' 36.6504" E
265	Sakthi Nagathamman Aalayam	Poonamalle Bus Terminus To Poonamalle Bypass	Temple	RHS	7.14	13° 3' 1.1448" N	80° 5' 32.3952" E
	Ajantha School of Arts	Poonamalle Bus Terminus To Poonamalle Bypass	College	RHS	207.29	13°02'53.5"N	80°05'30.4"E
20/	Sri Ista Siddi Vinayagar Aalayam	Poonamalle Bus Terminus To Poonamalle Bypass	Temple	RHS	163.46	13°02'55.1"N	80°05'30.4"E

SN	Name of Sensitive Receptor	Location	Type of Sensitive Receptor	LHS/ RHS	Distance from the outer most proposed tracks (m)	Latitude	Longitude
200	Siddi Buthi Vinayagar Aalayam	Poonamalle Bus Terminus To Poonamalle Bypass	Temple	RHS	99.81	13°02'56.5"N	80°05'28.5"E
	Arulmigu Sri Dhirubathi Amman Temple	Poonamalle Bypass to End	Temple	RHS	7.58	13° 2' 51.234" N	80° 4' 55.6068'' E
270	Govt. Hr. Sec. School	Poonamalle Bypass to End	School	LHS	107.15	13° 2' 57.8868" N	80° 5' 4.4232'' E

Updated Environmental Impact Assessment

April 2024 Revision 1

India: Chennai Metro Rail Investment Project Corridor 4

Annexure 3 - 4

Prepared by the Chennai Metro Rail Limited (CMRL) for the Asian Development Bank.

Annexure 3: Noise and Vibration

Acceptable Vibration Impact Criteria

Transit Noise and Vibration Impact Assessment, FTA, May 2006

Land Use Category		GBV Impact Lo B re 1 micro-in		GBN Impact Levels (dB re 20 micro Pascals)			
	Frequent Events ¹	Occasional Events ²	Infrequent Events ¹	Frequent Events ¹	Occasional Events ²	Infrequent Events ¹	
Category I: Buildings where vibration would interfece with interior operations.	65 VdB ⁴	65 VdB ⁴	65 VdB ⁴	N/A4	N/A*	N/A4	
Category 2: Residences and buildings where people normally sleep.	72 VdB	75 VdB	80 Vd8	35 dBA	38 dBA	43 dBA	
Category 3 Institutional land uses with primarily daytime use.	75 VdB	78 VdB	83 VdB	40 dBA	43 dBA	48 dRA	
 Infrequent Even commuter rad This oriterion li microscopes. 	ory. ents" is defined many operation up" is defined a branch lines. mit is based on Vibration-sensit s. Ensuring low s.	as between 30 ass th is fewer than 30 vi levels that are acco tive manufacturing ver vibration level	d 70 vibration even bration events of the prable for most to gor research will a s in a building offer	its of the same so he same kind per oderately sensiti oquire detailed e n roguires specia	ource per day. Mo day. This categor	st commuter true y includes most as optical the acceptable	

Metro Rail Transit System Guidelines for Noise and vibrations, RDSO India, Sept 2015

Land Use Category		SV Impact Le f 25.4 micro-		GBN Impact Levels (dB ref 20 micro Pascals)			
Category	Frequent Events	Occasional Events'	Infrequent Events ¹	Frequent Events'	Occasional Events'	Infrequent Events'	
Category 1: Buildings where vibration would interfere with interior operations.	65 VdB4	65 VdB4	65 VdB4	N/A4	N/A4	N/A4	
Category 2: Residences and buildings where people normally sleep	72 Vd8	75 VdB	80 ∨dB	35 dBA	38 dBA	43 dBA	
Category 3: Institutional land uses with primarily daytime use.	75 VdB	78 VdB	83 VdB	40 dBA	43 dBA	48 dBA	

Notes:

- * Frequent Events* is defined as more than 70 vibration events of the same source per day. Most rapid transit projects fall into this category.
- "Occasional Events" is defined as between 30 and 70 vibration events of the same source per day. Most commuter trunk lines have this many operations.
- "Intreguent Events" is defined as fewer than 30 vibration events of the same kind per day. This category includes most commuter rail branch lines.
- 4. This orterion limit is based on levels that are acceptable for most moderately sensitive equipment such as optical microscopes. Vibration-sensitive manufacturing or research will require detailed evaluation to define the acceptable vibration levels. Ensuring lower vibration levels in a building often requires special design of the HVAC systems and stiffened floors.
- Vibration sensitive equipment is generally not sensitive to ground-borne noise. DIN 4150-2 can also be referred for guidelines values for evaluating human exposure to vibration in dwellings and similar spaces.

Annexure 4: Utility Network Information

Details of Sewer Lines of CMWSSB - Chennai

S. No	From Ch.	To Ch.	Affected	LHS/RHS	Dia/Size	Depth	Position from	Metro	Diversion
	(m)	(m)	Length (m)	242323000000	100000000	(86L in m)	Alignment	Alignment	required
1	-120	770	890	LHS	0.4M	BGL-2.5M	PARALLEL	U/G	YES
2	500	500	30	CROSSING(LHS)	0.4M	BGL-2.5M	PERPENDICULAR	U/G	NO
3	730	730	30	CROSSING(LHS)	0.4M	BGL-2.5M	PERPENDICULAR	U/G	YES
4	11160	15560	4400	LHS	1.2M	BGL-6.0M	PARALLEL	ELEVATED	YES
5	11280	11280	30	CROSSING(LHS)	0.4M	BGL-2.5M	PERPENDICULAR	ELEVATED	NO
6	11775	11775	30	CROSSING(LHS)	0.4M	BGL-2.5M	PERPENDICULAR	ELEVATED	NO
7	13190	13190	30	CROSSING(RHS)	0.4M	BGL-2.5M	PERPENDICULAR	ELEVATED	NO
8	12510	12510	30	CROSSING(RHS)	0.5M	BGL-2.5M	PERPENDICULAR	ELEVATED	NO
9	13690	13690	30	CROSSING(LHS)	0.4M	BGL-2.5M	PERPENDICULAR	ELEVATED	NO
10	13690	13690	30	CROSSING(RHS)	0.4M	BGL-2.5M	PERPENDICULAR	ELEVATED	NO
11	13010	17415	4400	RHS	1.2 M	BGL-2.5M	PARALLEL	ELEVATED	YES
12	13110	13110	30	CROSSING(LHS)	0.4 M	BGL-2.5M	PERPENDICULAR	ELEVATED	YES
13	13459	13459	30	CROSSING(LHS)	0.4 M	BGL-2.5M	PERPENDICULAR	ELEVATED	YES
14	13560	13560	30	CROSSING(LHS)	0.4 M	BGL-2.5M	PERPENDICULAR	ELEVATED	YES
15	13560	13560	30	CROSSING(RHS)	0.4 M	BGL-2.5M	PERPENDICULAR	ELEVATED	YES
16	13665	13665	30	CROSSING(LHS)	0.4 M	BGL-2.5M	PERPENDICULAR	ELEVATED	YES
17	13665	13665	30	CROSSING(RHS)	0.4 M	BGL-2.5M	PERPENDICULAR	ELEVATED	YES
18	13741	13741	30	CROSSING(RHS)	0.4 M	BGL-2.5M	PERPENDICULAR	ELEVATED	YES
19	13898	13898	30	CROSSING(LHS)	0.4 M	BGL-2.5M	PERPENDICULAR	ELEVATED	YES

S. No	From Ch.	To Ch.	Affected	LHS/RHS	Dia/Size	Depth	Position from	Metro	Diversion
	(m)	(m)	Length (m)			(BGL in m)	Alignment	Alignment	required
20	14210	14210	30	CROSSING(RHS)	0.6 M	BGL-2.5M	PERPENDICULAR	ELEVATED	YES
21	14240	14240	30	CROSSING(LHS)	0.6 M	BGL-2.5M	PERPENDICULAR	ELEVATED	YES
22	14360	14360	30	CROSSING(LHS)	0.6 M	BGL-2.5M	PERPENDICULAR	ELEVATED	YES
23	15220	15220	30	CROSSING(LHS)	0.6 M	BGL-2.5M	PERPENDICULAR	ELEVATED	YES
24	15510	15510	30	CROSSING(RHS)	0.4 M	BGL-2.5M	PERPENDICULAR	ELEVATED	YES
25	15640	15640	30	CROSSING(RHS)	0.4 M	BGL-2.5M	PERPENDICULAR	ELEVATED	YES
26	17006	17006	30	CROSSING(LHS)	0.4 M	BGL-2.5M	PERPENDICULAR	ELEVATED	YES
27	17115	17115	30	CROSSING(LHS)	0.6 M	BGL-2.5M	PERPENDICULAR	ELEVATED	YES
28	20340	20340	30	CROSSING(RHS)	0.6 M	BGL-2.5M	PERPENDICULAR	ELEVATED	YES
29	20340	21793	1453	RHS	1.2 M	BGL-2.5M	PARALLEL	ELEVATED	NO
30	21793	21793	30	CROSSING(RHS)	1.2 M	BGL-2.5M	PERPENDICULAR	ELEVATED	YES
31	20587	20587	30	CROSSING(LHS)	0.6 M	BGL-2.5M	PERPENDICULAR	ELEVATED	YES
32	20587	20790	203	LHS	0.6 M	BGL-2.5M	PARALLEL	ELEVATED	NO
33	20820	20820	30	CROSSING(LHS)	0.6 M	BGL-2.5M	PERPENDICULAR	ELEVATED	YES
34	20670	20670	30	CROSSING(RHS)	0.6 M	BGL-2.5M	PERPENDICULAR	ELEVATED	YES
35	21010	21010	30	CROSSING(RHS)	0.6 M	BGL-2.5M	PERPENDICULAR	ELEVATED	YES
36	21150	21150	30	CROSSING(LHS)	0.6 M	BGL-2.5M	PERPENDICULAR	ELEVATED	YES
37	21543	21543	30	CROSSING(LHS)	0.6 M	BGL-2.5M	PERPENDICULAR	ELEVATED	YES
38	23619	23619	30	CROSSING(LHS)	1.2 M	BGL-2.5M	PERPENDICULAR	ELEVATED	NO
39	23619	23619	30	CROSSING(RHS)	1.2 M	BGL-2.5M	PERPENDICULAR	ELEVATED	NO
40	23619	25200	1421	RHS	1.2 M	BGL-2.5M	PARALLEL	ELEVATED	NO
41	24090	24090	30	CROSSING(LHS)	0.6 M	BGL-2.5M	PERPENDICULAR	ELEVATED	YES
42	24240	24240	30	CROSSING(LHS)	0.6 M	BGL-2.5M	PERPENDICULAR	ELEVATED	YES

S. No	From Ch.	To Ch.	Affected	LHS/RHS	Dia/Size	Depth	Position from	Metro	Diversion
	(m)	(m)	Length (m)	(32)		(BGL in m)	Alignment	Alignment	required
43	24240	24240	30	CROSSING(RHS)	0.6 M	BGL-2.5M	PERPENDICULAR	ELEVATED	YES
44	22000	25200	3200	LHS	1.2 M	BGL-2.5M	PARALLEL	ELEVATED	NO
45	22000	25200	3200	RHS	1.2 M	BGL-2.5M	PARALLEL	ELEVATED	NO
46	22500	22500	30	CROSSING(LHS)	0.6 M	BGL-2.5M	PERPENDICULAR	ELEVATED	YES
47	22520	22520	30	CROSSING(RHS)	0.6 M	BGL-2.5M	PERPENDICULAR	ELEVATED	YES

Details of Water Pipe Lines of CMWSSB - Chennai

S. No	From Ch.	To Ch.	Affected	LHS/RHS	Dia/Size	Depth	Position from	Metro	Diversion
	(m)	(m)	Length (M)			(BGL in m)	Alignment	Alignment	required
1	5180	5180	30	CROSSING(LHS)	1.2M	BGL-2.5M	PERPENDICULAR	U/G	YES
2	5180	7680	2500	LHS	1.2M	BGL-2.5M	PARALLEL	U/G	YES
3	5600	5600	30	CROSSING(LHS)	0.5M	BGL-2.5M	PERPENDICULAR	U/G	NO
4	6760	6760	30	CROSSING(LHS)	0.3M	BGL-2.5M	PERPENDICULAR	U/G	NO
5	7180	7180	30	CROSSING(RHS)	0.6M	BGL-2.5M	PERPENDICULAR	U/G	NO
6	7680	7680	30	CROSSING(LHS)	1.2M	BGL-2.5M	PERPENDICULAR	U/G	NO
7	9370	9370	30	CROSSING(LHS)	1.2M	BGL-2.5M	PERPENDICULAR	U/G	NO
8	9370	11110	1740	LHS	1.2M	BGL-2.5M	PARALLEL	U/G	YES
9	9780	9780	30	CROSSING(LHS)	0.5M	BGL-2.5M	PERPENDICULAR	U/G	YES

S. No	From Ch.	To Ch.	Affected	LHS/RHS	Dia/Size	Depth	Position from	Metro	Diversion
8	(m)	(m)	Length (M)			(BGL in m)	Alignment	Alignment	required
10	10050	10050	0	CROSSING(LHS)	0.3M	BGL-2.5M	PERPENDICULAR	ELEVATED	YES
11	11110	11110	30	CROSSING(LHS)	1.2M	BGL-2.5M	PERPENDICULAR	ELEVATED	YES
12	11110	11110	30	CROSSING(RHS)	1.0M	BGL-2.5M	PERPENDICULAR	ELEVATED	YES
13	11110	13860	2750	RHS	1.0M	BGL-2.5M	PARALLEL	ELEVATED	YES
14	13860	14610	750	LHS	1.0M	BGL-2.5M	PARALLEL	ELEVATED	YES
15	14610	14610	30	CROSSING(LHS)	1.0M	BGL-2.5M	PERPENDICULAR	ELEVATED	NO

S N	From	То	Affected	LHS/RHS	Voltage	Position from	Metro	Diversion
N	(m)	(m)	(M)	10.000000008		Alignment	Alignment	required
1	13010	17355	4345	LHS	11KV	PARALLEL	ELEVATED	YES
2	17355	25200	7845	LHS	11KV	PARALLEL	ELEVATED	YES
3	13110	13110	30	CROSSING(LHS)	440V	PERPENDICULAR	ELEVATED	YES
4	13429	13429	30	CROSSING(LHS)	440V	PERPENDICULAR	ELEVATED	YES
5	13665	13665	30	CROSSING(LHS)	440V	PERPENDICULAR	ELEVATED	YES
6	13869	13869	30	CROSSING(LHS)	440V	PERPENDICULAR	ELEVATED	YES
7	14460	14460	30	CROSSING(LHS)	440V	PERPENDICULAR	ELEVATED	YES
8	14560	14560	30	CROSSING(LHS)	6.6 KV	PERPENDICULAR	ELEVATED	YES
9	14879	14879	30	CROSSING(LHS)	440V	PERPENDICULAR	ELEVATED	YES
10	15240	15240	30	CROSSING(LHS)	440V	PERPENDICULAR	ELEVATED	YES
11	15360	15360	30	CROSSING(LHS)	440V	PERPENDICULAR	ELEVATED	YES
12	15460	15460	30	CROSSING(LHS)	440V	PERPENDICULAR	ELEVATED	YES
13	15510	15510	30	CROSSING(RHS)	440V	PERPENDICULAR	ELEVATED	YES
14	15930	15930	30	CROSSING(RHS)	440V	PERPENDICULAR	ELEVATED	YES
15	16300	16300	30	CROSSING(LHS)	440V	PERPENDICULAR	ELEVATED	YES
16	16647	16647	30	CROSSING(LHS)	440V	PERPENDICULAR	ELEVATED	YES
17	18181	18181	30	CROSSING(LHS)	33 KV	PERPENDICULAR	ELEVATED	YES
18	18181	18181	30	CROSSING(RHS)	34 KV	PERPENDICULAR	ELEVATED	YES
19	19220	19220	30	CROSSING(LHS)	6.6 KV	PERPENDICULAR	ELEVATED	YES
20	19618	19618	30	CROSSING(RHS)	440V	PERPENDICULAR	ELEVATED	YES
21	19690	19690	30	CROSSING(LHS)	6.6 KV	PERPENDICULAR	ELEVATED	YES
22	20010	20010	30	CROSSING(LHS)	440V	PERPENDICULAR	ELEVATED	YES
23	20690	20690	30	CROSSING(LHS)	6.6 KV	PERPENDICULAR	ELEVATED	YES
24	20690	20690	30	CROSSING(RHS)	6.6 KV	PERPENDICULAR	ELEVATED	YES
25	21397	21397	30	CROSSING(LHS)	6.6 KV	PERPENDICULAR	ELEVATED	YES
26	21792	25200	3408	RHS	6.6 KV	PARALLEL	ELEVATED	NO
27	21963	21963	30	CROSSING(LHS)	6.6 KV	PERPENDICULAR	ELEVATED	YES
28	22410	22410	30	CROSSING(LHS)	6.6 KV	PERPENDICULAR	ELEVATED	YES
29	22410	22410	30	CROSSING(RHS)	6.6 KV	PERPENDICULAR	ELEVATED	YES
30	22621	22621	30	CROSSING(LHS)	440V	PERPENDICULAR	ELEVATED	YES
31	23340	23340	30	CROSSING(RHS)	440V	PERPENDICULAR	ELEVATED	YES
32	23955	23955	30	CROSSING(RHS)	440V	PERPENDICULAR	ELEVATED	YES
33	25200	25400	200	RHS	11KV	PARALLEL	ELEVATED	YES
34	22000	25200	3200	LHS	11KV	PARALLEL	ELEVATED	YES
35	22420	22420	30	CROSSING(LHS)	6.6 KV	PERPENDICULAR	ELEVATED	YES
36	22420	25200	2780	RHS	6.6 KV	PARALLEL	ELEVATED	YES
37	22500	22500	30	CROSSING(LHS)	440V	PERPENDICULAR	ELEVATED	YES
38	22670	22670	30	CROSSING(LHS)	6.6 KV	PERPENDICULAR	ELEVATED	YES
39	22670	22670	30	CROSSING(RHS)	6.6 KV	PERPENDICULAR	ELEVATED	YES
40	22800	22800	30	CROSSING(RHS)	440V	PERPENDICULAR	ELEVATED	YES
41	23350	23350	30	CROSSING(RHS)	440V	PERPENDICULAR	ELEVATED	YES
42	23600	23600	30	CROSSING(RHS)	440V	PERPENDICULAR	ELEVATED	YES
43	24350	24350	30	CROSSING(LHS)	440V	PERPENDICULAR	ELEVATED	YES

Details of Tamil Nadu Electricity Board HT/LT Lines

Updated Environmental Impact Assessment

April 2024 Revision 1

India: Chennai Metro Rail Investment Project Corridor 4

Annexure 5

Prepared by the Chennai Metro Rail Limited (CMRL) for the Asian Development Bank.

Annexure 5: Environment, Social, Health and Safety Requirements

Table of Contents

1.	Scope	2
	1.2. Application of this document	
	1.3. Purpose of this document	
	1.4. Chennai Metro Rail Limited ESHS Objectives	
2.	Reference publications	
	Terms and definitions	
	ESHS management system requirements	
	4.1. General requirement	
	4.2. CMRL ESHS Policy Statement of Intent	
	4.3. Planning	
	4.4. Implementation and operation	
	4.5. Checking	
	4.6. Management review	
	4.7. External ESHS Agency	37
	4.8. Penalty	

1. Scope

1.1. The Employer's Requirements ESHS Volume 1 details the requirements of the Employer for Environment, Social, Health and Safety control measures associated with the Contractor and any other agency, to be practiced on all Chennai Metro Rail Limited (CMRL) construction sites or associated premises.

1.2. Application of this document

- 1.2.1. The Employer's Requirements ESHS Volume 1 applies to all aspects of the contractor's scope of work including that conducted by their appointed sub contractor's and other agencies on their behalf. There shall be no activity associated with the Chennai metro Rail Project, which exempted from the purview of this document.
- **1.2.2.** The Employer's Requirement's ESHS Volume 1 is supplemented with a further 3 ESHS Volume for ease of reference. Their individual scope and applicability are as follows:
- 1.2.3. ESHS Volume 1 is the controlling document for all Contracts and is fixed throughout the term of the project. Compliance with the Employer's Requirements ESHS Volume 1 and the Project Health and Safety Manual (H&S) Volume 2 is mandatory. Volume 1 remains subject to revision by the Employer / Engineer in the event of new Legislation or changing circumstances
- 1.2.4. H&S Volume 2 provides Project Health & Safety Manual is mandatory applies to all aspects of the Contractor's scope of work, including that conducted by their appointed sub-Contractor's and other agencies on their behalf. The contents of H&S manual Volume 2 remains subject to revision by the Employer /Engineer in the event of new Legislation or changing circumstances.
- **1.2.5.**ESHS Volume 3 provides Environmental guidance and procedural requirements for the project. Volume 3 remains subject to periodic revision and updating.

1.3. Purpose of this document

The purpose of this document, the Employer's Requirements, ESHS Volume 1 is to provide Contractors and other interested parties with the mandatory requirements relating to Health, Safety and the Environment practices and performance expectations on the Chennai Metro Rail Project.

This document:

- a) Describes the ESHS interfaces between the Employer, Engineer and the Contractor;
- b) Details the processes by which the Contractor shall manage ESHS issues while carrying out the works under the contract and;
- c) Describes by reference, the practices, procedures and requirements pertaining to the Chennai Metro Rail Project.

1.4. Chennai Metro Rail Limited ESHS Objectives

Chennai Metro Rail Limited has identified five principle objectives for attainment during the project. These long-term objectives shall be supported with quarterly, short and medium term objectives to enable structured advancement in overall performance. Our Short- and medium-term objectives also aim to facilitate effective monitoring and measurement to identify where a directional change may be necessary. Our Long term objectives are:

1. To eliminate or minimize the unwanted effects of hazards and risks to personnel, members of the public and other stakeholders who may be exposed to the undertakings associated with the construction of the Chennai Metro Rail project

- 2. Establish an effective and robust ESHS management system that will enable Contractors to achieve international recognition and registration to the ISO 45001:2018 Series.
- 3. Actively contribute to Contractors development through support, encouragement, determination in control and transfer of knowledge and skills in order to make the move from traditional compliance driven management through to risk managed processes.
- 4. To simplify the risk concept, to ensure a sensible approach to risk management and simplify hazard awareness training through adoption of the ALARP (As low as reasonably practicable) principles.
- 5. To practice 'Best Practice' within the construction industry Establishing a work environment that conforms to international health & safety standards and make recommendation to improve effectiveness of regulations both nationally and locally.

2. Reference publications

ISO 9000:2005, *Quality management systems* — *Fundamentals and vocabulary* **ISO 9001:2015**, *Quality management systems* — *Requirements*

ISO 14001:2015, Environmental management systems — Requirements with guidance

ISO 19011:2002, Guidelines for quality and/or environmental management systems auditing

OHSAS 18001:2007 Health and safety management systems Requirements

OHSAS 18002, Health and safety management systems – Guidelines for the implementation of BS OHSAS 18001

ISO 45001:2018 specifies requirements for an health and safety (H&S) management system and gives guidance for its use, to enable organizations to provide safe and healthy workplaces by preventing work-related injury and ill health, as well as by proactively improving its H&S performance.

PAS 99, Specification of common management system requirements as a framework for integration

International Labour Organization:2001, Guidelines on health and safety management systems — ILO-OSH 2001

Health & Safety Guidance (HSG) Health and Safety Executive Publications United Kingdom Safety and Health Administration(OSHA) publications USA

3. Terms and definitions

- 3.1 **Acceptable risk.** Risk that has been reduced to a level that can be tolerated by the organization having regard to its legal obligations and its own ESHS policy
- 3.2 Accident. Incident giving rise to injury, ill health or fatality
- 3.2 **ALARP** (As low as reasonably practicable) principles.
- 3.3 **Audit.** Systematic, independent and documented process for obtaining "audit evidence" and evaluating it objectively to determine the extent to which "audit criteria" are fulfilled
- 3.4 **BOCWA.** Building and Other Construction Workers (Regular Employment and Conditions of Service) Act, 1996
- 3.5 **BOCWR.** Building and Other Construction Workers (Regulation of Employment and Conditions of Service) Central Rules, 1998

- 3.6 **Chief Safety Expert.** An officer appointed by Employer / Engineer who is the overall responsible for monitoring all H&S functions prescribed in this document.
- 3.7 CMRL. Chennai Metro Rail Limited
- 3.8 **Competent person.** Person with the appropriate combination of skill, knowledge, qualifications and experience
- 3.9 **Continual improvement.** Recurring process of enhancing the ESHS management system in order to achieve improvements in overall ESHS performance consistent with the organization's ESHS policy
- 3.10 **Corrective action.** Action to eliminate the cause of a detected **nonconformity** or other undesirable situation
- 3.11 **Design Risk Assessments**. Used to record the actions of designers when reducing risks in construction and for future repairs and maintenance issues.
- 3.12 Employer. Chennai Metro Rail Limited (CMRL).
- 3.13 **Hazard.** Source, situation, or act with a potential for harm in terms of human injury or ill health, or a combination of these
- 3.14 **Hazard identification.** Process of recognizing that a **hazard** exists and defining its characteristics
- 3.15 **Health surveillance.** Monitoring health of employees to detect signs or symptoms of work-related ill health so that steps can be taken to eliminate, or reduce the probability of, further harm
- 3.16 **III health.** Identifiable, adverse physical or mental condition arising from and/or made worse by a work activity and/or work-related situation
- 3.17 **Incident.** Work-related event(s) in which an injury or **ill health** (regardless of severity) or fatality occurred, or could have occurred. An accident is an incident which has given rise to injury, ill health or fatality.
- 3.18 **Interested party.** Person or group, inside or outside the workplace, concerned with or affected by the ESHS performance of an organization
- 3.19 **Nonconformity.** Non-fulfilment of a requirement; A nonconformity can be any deviation from: relevant work standards, practices, procedures, legal requirements, etc. or ESHS management system requirements.
- 3.20 **ESHS management system.** Part of an organization's management system used to develop and implement its ESHS policy and manage its ESHS risks. A management system is a set of interrelated elements used to establish policy and objectives and to achieve those objectives. A management system includes organizational structure, planning activities (including for example, risk assessment and the setting of objectives), responsibilities, practices, procedures, processes and resources.
- 3.21 **ESHS objective.** ESHS goal, in terms of ESHS performance that an organization sets itself to achieve.
- 3.22 **ESHS performance.** Measurable results of an organization's management of its ESHS risks
- 3.23 **ESHS policy.** Overall intentions and direction of an organization related to its ESHS performance as formally expressed by top management
- 3.24 **Preventive action.** Action to eliminate the cause of a potential **nonconformity (3.19)** or other undesirable potential situation

- 3.25 Procedure. Specified way to carry out an activity or a process
- 3.26 Record. Document stating results achieved or providing evidence of activities performed
- 3.27 **Risk.** Combination of the likelihood of an occurrence of a hazardous event or exposure(s) and the severity of injury or **ill health** that can be caused by the event or exposure(s)
- 3.28 **Risk assessment.** Process of evaluating the **risk(s)** arising from a hazard(s), taking into account the adequacy of any existing controls, and deciding whether or not the risk(s) is acceptable
- 3.29 Risk control. Selection and application of suitable measures to reduce risk
- 3.30 Shall. Indicates a mandatory requirement within this document
- 3.31 **Stakeholders.** Those with a vested interest in an organization's achievements that includes, but is not limited to, internal and "outsourced" employees, customers, suppliers, partners, employees, distributors, investors, insurers, shareholders, owners, government and regulators.
- 3.32 Status review. Formal evaluation of the ESHS management system
- 3.33 **Top management.** Person or group of people who direct and control an organization at the highest level
- 3.34 Worker representative. Representative of employee health and safety
- 3.35 **High Risk** –A hazardous condition may cause frequency accidents which may result in catastrophic equipment losses or buildings, severe injury, illness, disablement or possible fatality.
- 3.36 **Medium Risk**-A hazardous condition resulting in injury /illness requiring absence from work or equipment damage.
- 3.37 **Low Risk-**A hazardous condition is unlikely to cause accidents, minor injury, and even fit does, result in only negligible damage.

4. ESHS management system requirements

4.1. General requirement

- **4.1.1.** The Contractor shall define and document the scope of its Safety Health and Environmental (ESHS) management system to meet legal requirements and the requirements of Chennai Metro Rail Limited as stated within this document.
- **4.1.2.** The Contractor's ESHS management system shall determine how the organisation shall document, implement, maintain and continually improve upon performance in accordance with the requirements of the International ISO45001:2018 Standard to which the Employer is committed.

4.2. CMRL ESHS Policy Statement of Intent

Chennai Metro Rail Limited consider that health, safety and environmental is of equal importance in comparison to any other aspect of business management and as such is committed to promoting high standards of health, safety ,environmental and welfare on all of their sites and premises. To achieve this Chennai Metro Rail Limited shall:

- Constantly work towards improving the safety culture at all levels.
- Ensure compliance with all relevant legal duties in respect of health and safety at work legislation.

- Provide adequate resources for planning and controlling working conditions and safe systems of work.
- Work with our Contractors and suppliers to improve their safety performance, by measuring and monitoring their performance.

Responsibilities and performance requirements for health, safety and environmental are available on the Chennai Metro Rail Limited website. In summary: -

- All Contractors, employees, sub-Contractors, consultants, suppliers and visitors have A duty to play an active role in achieving our objectives through compliance with their legal obligations and this ESHS Policy.
- Participation and consultation are vital aspects of this Policy and to the achievement of our objectives. Contractors and Staff are encouraged and expected to:
 - Discuss health, safety and environmental matters with their managers, and company health, safety and environmental Representatives who will offer or obtain further expert advice, where necessary.
 - Co-operate at all times; contribute good ideas and improvements; report defects and short falls.

The correction of any breach of statutory provision or Chennai Metro Rail Limited requirements on health and safety shall take priority. Should appropriate action not be taken to meet the required standards, this will be taken seriously and may lead to disciplinary action being taken.

This Policy Statement shall be displayed prominently on all Chennai Metro Rail Limited sites and offices and will be kept under review to ensure its relevance.

Managing Director

Chennai Metro Rail Limited

4.3. Planning

4.3.1. Hazard identification, risk assessment and determining controls

4.3.1.1. The Contractor shall submit a procedure detailing the process in place for the identification of Hazards and Risks and the determination of control measures including the relevant standards as per clause 4.4.4.1 The Procedure shall incorporate the Employer's Requirements within this and other applicable ESHS Volumes.

4.3.1.2. Management of Change

4.3.1.2.1. All temporary and permanent changes to organisational, personnel, systems, procedures, equipment, products, materials or substances shall be evaluated by the Contractor and managed to ensure that health, safety and environmental risks arising from these changes remain at an acceptable level. Changes made by the Contractor are subject to submittal and notice of no objection by the Employer /Engineer prior to adopting change.

4.3.1.3. Risk Register & Hazard Log

- 4.3.1.3.1. The Contractor's Construction Health and safety Plan shall contain a detailed 'Risk Register' and 'Hazard Log' specific to the project. The register and log shall be assessed against the CMRL H&S Manual Volume 2.
- 4.3.1.3.2. The Hazard Log shall identify future method statement, risk assessment and operational procedures pertaining to specific equipment and operations in relation risk and local environmental constraints. Construction phase ESHS Plans shall not be accepted without a fully completed Hazard Log and Risk Register.

4.3.1.4. Method Statements and Lift Plan

- 4.3.1.4.1. Method statements are to be submitted to the Employer /Engineer a minimum of 28 days prior to task commencement to ensure sufficient time is available for review and notice of no objection.
- 4.3.1.4.2. Method statements shall contain the information requirements as prescript within the CMRL H&S Manual Volume 2.
- 4.3.1.4.3. Method statements shall incorporate the control measures within the process methodology as identified within the risk assessment.
- 4.3.1.4.4. A copy of the relevant method statement for the activity being undertaken shall be available on site for reference by all site management and supervisors.
- 4.3.1.4.5. Lift Plan are to be submitted to the Employer /Engineer a minimum of 28 days prior to task commencement to ensure sufficient time is available for review and notice of no objection.
- 4.3.1.4.6. Lift Plan shall contain the information requirements as prescript within the CMRL H&S Manual Volume 2

4.3.1.5. **Risk Assessment production & submittal**

- 4.3.1.5.1. Risk assessments shall contain as a minimum, the information as specified within the CMRL H&S Manual Volume 2. The Contractor may choose to use their own format however the risk tolerances, probability and consequences must be included.
- 4.3.1.5.2. Risk assessments shall be produced and submitted to the Employer /Engineer a minimum of 28 days prior to task commencement for notice of no objection. Risk assessments may be submitted independently or as part of a Method Statement.
- 4.3.1.5.3. Generic risk assessments other than routine activities of low risk shall not be accepted by the Employer/Engineer.
- 4.3.1.5.4. Risk assessments shall be regularly reviewed to ensure they remain suitable and sufficient. Risk assessment reviews shall be undertaken where an incident has

occurred and when a change in location may introduce additional risks from construction activities.

- 4.3.1.5.5. Substances hazardous to health shall be subject to assessment by the Contractor. Where Hazardous substances are identified for use within a process the assessment and determining controls shall be included within the relative method statement.
- 4.3.1.5.6. Designer's primary role includes to minimise the risk to health and safety of those who are going to construct, maintain, clean, repair, dismantle or demolish the structures and anyone else like adjoining road users/general public, who may be affected by the work.
- 4.3.1.5.7. When considering health and safety in designer's work, they shall be expected to do what is reasonable at the time the design is prepared. It may be possible for hazards, which cannot be addressed at the feasibility stage to be looked at during detailed design. In deciding what is reasonably practicable, the risk to health and safety produced by a feature of the design has to be weighed against the cost of excluding the feature. The overall design process does not need to be dominated by a concern to avoid all risks during the construction phase and maintenance. However, a judgement has to be made by weighing up one consideration against another so the cost is counted not just in financial terms, but also those of fitness for purpose, aesthetics, buildability or environmental impact. By applying these principles, it may be possible to make decisions at the design stage, which will avoid or reduce risks during construction work. In many cases, the large number of design considerations will allow a number of equally valid design solutions. What is important is the approach to the solutions of design problems. This should involve a proper exercise of judgement, which takes account of health and safety issues.
- 4.3.1.5.8. Designers shall need, so far as reasonably practicable, to avoid or reduce risks by applying a series of steps known as the hierarchy of risk control or principles of prevention and protection. The steps to be adopted shall include the following:
 - i.Consider if the hazard can be prevented from arising so that the risk can be avoided (e.g. alter the design to avoid the risk);
 - ii.If this cannot be achieved, the risk should be combated at source (eg, ensure the design details of items to be lifted include attachment points for lifting);
 - iii.Failing this, priority should be given to measures to control the risk that will collectively protect all people;
 - iv.Only as a last resort should measures to control risk by means of personal protection be assumed (E.g. use of safety harnesses).
- 4.3.1.5.9. In case of situations were the designers have carried out the design work and concluded that there are risks, which were not reasonably practicable to avoid, detailed information shall be given about the health and safety risks, which remain. This information needs to be included within the design assessment to alert others to the

risks, which they cannot reasonably be expected to know. This is essential for the parties who have to use the design information.

- 4.3.1.5.10. If the designers' basic design assumptions affect health or safety, or health and safety risks are not obvious from the standard design document, the designer shall provide additional information. The information shall include a broad indication of the assumptions about the precautions for dealing with the risks. The information will need to be conveyed in a clear manner; it shall be included on drawings, in written specifications or outline method statements. The level of detail to be recorded will be determined by the nature of the hazards involved and the associated level of risk.
- 4.3.1.5.11. Job Specific Risk assessment shall be submitted to the Employer /Engineer a minimum of 28 days prior to task commencement for notice of no objection. (Example-Manual Handling, PPE and Fire)

4.3.1.6. **Design Risk Assessment**

- 4.3.1.6.1. Design Risk Assessments shall be submitted to the Employer /Engineer for granting of no objection. Design risk assessments shall accompany all drawing submittals for operations involving;
 - Temporary works,
 - Formwork & false-work
 - Heavy lifting equipment.
- 4.3.1.6.2. Drawings shall not be accepted by the Employers Representative without an accompanying design risk assessment.

4.3.1.7. Employer/Engineer's approval

- 4.3.1.7.1. Every structure like scaffold, falsework & Formwork, launching girder, Temporary work (shoring system), earth retaining structures etc. shall have its design calculations included in the method statements in addition to health and safety risks. The Employer /Engineer designer or his approved proof check consultants as applicable as per the contract conditions shall approve all these designs and issue a 'No Objection for Use'.
- 4.3.1.7.2. Any non-standard structures like trestles made up of re-bars or structures which are very old, corroded, repaired for many times etc. for which no design calculations can be made accurately from any national standards, shall not be allowed to be used at sites even for short duration.
- 4.3.1.7.3. If any of the above mentioned clauses are not adhered penalty shall be imposed depending upon the gravity of the unsafe act and or condition.

4.3.2. Legal and other requirements

- 4.3.2.1. Contractor shall comply with all legal obligations and the requirements of Chennai Metro Rail Limited as contained herein.
- 4.3.2.2. Indian statutory requirements
- The Contractor shall abide by all national, state and local bye-laws. It is the duty of the Contractor to ensure that all sub-Contractors appointed also comply with their legal

obligations as listed below but not limited to:

- i. Indian Electricity Act 2003 and Rules 1956
- ii. Tamil Nadu Building and other construction Workers (regulations of Employment and conditions of service) Rules ,2006.
- iii. National Building Code, 2005
- iv. Factories Act, 1948,
- v. The Tamil Nadu Factories Rules, 1950
- vi. Motor Vehicles Act as amended in 1994, The Central Motor Vehicles Rules, 1989.
- vii. Indian Road Congress Code IRC: SP: 55-2001 'Guidelines on Safety In Road Construction Zones.
- viii. The Petroleum Act, 1934 and Rules 1976
- ix. Gas Cylinder Rules, 2003
- x. Indian Explosives Act. 1884, along with the Explosives substance Act 1908 and the explosives Rules 1983
- xi. The (Indian) Boilers Act, 1923
- xii. The Public Liability Insurance Act 1991 and Rules 1991
- xiii. Minimum Wages Act, 1948 and Rules 1950
- xiv. Contract Labour Act, 1970 and Rules 1971
- xv. Child Labour (Prohibitions & Regulations) Act, 1986 and Rules 1950
- xvi. Environment Protection Act, 1986 and Rules 1986
- xvii. Air (Prevention and control of Pollution) Act, 1981
- xviii. Water (Prevention and Control of Pollution) Act, 1974
- xix. The Noise Pollution (Regulation & Control) Rules, 2000
- xx. Notification on Control of Noise from Diesel Generator (DG) sets, 2002
- xxi. Recycled Plastic Usage Rules, 1998
- xxii. Notification, Central Ground Water Board, Act January 1997
- xxiii. Manufacture, Storage & Import of Hazardous Chemicals Rules, 1989
- xxiv. The Hazardous Waste (Management & Handling) Rules, 1989
- xxv. Hazardous Waste Management Rules 1989 (as amended in 1999)
- xxvi. Batteries (Management and Handling) Rules
- xxvii. Fly ash utilization notification, Sept 1999 as amended in August 2003
- xxviii. Workman Compensation Act, 1923 along with allied Rules
- xxix. The Mines Act 1952
- xxx. The Indian Wildlife (protection) Act 1972 and The Wildlife (Protection) Amendment Act 2002
- xxxi. Coastal Regulation Zones(CRZ) Rules 2011 amended on dt. 8.12.2014
- xxxii. Solid Waste Management Rules 2019
- xxxiii. Municipal Solid Waste Rules 2000.

4.3.2.3. International Standards, Guidelines & ISO Certifications

- 4.3.2.3.1. If the requirements stated in this document are in conflict or inconsistent with the requirements of applicable laws or the Employer's Requirements for the CMRL project, the more stringent requirements shall apply.
- 4.3.2.3.2. The works shall be undertaken in accordance with the applicable international guidelines, standards and specifications on ESHS and every Contractor shall actively pursue the achievement of:
 - ISO 45001:2018 health and safety (H&S) management system
 - ISO 14001:2015 Environmental management systems
- 4.3.2.3.3. The process of international certification to ISO 45001:2018 and ISO 14001:2015 standard shall commence immediately after the award of Contract through appointment of ISO accrediting body for obtaining the certification. Should this not be undertaken by the Contractor within 3 months of the Contract award, the Employer /Engineer shall appoint at the Contractor's cost.
- 4.3.2.3.4. Should the Contractor already posses such certification, the scope of the CMRL project must be included on the Contractor's certification within 1 year of Contract commencement and proof of such attainment demonstrated to Chennai Metro Rail Limited.
- 4.3.2.3.5. If any of the above mentioned clauses are not adhered penalty shall be imposed as per details given under penalty clause <u>4.8.</u> of this document.

4.3.3.Objectives and programme(s)

4.3.3.1. The Contractor shall maintain procedures to establish detailed ESHS objectives and performance criteria. Such objectives and performance criteria shall be developed to incorporate the Chennai Metro Rail policy and strategic ESHS objectives. The Contractor's objectives shall be quantified, wherever practicable, and identified with defined timescales. The Contractor is required to submit for notice of no objection their procedure and objectives as per clause 4.4.4.1 of this control document.

4.4. Implementation and operation

- 4.4.1.Resources, roles, responsibility, accountability and authority
- 4.4.1.1. The Contractor shall detail within the Construction Health, Safety and Environmental Plan the planned roles and resources allocated for the CMRL project. In addition to the staffing arrangements the Contractor shall prescribe the responsibilities specific to role, accountability and the authority under which they operate.
- 4.4.1.2. ESHS resources shall be provided by the Contractor as per the Contract value in table 1.

	1	2	3	4	5	6	7
Awarded Contract value (in Cr.)	Chief ESHS Manager (Safety Manager) (Key Staff)	Senior ESHS Manager	Junior ESHS Manager	Safety Supervisor	Senior ESHS (Electrical) Manager	Junior ESHS (Electrical) Manager	Public Liaison Officer

Table 1 Mandatory Contractor ESHS management resource requirement

	1	2	3	4	5	6	7
Upto 100	1	-	1		-	1	1
Upto 200	1	1 Refer Note 1	Refer Note 2	Refer Note 3	1	Refer Note 4	1
Upto 300	1				1		1
Upto 400	1				1		1
Upto 500	1				1		1
More than 500	1				2		2
	8	09		10	11	12	13
Awarded Contract value (in Cr.)	Health officer with Nurse (Refer Note 9)	Environmental Manager		Senior ESHS (Traffic) Engineer	Barricade Maintenance squad	House Keeping squad	Labour Welfare Officer
Upto 100	2 (PT)	1		1	Refer Note 7	Refer Note 8	1
Upto 200	2 (FT)	1		2			2
Upto 300	2 (FT)	1 with Support staff		2			2
Upto 400	2(FT)	1 with Support staff		2			2
Upto 500	2(FT)	1 with Support staff		2			2
More than 500	2(FT)	1 with Support staff		2			2

- Note 1: Qualified Senior ESHS Manager as per table 2 ESHS Personnel Qualifications & Experience to be deployed at each worksite at each shift.
- Note 2: Qualified Junior ESHS Manager as per table 2 ESHS Personnel Qualifications & Experience to be deployed at each worksite at each shif.
- **Note 3:** Qualified Safety Steward as per table 2 ESHS Personnel Qualifications & Experience to be deployed at each worksite at each shift.
- Note 4: Qualified Junior ESHS (Electrical) Manager as per table 2 ESHS Personnel Qualifications & Experience to be deployed at each worksite at each shift.
- Note 5: (PT) means Part-Time and (FT) means Full-time.
- **Note 6:** Senior ESHS (Traffic) Engineer Post and Barricade Manager Posts are applicable to contracts where the work has to be executed either below or over the right-of-way like Viaduct, Contracts wherein erection and maintenance of barricades are paramount important.
- <u>Note 7:</u> One Barricade Manager supported by required supervisors and workmen at each worksite at each shift.

- <u>Note 8:</u> One Housekeeping Manager supported by required supervisors and workmen at each worksite at each shift.
- **Note 9:** Qualified Nurse as per table 2 ESHS Personnel Qualifications & Experience to be deployed at each worksite at each shift.
- **Note 10:** The Chief ESHS Manager (Safety Manager)-Key Staff shall be a professional and experienced manager with at least fifteen (15) years' experience in the construction of metro rail Projects with at least 10 year's direct relevant experience in administering of ESHS of similar scope in professional experience in ESHS in international projects. The Chief ESHS Manager should have minimum five years' experience in similar position of similar works .
- **Note 11:** No contractor shall engage ESHS manpower from any outsourcing agencies in which case the effectiveness would be lost. All ESHS manpower shall be on the payroll of the main contractor only and not on the payroll of any subcontractor or outsourcing manpower agencies etc. This condition does not apply to positions like traffic marshals who are engaged almost on a daily requirement basis.
- <u>Note 12:</u> Environmental support staff shall be Govt. recognized PG Degree / Degree in Environmental Engineering / Science with minimum of two years of experience of similar scope of **work**.
- **Note 13:** All the ESHS Personal Shall be in the payroll of the main contractor.
- **Note 14:** The conduct and functioning of the contractor ESHS personnel shall be monitored by the Employer. Any default or deficiency shall attract penalty as per details given under penalty clause <u>4.8.3</u> of this document.

4.4.1.3. **Responsibility**

- 4.4.1.4. The Project Director or Project Manager of the Contractor is responsible and accountable for compliance with the conditions and clauses within this document.
- 4.4.1.5. The Project Director or Project Manager is responsible to ensure that the necessary resources are allocated and made available to meet the requirements as laid out within this document and other referenced materials to include Legal Requirements (4.3.2).
- 4.4.1.6. For all works carried out by the Contractor and appointed sub-Contractor's, the responsibility for ensuring ESHS resources remains with the main Contractor. Activities undertaken by the Contractor's Sub-Contractors shall be monitored by the Contractor at all times to ensure compliance with agreed safe systems of working.
- 4.4.1.7. All Contractor's ESHS personnel shall report to the Chief ESHS Manager who shall report directly to the Project Director or Project Manager or Corporate Safety manager of the Contractor's organisation. This shall be reflected in the Contractor's organisation charts within the ESHS plan and Quality Management Plan.
- 4.4.1.8. The Employer /Engineer shall monitor adherence to the provisions of Table 1. Where deviation is evident this shall be recorded as a non-conformance.
- 4.4.1.9. The Contractor shall provide all ESHS personnel with such facilities, equipment and information that are necessary to enable them to dispatch their duties effectively.

- 4.4.1.10. The Contractor's ESHS Managers are responsible for ensuring that reports on the performance of the ESHS management system are presented to top management for review and used as a basis for improvement of the ESHS management system.
- 4.4.1.11. The Contractor's ESHS Managers are responsible for independently monitoring the operations of the Contractor, where deficiencies are identified they are responsible to report their findings immediately to the Site Engineer in charge who then must take action as directed.

4.4.1.12. Accountability

- 4.4.1.13. In cases where the Contractor fails to provide the minimum required manpower as illustrated in Table 1, or fails to fill vacancies created within 30 days, the same may be provided by the Employer /Engineer at the Contractor's cost. Any administrative expenses involved in providing the same for example, vacancy advertisements or recruitment consultant charges, shall also be at the cost of Contractor.
- 4.4.1.14. No ESHS personnel shall be permitted to do any work which is unconnected to, inconsistent with or detrimental to the performance of the ESHS duties.
- 4.4.1.15. Supervisors must ensure that the employees under their direct supervision are working incompliance with the approved safe systems of working.

4.4.1.16. **Authority**

- 4.4.1.17. The Contractor's Safety Managers, Senior ESHS Manager and Junior ESHS Manager authority shall be stated within the Construction Health and Safety Plan and the authority level must be communicated to all Contractor's Staff including sub-Contractors.
- 4.4.1.18. The Contractor's Safety Managers, Senior ESHS Manager and Junior ESHS Manager Officers shall have the authority as assigned by the Project Director or Project Manager to suspend works where deviation from an approved method of working occurs that presents a risk of injury, equipment or property damage or "E&S" risks.
- 4.4.1.19. The Engineer shall have the right to stop the work at his/her sole discretion, if in his opinion the work is being carried out in such a way that a risk of injury, property and or equipment damage may exist. The Contractor shall not proceed with the work until remedial works have been complied with under the direction and satisfaction of the Employer. Should the Contractor continue to work without implementing the Engineers instruction, clause 4.4.2.2 shall be applied to the individual responsible for the decision to proceed.
- 4.4.1.20. The Contractor shall not be entitled to any damages or compensation for stoppage of work, due to safety reasons. The period of such stoppages of work shall not be taken as an extension of time for completion of the facilities and will not be the ground for waiver of levy of liquidated damages.
- 4.4.1.21. The contractor shall submit Daily Dairy report (FSAF 029-Volume 2 of H&S Manual) with the target date for the completion of the observation to the Employer /Engineer including any subcontractor activity of both shift. This reporting shall be the primary duty of the Chief ESHS Manager of the contractor and reporting shall be through email. The report should be submitted at the end of the day of shift. If the information is not received or delay in submission of report. Penalty shall be levied as per relevant clause.

4.4.2.Competence, training and awareness

4.4.2.1. The Contractor shall ensure that the recruitment, selection and placement processes shall be in place to ensure that personnel are qualified, competent, and physically fit for assigned tasks. The Contractor shall produce a procedure that shall be

made available to the Employer / Engineer for notice of no objection as per Clause 4.4.4.1 of this document. The procedure shall define the processes in place to ensure competence.

- 4.4.2.2. Whereby any person employed thereon, who in the opinion of the Employer /Engineer, misconducts himself or is incompetent or negligent or fails to conform with any particular provisions with regard to health, safety or environment which is set out in the Contractor's ESHS Plan or a requirement of the Contract, or persists in any conduct which is prejudicial to health, safety, shall be removed from site immediately, and such persons shall not be employed again upon the Works. The decision of the Employer /Engineer in this regard shall be final.
- 4.4.2.3. The Contractor ESHS Personnel-Notice of No Objection from the Employer /Engineer.
- 4.4.2.3.1. The name, educational qualifications and work experience for all ESHS persons intended for a Contractor's ESHS role shall be submitted to the to the Employer/Engineer Employer in the format prescribed (FSAF 30-Volume 2 of H&S Manual) for notice prior to employment. Only upon notice of no objection by the Employer /Engineer shall ESHS personnel be authorised to work on a CMRL site.
- 4.4.2.3.2. The Original certificate of degree, mark sheet, course completed certificate and work experience shall be maintained by the Contractor and be made available for inspection and upon request shall be submitted to the Employer/Engineer prior to employment.
- 4.4.2.3.3. **Age Limit:** Contractor's ESHS persons shall not be exceeding 55 years on the date of submission of proposal.
- 4.4.2.3.4. The conduct and functioning of the contractor ESHS personnel shall be monitored by the Employer/Engineer. Any default or deficiency shall attract penalty as per details given under penalty clause of this document.
- 4.4.2.3.5. The Contractor ESHS personnel permitted to work only specific contract package as per the Notice of No Objection issued by the Employer / Engineer.
- 4.4.2.3.6. Only approved by the Govt of India Degree from recognized university /Diploma in Safety Engineering from State board of Technical Education and Equivalent International Degree in Safety engineering shall be considered as the valid qualification.
- 4.4.2.3.7. The Project Director or Project Manager shall certify that the ESHS staff, original certificate of educational qualifications and work experiences are verified by him and found competent prior to the submittal to the Employer.
- 4.4.2.3.8. The minimum Employer's requirements of such facilities / equipment's to be provided for OSHE personnel are given in the GSAF-52 of Volume 2 of H&S Manual
- 4.4.2.3.9. The Contractor shall appoint the required ESHS personnel in accordance with the qualifications and experience as listed in Table 2.

ltem	Designation	Qualification	Experience (Years)
1	Chief ESHS Manager	The Chief ESHS Manager shall be qualified in any of the following qualifications i)M. E/ M.Tech. in Industrial Safety ii)B.E. in Fire and Safety Engg. iii)A recognised degree in any branch of engineering from recognized university with a Minimum one-year Full Time PG Diploma	15

Table 2 ESHS Personnel Qualifications & Experience

ltem	Designation	Qualification	Experience (Years)
		 /Diploma from Central labour institute / Regional Labour Institute Mumbai / Chennai / Kolkata /Kanpur/ Diploma in Safety Engineering from State Board of Technical Education iv) A recognised degree in any branch of engineering from recognized university with International qualifications like CSP (Certified Safety Professional), Diploma in NEBOSH 	
2	Senior ESHS Manager	The Senior ESHS Manager shall be qualified in any of the following qualifications i)M. E/ M.Tech. in Industrial Safety ii)B.E. in Fire and Safety Engg. iii)A recognised degree in any branch of engineering from recognized university with a Minimum one-year Full Time PG Diploma /Diploma from Central labour institute / Regional Labour Institute Mumbai / Chennai / Kolkata /Kanpur/ Diploma in Safety Engineering from State Board of Technical Education iv) A recognised degree in any branch of engineering from recognized university with International qualifications like CSP (Certified Safety Professional), Diploma in NEBOSH	12
3	Junior ESHS Manager	The Junior ESHS Manager shall be qualified in any of the following qualifications i)M. E/ M.Tech. in Industrial Safety ii)B.E. in Fire and Safety Engg. iii)A recognised degree in any branch of engineering from recognized university with a Minimum one-year Full Time PG Diploma /Diploma from Central labour institute / Regional Labour Institute Mumbai / Chennai / Kolkata /Kanpur/ Diploma in Safety Engineering from State Board of Technical Education iv) A recognised degree in any branch of engineering from recognized university with International qualifications like CSP (Certified Safety Professional), Diploma in NEBOSH v)Any Graduate with 8 years of work experience in full-fledged ESHS department of any Public Sector / Leading Private Sector / MNC / with prior approval of Employer /Engineer on a case to case basis	6 for Category (i) to (iv)
4	Safety Supervisor	 i)Degree in Science / Diploma in Engineering with Govt. recognized safety diplomas from National and State Productivity Councils, Other State Technical Education Boards etc. ii)Any Graduate with 5 years of work experience in full-fledged ESHS department of any Public Sector / Leading Private Sector / MNC / with prior approval of Employer /Engineer on a case to 	3 for Category (i)

ltem	Designation	Qualification	Experience (Years)
		case basis	
5	Senior ESHS Electrical Manager	Degree in Electrical Engineering + Govt. Recognized Electrical "C" Licence holder	2
6	Junior ESHS Electrical Manager	Degree in Electrical Engineering + Govt. Recognized Electrical "C" Licence holder	1
7	Public Liaison officer	Any Degree with Govt. Recognized Degree / Diploma / P G Diploma in Labour Welfare related fields like Law, Personnel / Industrial Relations etc.	5
8	Health Officer	MBBS with Govt. recognized degree/diploma in Industrial/ health	1
9	Nurse	Any Degree with Govt. Recognized Degree / Diploma / P G Diploma in in Nursing	1
10	Environmental Manager	Govt. recognized PG Degree / Degree in Environmental Engineering / Environmental Science	5
11	Senior Traffic Engineer	Govt. recognized PG Degree / Degree / Diploma 1 in Traffic/Transportation Engineering or Planning	
12	House Keeping Manager	Any Diploma in Engineering	1
13	Barricade Manager	Any Diploma in Engineering	1
14	Labour Welfare Officer	Any Degree with Govt. Recognized Degree / Diploma / P G Diploma in Labour Welfare related fields like Law, Personnel / Industrial Relations etc.	5

Note: In some extraordinary cases where the candidate had earlier worked in CMRL Projects they can be considered for the following posts:

- i) Junior ESHS Manager
- ii) Safety Steward

depending upon the qualification and no. of years of experience on a case to case basis even if they do not possess the prescribed qualification as listed above.

- 4.4.2.3.10. Where a potential candidate has previously worked in a Metro Rail construction environment and does not possess the qualifications and or the necessary experience as listed in Table 2 for the particular role, the Employer/ Engineer may upon a successful interview of the candidate grant a waiver subject to successful completion of a probation period of 3 months..
- 4.4.2.3.11. In order to effectively interact on labour welfare matters with the Employer /Engineer and the statutory authorities enforcing the labour welfare legislations every Contractor shall employ a full time Labour Welfare Officer duly qualified and experienced as per clause
- 4.4.2.3.12. The Contractor shall ensure that all personnel working at the site receive an induction ESHS training explaining the nature of the work, reporting & communication routes the hazards that may be encountered during the site work and the particular hazards attached to their own

function within the operation. The training shall cover as a minimum the contents as directed within H&S Manual Volume 2.

- 4.4.2.3.13. Records of all inductions shall be maintained by the Contractor and be made available for inspection by the Employer /Engineer upon request.
- 4.4.2.3.14. The Contractor shall provide their workforce and management staff with an ESHS induction Handbook containing the information as per the induction training.
- 4.4.2.3.15. A condensed induction shall be given by the Contractor to all visitors. The induction briefing shall include the risk and hazards associated with the particular site and the operations being conducted.
- 4.4.2.3.16. All personnel shall be issued a temporary ID upon the completion of the Contractor's' induction. The temporary ID shall be signed by the Human Resource Manager or appointed representative and limited to a 2-week validity period at which time the temporary ID shall be replaced with a permanent ID including photograph.
- 4.4.2.3.17. Individuals found on site by the Employer /Engineer without-dated temporary ID cards shall be removed from site

4.4.2.4. ESHS Training

- 4.4.2.4.1. The Contractor shall assess the training requirements for all the employees, plan and initiate a training program to fulfil the training needs assessment. The assessment of training needs shall incorporate all levels of staff including Sub-Contractor's against an individual's role, responsibility, ability, language skill and risk.
- 4.4.2.4.2. The Contractor shall provide comprehensive training to all staff as mentioned in ESHS conditions of contract
- 4.4.2.4.3. The Training Plan shall provide a structured training programme to educate and train all the personnel of the contractor in Safety aspects of all Construction activities. The training plan can contain:
 - I. Objective, syllabus, format, class size and duration of each training course;
 - II. Training facilities to be provided by the Contractor;
 - III. List of training materials and documentation to be included with the training course; and to be circulated in booklet format to each trainee
 - IV. Method of pre- and post- testing to be utilised;
 - V. Qualifications and experience level necessary for the trainees;
 - VI. Instructor's qualifications; and Course evaluation methods.
 - VII. Training shall be carried out in the medium of the Hindi, English & Local language and supplemented, if necessary, in other Language
 - VIII. Training shall consist of classroom (theory) training, and practical (hands on) training wherever necessary.
 - IX. To meet this need, the training agency shall supply competent trainers/instructors to carry out training to a high degree of proficiency in areas where the trainer has the specialised knowledge.
 - X. In order to ensure that satisfactory standards are met, the contractor's relevant Training Department will monitor all training.
- 4.4.2.4.4. The Contractor shall, at the conclusion of each training session, issue questionnaires to, and/or set practical tests for all trainees directed at determining the level of satisfaction with the course content and to assess the level of knowledge and understanding of the course content by each trainee. Five Questions from each training module are to be selected and assessment is to be conducted at the end of days training session.
- 4.4.2.4.5. The Contractor shall review the responses to questionnaires and the trainees' test results and forward a summary to the Employer /Engineer.

- 4.4.2.4.6. Trainees failing to achieve a minimum passing percentage of 40 percent will be regarded as fail and re-training will be again given to trainee
- 4.4.2.4.7. If the Employer /Engineer considers that the course has not achieved the required objectives, he will instruct the Contractor who shall then organise and implement appropriate re-training.
- 4.4.2.4.8. The Contractor shall, at the completion of each training course. A consolidated training record listing the training course title, date of training, name of all trainees, training result and other relevant information; and Issue an appropriate certificate to each trainee who has successfully completed the course. He should issue the sticker for each completion of Course.
- 4.4.2.4.9. The Contractor shall produce a 'Training Implementation Plan' to incorporate the findings of the needs assessment.
- 4.4.2.4.10. The training needs assessment together with Implementation Plan shall be submitted to the Employer /Engineer for notice of no objection within 4 weeks of commencement. The Employer /Engineer shall evaluate the assessment and plan against the base line training matrix contained within H&S Manual Volume 2.
- 4.4.2.4.11. Records of all training conducted shall be maintained and made available for inspection by the Employer /Engineer upon request.
- 4.4.2.4.12. Should the Contractor fail to provide the training identified within the Contractor's assessment, implementation plan and the Employer /Engineer Training matrix within the agreed timescales, this shall be reflected in the potential scores awarded within the monthly audit report.
- 4.4.2.4.13. Specific training with regard to the provisions of the Construction Safety Plan, and associated operational and system procedures shall be conducted by the Contractor for all persons with supervision responsibilities. Records of training including duration shall be maintained.
- 4.4.2.4.14. All the Management training should be completed within six months from the date of the contract awarded
- 4.4.2.4.15. Contractors and sub-contractors are responsible for providing ESHS training through CMRL approved agency shall conduct training as per the training Implementation Plan to all Staff and workers and for retention of records of such activities for inspection by the Employer /Engineer.
- 4.4.2.4.16. The Profile of the External ESHS Agency (Training, Inspection and Testing) ISO certifications, course details, the name, educational qualifications and experience for of the trainers are to be submitted to the Employer/Engineer a minimum 28 days before prior to appointment of the agency. Only upon notice of no objection by the Employer /Engineer shall be authorised to deliver ESHS Services on CMRL sites.

4.4.3. Communication, participation and consultation

4.4.3.1. Communication

- 4.4.3.1.1. The Contractor shall produce a 'High Quality' quarterly newsletter on a rotational basis with other Contractors. Rotation shall be announced within the Employer /Engineer ESHS Committee meetings.
- 4.4.3.1.2. All Contractors including the Employer /Engineer shall provide input into the rotational Contractor for the newsletter content such as details of accidents, incidents and near misses together with any lessons learned; specific safety initiatives; internal competitions and workforce awards etc.
- 4.4.3.1.3. The Employer /Engineer shall be issued the draft newsletter for review prior to the Contractor's publishing.
- 4.4.3.1.4. The ESHS Newsletters shall publicise all Contractors ESHS performances over the previous 3 months in relation to ESHS Audits and shall form the basis for the Employer /Engineer

Awards programme. Results of audits shall be provided by the Employer /Engineer for inclusion.

- 4.4.3.1.5. The quarterly newsletters shall be issued to all interested parties and be promulgated at site level. Where language barriers exists the contents of the newsletters shall be communicated by the Workforce Representative to ensure understanding.
- 4.4.3.1.6. At site level the Contractor shall erect pertinent awareness signage and posters. Posters shall be changed on a monthly basis to maintain impact.
- 4.4.3.1.7. Poster campaigns shall be discussed and agreed at the Employer /Engineer Committee Meeting to maintain a consistent improvement programme across all CMRL Sites.
- 4.4.3.1.8. Informational posters, banners etc shall be provided in Hindi, Tamil and English.
- 4.4.3.1.9. Toolbox talks and Method statement, Risk Assessment, Task briefings shall be carried out daily by the Contractor and correspond to the works activities being undertaken or to communicate a specific awareness initiative. Toolbox talks shall not replace professional training.
- 4.4.3.1.10. Records of all toolbox talks and Method statement, Risk Assessment, Task briefings undertaken together with the date, topic, participant's names and signatures shall be maintained and made available for inspection by the Employer /Engineer.
- 4.4.3.1.11. Method statement and risk assessment briefings shall be carried out prior to the commencement of a new task and or when a change to the method of working arises. Records of all such briefings shall be maintained by the Contractor.
- 4.4.3.1.12. Visitor information signage shall be posted at site entrances detailing where to report and contact information. Note: visitors shall be accompanied at all times by site security where office locations require walking through operational areas.
- 4.4.3.1.13. Job specific poster, ESHS policy statement, Employer's Liability Insurance certificate, Protective Equipment, Reversing Vehicles, Emergency procedure, Project Wages notice board, BOCWR registration Licence, Labour licences, Insurance policies and Site rules shall be displayed in the site entrance's and site office's

4.4.3.1.14. Public Liaison

- 4.4.3.1.15. Public informational signage and Contractor contact information shall be posted externally to the site.
- 4.4.3.1.16. The Contractor shall appoint an individual as a Public liaison Officer to communicate directly with members of the public regarding forthcoming operations, what to expect, noise expectancy, duration of operations etc. Contractor will conduct a full detailed analysis of noise and vibration prediction and submit to CMRL to clear. The analysis will be reviewed by lenders before mobilization.

4.4.3.2. **Participation and consultation**

- 4.4.3.2.1. The Contractor shall ESHS Committee within 4 weeks of commencement that shall be chaired by the Contractor's Project Director.
- 4.4.3.2.2. The Contractor shall notify the Employer /Engineer of the establishment of the Committee together with the committee members' names and designation. The Contractor's Chief Safety Manager, Senior Safety Manager, Plant & procurement Manager and Human Resources Manager shall form the minimum committee members. Site based personal shall be represented within the Committee by the attendance of Site Manager(s) and the Workforce ESHS Representative. Workforce ESHS Manager shall be elected by the workers from among themselves.
- 4.4.3.2.3. The Employer /Engineer shall be invited to attend the Contractor's ESHS Committee meetings.

- 4.4.3.2.4. The Contractor's ESHS Committee shall meet on a monthly basis throughout the duration of the Contract.
- 4.4.3.2.5. The Terms of Reference for the Contractor's ESHS Committee shall be as follows;
 - i) To establish company safety policies and practices
 - ii) To monitor the adequacy of the contractor's site ESHS plan and ensure its implementation
 - iii) To review ESHS training plan implementation
 - iv) To review the contractor's monthly ESHS report.
 - v) To identify probable causes of accident and non-compliance of ESHS practices in building or other construction work and to suggest remedial measures.
 - vi) To stimulate interest of Employer/Engineer and building workers in ESHS by organizing ESHS week, ESHS competitions, talks and film-shows on safety, preparing posters or taking similar other measures as and when required or as necessary.
 - vii)To tour round the construction site with a view to check unsafe practices and detect unsafe conditions and to recommend remedial measures for their rectifications including first-aid medical and welfare facilities.
 - viii) Committee team members should perform a site inspection before every committee meeting and to monitor ESHS inspection reports.
 - ix) To bring to the notice of the Employer /Engineer Employer the hazards associated with use, handling and maintenance of the equipment used during the course of building and other construction work.
 - x) To suggest measures for improving welfare amenities in the construction site and other miscellaneous aspect of safety, health and welfare in building or other construction work.
 - xi) To look into the health hazards associated with handling different types of explosives, chemicals and other construction materials and to suggest remedial measures including personal protective equipment.
 - xii)To review the last safety committee meeting minutes and to take action against persons/sub-contractors for non-compliance if any.
 - xiii) Shall note the grievance of the staff and shall take necessary steps to address them.
- 4.4.3.2.6. The inspection shall review progress regarding the achievement of short term targets. The Committee shall produce a report stating progress made together with any corrective actions required and issue to the Employer /Engineer within 7 days following the Inspection.
- 4.4.3.2.7. Minutes of the Committee meeting shall be issued within 2 days and promulgated to all members including the Employer /Engineer at least one week prior to CMRL's ESHS weekly meeting. The minutes of meeting shall also be posted on all sites within the workforce area. The minutes intended for site communication shall be in Hindi, Tamil and English.
- 4.4.3.3. Employer /Engineer ESHS Committee

4.4.3.3.1. An Environmental, Social, Health and Safety Committee shall be established by the Employer /Engineer. The Employers ESHS committee shall be formed out from the department of ESHS of CMRL and shall sit every month throughout the project period. The

Terms of Reference for the Employer's ESHS Committee shall be as follows;

- i. To establish Environment Social Health and Safety policies and practices
- ii. To monitor the adequacy of the contractor's site ESHS plan and ensure its implementation
- iii. To review Contractors ESHS training plan and implementation
- iv. To review the contractor's monthly ESHS report.
- v. To monitor the causes of accident and non-compliance of ESHS practices in building or other construction work and to suggest remedial measures.
- vi. To stimulate interest of Contractor and building workers in ESHS by organizing ESHS week, ESHS competitions, talks and film-shows on ESHS, preparing posters or taking similar other measures as and when required or as necessary.
- vii. To check unsafe practices at site and detect unsafe conditions and to recommend remedial measures for their rectifications.
- viii. To identify hazards associated with handling different types of explosives, chemicals and other construction materials and to suggest remedial measures including personal protective equipment.
- ix. To review the last Health and Safety committee meeting minutes and to take action against persons/Contractors for non-compliance if any.
 Review the grievance redressal mechanism of Contractor. Contractors shall be required to attend the monthly meetings who shall be represented by their Project director or Project Manager, Corporate Safety Manager and Chief Safety Manager.
- 4.4.3.3.2. The Committee shall review previous performances project wide and set short and medium term objectives and targets for achievement within the next reporting period.
- 4.4.3.3.3. The Employer /Engineer reserves the right to call an Emergency Meeting of the Committee members in the event of a serious incident that requires immediate change to the operational methods of working.
- 4.4.3.3.4. Minutes of the Employer /Engineer ESHS Committee shall be promulgated to all Contractor's within 3 days.

4.4.3.4. Workforce Representation

- 4.4.3.4.1. All workers shall have access to a Workforce ESHS Representative who is responsible to communicate directly with the labour force with regard to health and safety. The representative's name and contact number shall be posted on all sites externally to the site office.
- 4.4.3.4.2. The Workforce ESHS Representative shall be made a member of the ESHS Committee (FSAF 025 of H&S Manual -Volume 2) and attend all meetings.
- 4.4.3.4.3. The ESHS Representative shall meet the labour force on a monthly basis to discuss health, welfare, safety initiatives and or concerns the workforce may have. Minutes (FSAF 026 of H&S Manual -Volume 2) are to be produced by the Representative and issued formally within 2 days after the meeting date to the Contractor's Project Director or Project Manager and Employer /Engineer.
- 4.4.3.4.4. The chairman shall inform the members of any outstanding issues in the meeting and in case of repeated offence/ non-compliance by some members or other co/sub-contractors and propose suitable disciplinary action including provisions of monitory penalty as per the relevant contract clauses, the Engineer shall ensure that the same is implemented.
- 4.4.3.4.5. A lockable site suggestion box to which only the workforce ESHS Representative shall have access shall be installed on all sites and within any labour accommodation camps. The

suggestion box shall be located independent from any offices, in a public area and protected from bad weather. The ESHS Representative shall inform the workforce that the purpose of the suggestion box is to provide a means of participation, communicating ideas and initiatives and also for raising concerns without fear of reprisal.

- 4.4.3.4.6. The contents of all suggestion boxes shall be collected and collated on a weekly basis. Where concerns or complaints regarding the standards of health, safety or welfare have been reported these shall be immediately reported to the Chief ESHS Manager and Project Manager who shall investigate the concern(s). Records of such investigations and resultant outcomes shall be maintained.
- 4.4.3.4.7. Ideas, suggestions and concerns raised by the workforce during the ESHS representative's on site monthly meetings shall form an agenda item within the Contractor's ESHS Committee meeting.
- 4.4.3.4.8. Where an idea or specific suggestion is subsequently adopted for use by the Contractor's ESHS Committee, the individual shall receive an ESHS award as determined by the Contractor.
- 4.4.3.4.9. Where Employee awards are issued this shall be notified to the Employer /Engineer to ensure inclusion within the Quarterly Newsletter.

4.4.3.5. Contractor Awards

4.4.3.5.1. The Employer/Employer's Representative shall recognize the effort, participation and commitment demonstrated by the Contractor by nominating awards. The award type shall be at the discretion of the Employer.

4.4.4. Documentation

4.4.4.1. Management System procedures

identification, risk

- 4.4.4.1.1. The Contractor is required to submit for notice of no objection, the organisation's top tier Management System Procedures as listed in Table 3 that shall be adopted for use on the CMRL project.
- 4.4.4.1.2. System procedures shall be submitted to the Employer /Engineer within 4 weeks of commencement.
- 4.4.4.1.3. Construction works shall not commence until such time as a notice of no objection has been received; applicable to all management system procedures as listed in Table 3. Should the Contractor commence operations on site without notice, the Employer /Engineer shall award a 'Zero' audit score for every month of non-compliance with this clause.
- 4.4.4.1.4. The Employer /Engineer shall evaluate the suitability of the Contractor's system procedures against the ISO 45001:2018 and ISO 14001:2015 standards.
- 4.4.4.1.5. The submitted procedures shall be individually identified with a unique reference and detail in sequence the scope, purpose, referenced material and procedure processes.
- 4.4.4.1.6. Where such procedures as listed in Table 3 exist within other areas of the Contractor's organisational management systems such as quality management, these shall not be subject to replication if the procedure makes specific reference to Health, Safety and Environmental control.
- 4.4.4.1.7. Compliance standards against the Contractor's management system procedures shall be subject to audit by the Employer /Engineer.

participation &

consultation

Hazard	Communication,	Environmental	Objectives and

Impact Aspect

Assessment

programme(s)

Table 3 ESHS Management System Procedures

assessment and determining controls			
Training, awareness and competence	Implementation and operation	Accident & Incident Investigation	Legal requirements
Documentation	Monitoring & Measurement	Emergency Preparedness	Change control
Procurement	Record keeping	Audit	Management review

4.4.5. Control of documents

- 4.4.5.1. All plans, procedures and method statements shall be controlled and subject to review and formal approval by the Contractor's Project Director prior to issue to the Employer /Engineer
- 4.4.5.2. All documents subject to review by the Employer /Engineer shall be signed by the Contractor's Construction Manager , Safety Manager and Project Director and issued formally.
- 4.4.5.3. Documents shall be issued as per the Employer /Engineer requirements regarding Quality Management.
- 4.4.5.4. ESHS Documents shall be issued, maintained, traceable and available for retrieval pursuant to the Contractor's ISO accredited Quality Management System.

4.4.6. Operational control

4.4.6.1. Operational control shall be maintained through the implementation of the provisions stated within the Contractor's site specific Construction Health, Safety and Environmental Plans, the contents of which are outlined in Health, Safety and Environmental Volumes 2 and 3 and EMP in PCC to which the Contractor shall comply.

The Contractor shall submit the following plans which comprises the Contractors ESHS Plan as per the given time lines for approval of CMRL.

S.No.	Plan Description	Shall be submitted within
1.	Construction Safety Plan	28 days
2.	Social Impact mitigation plan	28 days
3.	Fire Evacuation plan	28 days
4.	Construction Health plan	28 days
5.	Construction contingency plan	28 days
6.	Traffic Management Plan	28 days
7.	Disaster Management Plan	28 days
8.	Site Environmental Plan	28 days

- 4.4.6.2. Construction Phase Safety Plan
- 4.4.6.2.1. The Contractor shall produce a Contract specific Construction Safety Plan and submit to the Employer /Engineer within 28 days of commencement.
- 4.4.6.2.2. The Construction Safety Plan shall contain the informational requirements as per the CSP contents as prescript within the CMRL H&S Manual Volume 2, Safety Plan contents.
- 4.4.6.2.3. The CHSP shall be assessed by the Employer /Engineer against the provisions as stated within H&S Manual Volume 2. Where deficiencies exist to an extent where an objection is raised, construction activities shall be suspended until such time as the deficiencies are subject to corrective action, re-submittal and notice of no objection by the Employer/Engineer.
- 4.4.6.2.4. Delays incurred as a result of the Contractor failing to achieve a 'No objection' status from failing to submit within the specified timescale or non-compliance with ESHS Volume 2 shall be entirely at the Contractor's risk and cost.
- 4.4.6.2.5. The Contractor shall undertake a monthly review of the CSP. The review shall be recorded and the Employer /Engineer notified of any updates.
- 4.4.6.2.6. The Contractor shall produce a Contract Specific Fire Evacuation plan and submit to the Employer /Engineer within 28 days of commencement.
- 4.4.6.2.7. The Contractor shall produce a Contract Specific Construction ESHS plan and submit to the Employer /Engineer within 28 days of commencement.
- 4.4.6.2.8. The Contractor shall produce a Contract Specific Construction contingency plan and submit to the Employer /Engineer within 28 days of commencement.
- 4.4.6.2.9. The Contractor shall produce a Contract Specific Construction Health Plan and submit to the Employer /Engineer within 28 days of commencement.
- 4.4.6.2.10. The Contractor shall produce a Contract Specific Traffic Management Plan and submit to the Employer /Engineer within 28 days of commencement.
- 4.4.6.2.11. The Contractor shall produce a Contract Specific Disaster Management Plan and submit to the Employer /Engineer within 28 days of commencement.
- 4.4.6.2.12. The Contractor shall, from time to time and as necessary are required by the Employer/Engineer to produce supplements to the ESHS Plan such that it is at all times a detailed, comprehensive and contemporaneous statement by the Contractor of his site safety, industrial health and environment obligations, responsibilities, policies and procedures relating to work on Site. Any and all submissions of supplements to the ESHS Plan shall be made to the Employer /Engineer in accordance with the agreed procedures.
- 4.4.6.2.13. If at any time the ESHS plan is, in the Employer /Engineer opinion, insufficient or requires revision or modification to ensure the security of the Works and the safety of all workmen upon and visitors to the Site, the Employer/Engineer may instruct the Contractor to revise the ESHS plan and the Contractor shall within 7 days submit the revised plan to the Employer/Engineer for review.
- 4.4.6.2.14. Any omissions, inconsistencies and errors in the ESHS Plan or the Employer /Engineer acceptance or rejection of the ESHS Plan and/or supplements thereto shall be without prejudice to the Contractor's obligations with respect to site safety, industrial health and environment and shall not excuse any failure by the contractor to adopt proper and recognised safety practices throughout the execution of the Work.
- 4.4.6.2.15. The Contractor shall adhere to the ESHS Plan and shall ensure, as far as practically possible, that all sub-contractors of all tiers require that contracting parties each have a copy of the Site ESHS Plan and comply with its provisions
- 4.4.6.3. Construction Phase Site Environmental Plan

- 4.4.6.3.1. The Contractor shall produce a Contract Specific Site Environmental Plan (SEP) and submit to the Employer /Engineer within 28 days of commencement.
- 4.4.6.3.2. The Site Environmental Plan (SEP) shall contain the informational requirements as per the contents as prescript within the CMRL Environmental Management Arrangements Volume 3, Environmental Plan contents.
- 4.4.6.3.3. The SEP shall be assessed by the Employer /Engineer against the provisions as stated within the Environmental Management Arrangements Volume 3. Where deficiencies exist to an extent where an objection is raised, construction activities shall be suspended until such time as the deficiencies are subject to corrective action, re-submittal and notice of no objection by the Employer /Engineer .
- 4.4.6.3.4. Delays incurred as a result of the Contractor failing to achieve a 'No objection' status from failing to submit within the specified timescale or non-compliance with Environmental Management Arrangements Volume 3 shall be entirely at the Contractor's risk and cost.
- 4.4.6.3.5. The Contractor shall undertake a monthly review of the SEP. The review shall be recorded and the Employer /Engineer notified of any updates.

4.4.6.4 Operational procedures

- 4.4.6.4.1 The Contractor shall identify within the Hazard Log and Risk Register the operational control procedures that shall be applicable for the CMRL project under their individual scope of works.
- 4.4.6.4.2 Operational procedures shall be submitted for review to the Employer /Engineer for notice of no objection together with the Construction Site Safety Plan within 4 weeks of commencement.
- 4.4.6.4.3 The operational procedures shall be evaluated by the Employer /Engineer against the requirements stated within H&S Manual Volume 2, Environmental Arrangements in Volume 3, EMP in PCC, international safety standards such as the International Labour Organisation, European Norms and British Standards where an equivalent Indian Standard does not exist.
- 4.4.6.4.4 Construction works shall not commence until such time as a notice of no objection has been received; applicable to all operational procedures as identified within Table 4 and the Contractor's Hazard Log, Grievances Log & Risk Register. Should the Contractor commence operations on site without notice, the Employer /Engineer shall award a 'Zero' audit score for every month of non-compliance with this clause.
- 4.4.6.4.5 The submitted procedures shall be individually identified with a unique reference and detail in sequence the scope, purpose, referenced material and procedure processes.
- 4.4.6.4.6 In the event that the Contractor is unable to comply with the 28 day timeframe for submittal of the minimum operational procedures as detailed within Table 4, the Contractor shall assign an individual identification reference for the outstanding procedure within the Construction Health, Safety & Environmental Plan together with the statement 'Under process'. The 'Under Process' procedure shall be required to be submitted for notice of no objection a minimum of 28 days prior to commencement of any activity that involves the application of the procedure.

Operations 8	Plant & quipment p	Health provisions	Emergency Medical Facilities & First	Environmental Pollutants
--------------	-----------------------	----------------------	--	-----------------------------

Table 4 Operational Procedures

Equipment			Aid	
Personal Protective Equipment	Permit to Work Systems	Site Electricity & Distribution	Welding & Cutting operations	Air
Incident Investigation	Traffic Management	Working at Height	Hazardous Substances	Waste Water
Site Security	Fire Safety	Manual Handling	Site Set-up	Solid Waste
Abrasive Wheels	Public Interface	Noise and Vibration	Welfare Arrangements	

Ecological Impacts	Potential Habitat loss for Olive Ridley Turtles	
Physical and Cultural Resources	Historic and Cultural Value Loss	
Community Liaison and Consultation	Important measures to reduce community risk.	
Grievance Redressal Mechanism	For workers and project affected people	4.
Monitoring	ESHS compliance of all abovementioned aspects	
	Pollutants monitoring in line with Environmental Monitoring Plan in PCC	

The Contractor shall adopt the following colour code scheme across all CMRL Sites to ensure efficient recognition of relevant personnel

Safety Helmet Colour with Logo	Designation		
White	CMRL Staff and Engineer		
Violet	Contractor's Engineers & Supervisors		
Blue	Sub-Contractor's Engineers & Supervisors		
Red	All Electricians		
Green	All ESHS personnel		

Orange	Security Guards & Traffic Marshals
Yellow	General Workforce
White (With VISITOR Sticker)	Visitors

- 4.4.6.4.7 The PPE and safety appliances provided by the contractor shall be of the standard as prescribed by Bureau of Indian Standards (BIS). The contractor shall obtain prior approval by the Employer /Engineer Employer before procurement of PPE and safety appliances.
- 4.4.6.4.8 The contractor shall at all-time maintain a minimum of 10% spare PPE and safety appliance stock. Stocks are to be recorded and made available for the Employer /Engineer upon request. Failing to do so shall invite appropriate penalty as per the provisions of the contract.

4.4.7 Emergency preparedness and response

4.4.7.1 Emergency Response Plan

- 4.4.7.1.1 The Contractor shall prepare a project specific Emergency Plan and submit to the Employer /Engineer for notice of no objection. The Emergency Plan shall be submitted within 4 weeks of contract Commencement.
- 4.4.7.1.2 The plan must identify the potential for emergencies and the provisions for responding to such emergencies, particular to their environment and location. The Emergency planning arrangements shall be assessed as per the provisions in H&S Manual, Volume 2 Environmental Management Arrangements of Volume 3 and EMP in PCC for suitability.
- 4.4.7.1.3 The Contractor shall ensure that all persons including sub-Contractors on site are aware of the emergency procedure to follow in the event of an emergency. Awareness training shall commence at induction and thereafter through refresher training such as toolbox talks and monthly emergency drills. Records of refresher training and emergency drills shall be maintained.
- 4.4.7.1.4 Site signage shall be erected and detail the emergency process to follow and include emergency telephone numbers, fire, ambulance, police, nearest hospital etc.
- 4.4.7.1.5 Arrangements shall be made by the Contractor for casualty evacuation and emergency medical treatment. The Contractor shall enter into an agreement with a hospital to provide ambulance services. Alternatively, the Contractor shall provide a fully equipped ambulance on-site that shall be manned by a paramedic. This provision shall be subject to the Employer /Engineer audit.

4.5. Checking

4.5.1 **Performance measurement and monitoring**

4.5.1.1 The Contractor shall submit a Monthly ESHS Progress Report no later than 7th of each month to the Employer /Engineer . The Monthly ESHS Progress Report template to be prepared by Contractor for CMRL to clear 28 days prior to construction commencement. The Report shall contain the minimum information specified within H&S Manual Volume 2, Environmental Management Arrangements of Volume 3 and EMP in PCC. The report shall contain text, tables and colour photographs.

- 4.5.1.2 Site Inspection
- 4.5.1.3 Independent of the plant and equipment inspection, testing and maintenance regimes that shall be stated within the Contractor's Plant and Equipment Procedures, the Contractor shall carry out site monitoring exercises on a daily and weekly basis.
- 4.5.1.4 The Contractor shall ensure that all monitoring equipment is calibrated as per the manufactures requirements. The Employer /Engineer shall be provided with test certificates for such equipment
- 4.5.1.5 Site Engineers shall be required to participate in daily internal ESHS inspections to facilitate prompt communication and rectification of minor deviations. Records of such inspections and rectification needs shall be maintained at site level and made available for review by the Employer /Engineer other interested parties.
- 4.5.1.6 No loose electrical connections or tapped joints shall be allowed any where in the work site, office area, stores and other areas. Penalty as per relevant clause shall be put in case of observation of any tapped joints.
- 4.5.1.7 Formal site inspection reports shall be produced on a weekly basis by the Contractor's ESHS personnel for each site and submitted to the Project Director or project manager and copied to the Contractor's corporate safety manager. The corporate Safety Manager shall conduct site inspection on monthly basis and report shall be submitted to the Employer /Engineer.
- 4.5.1.8 The Contractor may choose inspection format of his/her choice, however format shall contain the minimum information as provided within FSAF-028 –H&S Manual Volume 2 regarding weekly inspection form by providing concise information and highlight the key non-compliance inspection findings on the very first page.
- 4.5.1.9 The Contractor's ESHS Personnel shall be accompanied during a formal site inspection by the Site Manager responsible for the particular site. The resulting inspection report shall be signed by both the Site Manager and the ESHS Manager.
- 4.5.1.10 The Engineer shall formally inspect and report the Contractor's site conditions against the compliance criteria set within the Contractor's operational procedures and the Engineer's requirements on a weekly basis. These inspections shall include batching plant and associated yards.
- 4.5.1.11 The Contractor shall undertake specific inspections at the Employer/Employer's Representative's request where concerns have been raised regarding the suitability of control measures and or plant or equipment condition as per the IS 13367-1 (1992), IS 4475-1(1997), ISO 12482-1:1995. The special assessment shall be carried out later than the following number of years after manufacture for:
 - Tower cranes, loader cranes, mobile cranes: 10 years;
 - All other cranes: 20 years. Such inspections shall be carried out with immediate effect.
- 4.5.1.12 The Profile of the External Inspection agency, ISO certifications, the name, educational qualifications and experience in the field of testing and the certificate issued by Govt of Tamil Nadu for testing are to be submitted to the Employer/Engineer a minimum 28 days before prior to appointment of the agency. Only upon notice of no objection by the Employer /Engineer shall be authorised to deliver ESHS services on CMRL sites.
- 4.5.1.13 The First Generation Hydra crane shall not be strictly used in the CMRL projects.

- 4.5.1.14 The Second Generation Hydra crane shall not be used for any lifting and lowering operation. Second Generation Hydra can be used for the material handling as per the manufacture manual.
- 4.5.1.15 The Piling rig shall not be used as lifting equipment.
- 4.5.1.16 Water logging or bentonite spillage on roads shall not be allowed. If bentonite spillage is observed on road endangering the safety of road users, the contractor shall be penalised as per Table -6.
- 4.5.1.17 The contractor shall submit an electrical single line diagram, schematic diagram and the details of the equipment for all temporary electrical installation. These diagrams together with the temporary electrical equipment shall be submitted to the Employer /Engineer for necessary approval. Failure to do so shall invite penalty as per relevant clause
- 4.5.1.18 CCTV shall be installed in Administrative areas, Construction areas (general indoor, general outdoor and general underground work areas, mucking and scaling), Maintenance / Operating areas, Mechanical/electrical equipment rooms, Warehouses and storage rooms/area, Casting yard, Labour Colony, Health Centres and First aid stations and infirmaries, Parking areas, Visitor areas and Laboratories. The contractor shall submit the CCTV installation and monitoring plan to Employer /Engineer.
- 4.5.1.19 Request for inspection form all High risk activity shall be verified by the Chief ESHS Manager before submitting to the Employer.
- 4.5.1.20 Failure to do any of the above shall attract penalty from the Employer /Engineer as per relevant clause.

4.5.2 Evaluation of compliance

- 4.5.2.1 The information submitted by the Contractor within the ESHS Monthly Progress Report together with the Engineers Reports shall be evaluated against the Employer's compliance requirements and ESHS objectives.
- 4.5.2.2 Inspection reports shall be evaluated against the Legal Requirements (4.3.2) to which the Contractor is bound to comply.
- 4.5.2.3 The Contractor's ESHS Committee shall formally evaluate reports and results of accidents and or injury on a monthly basis during the monthly meeting. The results of this evaluation such as identified changes to safe systems of working' shall be included with the Committee minutes
- 4.5.2.4 The Engineer shall evaluate 'Accident Injury Rates' and 'Frequency Rates' per individual Contractor and as a project to determine performance against the international rates. The international rates used to benchmark performance shall be promulgated to all Contractor's and other interested parties.
- 4.5.2.5 The ESHS monthly progress report shall be a part of Project Monthly Progress Report produced by the Engineer. Evaluation results shall be included within the relevant sections for Health Safety & the Environment.
- 4.5.2.6 The Contractor's External ESHS Audits (4.5.5) shall be evaluated by the Employer /Engineer against the internal Standards ISO 45001:2018 and ISO 14001:2015.

4.5.3 Incident investigation, nonconformity, corrective action and preventive action

4.5.3.1 Incident investigation

4.5.3.1.1 The Contractor shall undertake accident investigation for all fatal accidents, major injuries and dangerous occurrences as defined within the Employer's Project H&S Manual VOL 2.

- 4.5.3.1.2 In the event of a fatality, major injury or dangerous occurrence, the Contractor shall not disturb the accident scene or remove equipment beyond that required to make the area safe and/or for the treatment and/or removal of casualty(s) to hospital.
- 4.5.3.1.3 Should the Employer /Engineer find an accident scene disturbed beyond that reasonably expected with making an area safe, this shall be subject to thorough investigation by the Employer /Engineer .
- 4.5.3.1.4 The Employer /Engineer shall be informed immediately via Short Message Service or Email of all fatalities, major injuries or dangerous occurrences. Any delay in reporting to the Employer /Engineer may be subject to disciplinary action as per Table 6.
- 4.5.3.1.5 The Contractor is responsible to report accidents, incidents and dangerous occurrences to the relevant governing bodies as per their statutory obligations. The Contractor shall maintain responsibility for ensuring sub-Contractor's under their direct control also comply with this requirement.
- 4.5.3.1.6 A preliminary accident notification report shall be issued to the Employer /Engineer for all fatal and major injuries and or dangerous occurrences within 24 hours as per H&S Manual Volume 2. This shall be followed by the detailed investigation report shall be issued to the Employer /Engineer within 72 hours.
- 4.5.3.1.7 Any wilful delay in verbal or written reporting to the Employer /Engineer shall be penalised as per relevant clause.
- 4.5.3.1.8 Near misses and minor accidents should also be investigated by the Contractor and documented with time-bound corrective/preventive actions taken as soon as possible as they are signals that there are inadequacies in the safety management system.
- 4.5.3.1.9 In case of fatal accidents, major injuries or dangerous occurrences the Employer /Engineer shall conduct an independent investigation. The Contractor and his staff shall extend the necessary co-operation.
- 4.5.3.1.10 All persons summoned by the Employer /Engineer in connection to witnesses and statement recording shall obey the instructions without delay. Any wilful suppression of information by any person shall be removed from the site immediately and / or punishable as per relevant penalty clause

4.5.3.2 Nonconformity, corrective action and preventive action

- 4.5.3.2.1 The Contractor shall conform to their internal procedures regarding nonconformity, corrective action and preventive action. The Contractor shall be audited by the Employer /Engineer for compliance with internal procedures.
- 4.5.3.2.2 Major and Minor non-conformances shall be raised by the Employer /Engineer as per the Employer's Quality Management requirements and the ESHS Audit criteria as defined within H&S Manual Volume 2, Volume 3 Environment management arrangement and EMP in PCC.
- 4.5.3.2.3 Open non-conformances shall be reflected in the Contractor's Monthly Audit Report and are subject to verification by the Employer /Engineer as detailed in ESHS Volume 2. Failure to successfully take corrective action and close out non-conformances will impact negatively on the Contractor's total quarterly audit score.
- 4.5.3.2.4 Where non-conformances have been raised by an External Auditor against the ISO 45001:2018 or ISO 14001 Standard, the Contractor shall produce and submit for review

within 2 weeks, an action plan of how and within what timescale shall the non-conformance(s) be closed-out.

- 4.5.3.2.5 Where the corrective action and preventive action identifies new or changed hazards or the need for new or changed controls, the proposed actions shall be taken through the risk assessment process. The associated method statement and risk assessment shall be amended and re-submitted to the Employer /Engineer for notice of no objection.
- 4.5.3.2.6 A change in work methodology shall be communicated to the workforce. Evidence of such communications shall be made available for inspection by the Employer /Engineer . The Employer /Engineer shall also make random enquiries at site level to establish workforce awareness.
- 4.5.3.2.7 The following table indicates the risk rating for the non-compliance of the requirements (unsafe acts/unsafe conditions).

Risk	Торіс	Deductible amount
High	Hazardous waste management, Explosive Handling and Blasting , Plant & Machinery (Examination certificate of Gantry crane, rope suspended powered platform, tractor mounted drilling rig ,No legal documents, Erection/lifting mast, wire rope/web sling/dog clamp/chain pulley, rope pulley , air compressor, Electrical trolley OTE duct installation) Equipment (Guarding arrangements), Excavations(Shoring, edge, material stored on the edge of the excavation protection) , Work at Height(Edge protection, fall protection measures , Ladder , life line , working platform, safe access/egress, double	Any specific high risk activity non-conformance (unsafe act/unsafe condition) shall be immediately complied by taking corrective action by as low as reasonably practicable and specific high risk activity non- conformance work shall be suspended until the corrective actioned.
	layer net, provision of safety net, leading edge protection), Floor Opening, Emergency preparedness and response, emergency rescue basket ,emergency stop system in conveyors, Locomotive movement Quality of compressed air in working chamber, hyperbaric, Emergency Equipment, vibration, radiation, fire and smoke ,compressed air works, pressure vessels,), Public Interface, Traffic Management (Work	
	area perimeter hoardings, public protection from site operations, Height barrier, Storage of material in public area, Vehicular Traffic), Lifting operations, Demolition, False	

Risk	Торіс	Deductible amount
	Work/Form Work, Piling, Work adjacent to live railways, Over Head Protection, Site Transport, HT Line, Material Falling Hazards, Building demolition,	
	Diesel storage licence (statutory documents),	
	Tandem Lifting, High risk activity method statement approval and implementation, lift Plan for high risk activity, harmful substances, Incident reporting and investigation. work adjacent to live railways, work adjacent to live roadways, launching operation, barricade / cover to voids, trench, bored holes and open edges of structure, site security.	
Medium	Working at height (Harness, guard rails and toe board), Welfare (Drainage arrangements, Rest Room, Toilet, washing Facilities, bathing facility, canteen. eating area ,fan, and light at rest room, cooking facility ,drinking water) , Medical Facilities, Site Tidiness, Fire precautions(Labour camp) , PPE, House Keeping(Poor housekeeping , Poor storage of material , Muck disposal, poor stacking, slush not disposed, waste debris not removed , water logging , water stagnation) , Gases , Fumes Etc. , Training /Induction , Reporting of accidents and investigation , Sleeping at workplace , Electrical (Trailing cable-Trip Hazard Poor distribution board),Slippery Floor, Denailing, reporting of accident ,corrective and preventive action, Traffic management (Pedestrian walkway, barrier lighting),Highway cleanness, provision of silence equipment's ,Power tool and condition of equipment's ,Plant , equipment and machinery (Back hoe loader , tyre condition, driving licence, material hoist opening concrete bucket, insurance certificate , safety sensor , ASLI, anemometer , safety devices,	Rs 10,000/-per specific activity NCR
	banksman ASLI calibration, dumpers),Access and egress, Disposal of waste, debris ,Fire(arc welding, gas cutting set ,hot work ,First aid facility, wheel washing facility, Mandatory contractor ESHS management	

resource, medical examination, Monthly audit report, Drilling machine, power tools , Manual Lifting and Carrying of excessive weight, Dangerous and harmful environment, Corrosive Substances, smoking , mobile phones, radio's and audio equipment. Low Specific activity standard operating procedure , Working at height (Scaffolding inspection, competent person, Notice Display, COSHH , health Risk ,ESHS Register's , ESHS Documentation , Noise , Waste , Site ESHS Committees , Mobile phones , Radio , Audio Equipment , Dust and CCTV, Signage's(Emergency Exit, Warning , cautionary and information),Safety induction, Specific activity safe work procedure ,risk assessment ,RASI permit ,public liaison signage, IRC Signage's, PPE Examination certification, provision of skips and maintenance, ISO certification audit, competency training, control of dust, control of noise, COSHH, Display of ESHS policy and poster , CEIG Approval Site illumination ,permits system, Ambulance, External ESHS Training as per the Training Implementation plan , Quarterly External ESHS audit, first aid resources, ID card and First Day at Work, H&S Training, Labour licence, BoCW registration, contract labour licence, legal register, Name board display in crane boom, ESHS Hand book ,personal protective equipment ,Vehicle operator check, Inspection of Plant , Equipment and machinery by the contractor plant manager, Eye Wash Station, visitor (ID Card ,lock attendance register, medical records), H&S Submittal to the Employer, Monthly H&S Report.	Risk	Торіс	Deductible amount
, Working at height (Scaffolding inspection, competent person, Notice Display, COSHH, health Risk ,ESHS Register's , ESHS Documentation , Noise , Waste , Site ESHS Committees , Mobile phones , Radio , Audio Equipment , Dust and CCTV, Signage's(Emergency Exit, Warning , cautionary and information),Safety induction, Specific activity safe work procedure ,risk assessment ,RASI permit ,public liaison signage, IRC Signage's, PPE Examination certification, provision of skips and maintenance, ISO certification audit, competency training ,control of dust ,control of noise, COSHH, Display of ESHS policy and poster , CEIG Approval Site illumination ,permits system, Ambulance, External ESHS Training as per the Training Implementation plan , Quarterly External ESHS audit, first aid resources, ID card and First Day at Work, H&S Training, Labour licence, BoCW registration, contract labour licence, legal register, Name board display in crane boom, ESHS Hand book ,personal protective equipment ,Vehicle operator check, Inspection of Plant , Equipment and machinery by the contractor plant manager, Eye Wash Station, visitor (ID Card ,lock attendance register, medical records), H&S Submittal to the Employer,		report, Drilling machine, power tools, Manual Lifting and Carrying of excessive weight, Dangerous and harmful environment, Corrosive Substances, smoking, mobile	
	Low	, Working at height (Scaffolding inspection, competent person, Notice Display, COSHH , health Risk ,ESHS Register's , ESHS Documentation , Noise , Waste , Site ESHS Committees , Mobile phones , Radio , Audio Equipment , Dust and CCTV, Signage's(Emergency Exit, Warning , cautionary and information),Safety induction, Specific activity safe work procedure ,risk assessment ,RASI permit ,public liaison signage, IRC Signage's, PPE Examination certification, provision of skips and maintenance, ISO certification audit, competency training ,control of dust ,control of noise, COSHH, Display of ESHS policy and poster , CEIG Approval Site illumination ,permits system, Ambulance, External ESHS Training as per the Training Implementation plan , Quarterly External ESHS audit, first aid resources, ID card and First Day at Work, H&S Training, Labour licence, legal register, Name board display in crane boom, ESHS Hand book ,personal protective equipment ,Vehicle operator check, Inspection of Plant , Equipment and machinery by the contractor plant manager, Eye Wash Station, visitor (ID Card ,lock attendance register, medical records), H&S Submittal to the Employer,	

4.5.3.2.8 Non conformity compliance will be reviewed on periodical monthly basis and penalty clause imposing in the tender for Non-compliance of NCR for a) Medium Risk and b) Low risk as per below Table-5

S.No	Risk	Days from the notice of the event within which the work should have are commenced duly mitigating the risk	Deductible amount
A	Medium	 i)The contractor complied the specific activity NCR (unsafe act/unsafe condition) ≤24hours. ii) The contractor complied the specific activity NCR (unsafe 	Fore item i) No deduction ii)Closure of the specific activity NCR Rs 7500/- per will be refunded and

<u>Table-5</u>

S.No	Risk	Days from the notice of the event within which the work should have are commenced duly mitigating the risk	Deductible amount
		act/unsafe condition) more than 24hours ≤ 7days iii) The contractor failure to comply the specific activity NCR (unsafe act/unsafe condition) within the stipulated time period of 7days	for each specific NCR. iii)Rs10,000 will be a permanent
В	Low	 i)The contractor complied the specific activity NCR (unsafe act/unsafe condition) ≤24hours. ii) The contractor complied the specific activity NCR (unsafe act/unsafe condition) more than 24hours ≤ 7days iii) The contractor failure to comply the specific activity NCR (unsafe condition) within the stipulated time period of 7days 	iii) Closure of the specific activity NCR

- 4.5.3.2.9 The High Risk Non –compliance (Unsafe act/Unsafe condition) shall be suspended the specific work activity immediately. The Contractor shall not proceed with the work until remedial works have been complied with under the direction and satisfaction of the Employer/Engineer. Request for inspection with the evidence of compliance shall be submitted to the Employer/ Engineer for the verification
- 4.5.3.2.10 The Contractor shall not be entitled to any damages or compensation for stoppage of work, due to safety reasons. The period of such stoppages of work shall not be taken as an extension of time for completion of the facilities and will not be the ground for waiver of levy of liquidated damages.
- 4.5.3.2.11 Any non-conformance of unsafe act should be treated as disciplinary action towards the person and department in charge and as well as recommended for tacking refreshment training on the specific task.
- 4.5.3.2.12 Closure of Non conformance will be verified by the submission of photograph evidence or physical verification on satisfaction of the Employer/Engineer.

4.5.4 Control of records

- 4.5.4.1 The Contractor shall maintain all ESHS records in accordance with the Contactors ISO 9001 :2015 Quality Management System.
- 4.5.4.2 Records shall be made available to the Employer /Engineer upon request for the purpose of incident investigation and management review.

4.5.5 Audit

4.5.5.1 Monthly Audit Report (MAR)

- 4.5.5.1.1 The Contractor shall undertake an internal monthly audit using the process and audit report form (MAR) as prescribed within "FSAF-11 Monthly Audit Score Sheet" of H&S Manual Volume 2.
- 4.5.5.1.2 The Contractor shall submit the completed audit report no later than the 7th of each month within the Contractor's monthly ESHS Report. Failure to submit the monthly audit report within the stipulated timescale shall result in the Employer / Engineer awarding a 'Zero' score for the month.
- 4.5.5.1.3 The audit scores awarded internally by the Contractor shall be subject to review and verification by the Employer / Engineer . The Employer / Engineer shall substantiate the awarded scores through making comparison with the results of a physical site inspection against the model audit scores criteria as provided within H&S Manual Volume 2.
- 4.5.5.1.4 The Employer / Engineer shall formally verify that the Contractor's self-awarded scores comply with the audit scoring system and scoring criteria as defined within H&S Manual Volume 2. Where discrepancy exists the Employer / Engineer shall provide supporting evidence (Photographic) and instruct the Contractor to amend the initial awarded score. Following adjustment, the monthly audit report shall be re-submitted to the Employer / Engineer within 3 days.
- 4.5.5.1.5 The Contractor shall be required to achieve a minimum 65% overall audit score on a monthly basis .
- 4.5.5.1.6 If non-payment of the lump sum item in preliminaries occurs as a result of failing to achieve the required 65% over a single quarterly reporting period, the Employer/Engineer may reinstate the lump sum item at his discretion should the contractor achieve above 65% for the following six (6) consecutive monthly ESHS audits equating to two (2) quarterly reporting periods. This repayment shall not occur if the quarterly aggregate of Monthly audit scores is less than 50%.
- 4.5.5.1.7 In the event the Contractor fails to achieve a minimum of 65% on a monthly audit, an action plan shall be submitted together with the audit results detailing the actions that shall be taken within timescales.
- 4.5.5.1.8 Monthly audits as part of the monthly ESHS monitoring shall be conducted prior to the sitting of the Contractor's ESHS Committee and shall form part of the agenda.
- 4.5.5.1.9 Contractor Recognizing
- 4.5.5.1.10 The Employer/Employer's shall recognize the effort if the contractor achieves above 75% for the following three (3) consecutive monthly ESHS audits of one quarterly reporting periods. Only for the preceding three (3) months deducted amount of ESHS NCR will be refunded.

4.5.5.2 External ESHS Audit

- 4.5.5.2.1 The Profile of the External ESHS Audit agency, the name, educational qualifications and experience for of the auditors are to be submitted to the Employer/Engineer a minimum 28 days before prior to appointment of the agency. Only upon notice of no objection by the Employer /Engineer shall be authorised to conduct audit on CMRL sites.
- 4.5.5.2.2 The External ESHS Audit template shall be submitted to the to the Employer/Engineer in the format prescribed (FSAF 31-Volume 2 of H& S Manual) a minimum 28 days before prior

to conducting of the audit. Only upon notice of no objection by the Employer /Engineer shall be authorised to conduct audit on CMRL sites.

- 4.5.5.2.3 The Contractor is required to conduct external audits by ISO accredited 3rd party agency as per the Indian Standards, ISO 45001 :2018 & ISO 14001:2015 international standards on a quarterly basis throughout the Contract period.
- 4.5.5.2.4 External audit and follow up audit reports shall be submitted to the Employer /Engineer for review within 7 days of audit completion.
- 4.5.5.2.5 Should the Contractor fail to undertake external audits within the 3-month period the Employer /Engineer shall appoint an ISO accredited 3rd party agency to conduct the audit at the Contractor's cost.
- 4.5.5.2.6 Where 'Major' non-conformances with international standards are identified, a follow-up external audit shall be carried out within 28 days for closing out of the non-conformance(s). Follow-up audits shall continue on a 28-day rotation until such time as Major non-conformances are closed to the satisfaction of the 3rd Party ISO accredited auditor.
- 4.5.5.2.7 In case of non-conformity of items identified by auditor, the Employer /Engineer shall take necessary steps including stoppage of work and or imposing of any penalty to ensure satisfactory execution.

4.6. Management review

- 4.6.1 Management Reviews shall be undertaken annually by the Employer /Engineer in compliance with ISO 9001:2015.
- 4.6.2 The template for management review report shall be submitted a prior for approval of CMRL. The Management Review Report shall make recommendations for improvement.
- 4.6.3 The Contractor shall carry out a formal Management Review on an annual basis as a minimum. The Management Review may form part of the review under the organisations Quality Management System.
- 4.6.4 The Contractor shall submit Management Review Report to the Employer /Engineer within 7 days after meeting completion together with the organisations new objectives.

4.7. External ESHS Agency

4.7.1 The Contractor's External ESHS Agency thereon, who in the opinion of the Employer /Engineer, incompetent or negligent or fails to conform with any particular provisions with regard to ESHS or the requirement of the contract or legal requirement, or persists in any conduct which is prejudicial to ESHS, shall be removed from site immediately, and such external ESHS agency shall not be employed again upon the Works. The decision of the Engineer in this regard shall be final.

4.8. Penalty

- 4.8.1 CMRL has built an image of safety conscious organisation meticulously over a period of nine years. Any reportable accident (fatality / injury) results in loss of life and/or property damage. These accidents not only result in loss of life but also damage the reputation of CMRL. Most of the accidents are avoidable and caused preliminary due to contractors' negligence. Hence CMRL shall recover the cost of damages from the contractors for every reportable incident (fatality / injury).
- 4.8.2 In addition every CMRL work site is exposed to public scrutiny as the work is executed just on the right-of-way. Any unsafe act / unsafe condition observed by public further damages our reputation. Because of the non-voluntary compliance of contractors to the Employer's ESHS requirements or Employer's direct instructions and project H&S manual, CMRL has

been forced to establish safety-enforcing organisation. The cost of established such organisation is to be recovered from contractors for all observed safety violations at sites.

4.8.3 The following table-6 indicates the Health, Safety and Environment violation (unsafe act / unsafe condition) and charges to be recovered from contractors.

SI No	TOPIC	UNSAFE ACT/UNSAFE CONDITION	DEDUCTIBLE AMOUNT *
1	ESHS Policy & Plan	 i) ESHS policy a) Non-compliance of CMRL ESHS Contract requirement b) Inadequate coverage, not signed c) Not displayed it at conspicuous places at work sites in Hindi and a local language understood by the majority of construction workers ii) ESHS plan: a) Not as per Employers' content and coverage b) Not submitted to the ER within 28days of commencement of work c) Not updated as per CMRL ESHS Contract requirement d) Copies not provided to all required supervisors / engineers e) Not implemented to a satisfactory and not recorded a monthly review of the construction ESHS plan f) Non submission of Utility shifting Plan. g)Non submission of any other work plans required in the EMP of PCC. h) Non submission of construction Camp Layout plan 	For item i) and item ii) Rs. 1,000 per single violation, compounded to a maximum of Rs. 5,000 at any single instance.
2	ESHS Organisation	 i) Not complying to the minimum manpower requirements as per CMRL ESHS Contract requirement ii) Not filling up the vacancies created due to ESHS personnel leaving the contractor within 30 days. iii) ESHS organisation not provided with required Audio-visual and other equipment's CMRL ESHS Contract requirement iv) Employing through outsourcing agencies and ESHS personal are not in the payroll of the main contractor v) Disobedience / Improper conduct of any ESHS personnel. vi) Chief ESHS Manager not reporting directly to PM of contractor. vii) Non-compliance of any rule of schedule VI of BOCWR within one month of commencement of work 	For item i) and ii) Rs. 50,000 per month for first month and Rs.1,00,000 for subsequent months For items iii), iv), v), vi) and vii) Rs. 50,000 for first violation and Rs.1,00,000 for subsequent violations

<u>Table-6</u>

SI No	TOPIC	UNSAFE ACT/UNSAFE CONDITION	DEDUCTIBLE AMOUNT *
3	ESHS committee	 i) Failed to formulate or conduct ESHS Committee meeting for any month ii) Contractor and Sub-contractor representatives not attending ESHS Committee meetings iii) Failed to conduct Site inspection and send monthly monitoring reports including the inspection form before conducting ESHS Committee meeting iv) Failed to send ESHS Committee Meeting minutes or Agenda to Employer /Engineer in time v) A minimum period of 21 days not maintained between any two ESHS monthly committee meetings vi) Failed to formulate equal participants of management and non-management staff for ESHS committee meeting as per BOCWR 	For item i) to vi) Rs. 1,000 for the first violation and Rs. 5,000 for the subsequent violations.
4	ID card	 i) ID Card not provided to all staff and workers ii) Contractor not issued a personnel ESHS handbook to all staff and workers, which provides information on ESHS and emergency procedures that all personnel working on contract are required to know and the need to follow and ensured that this is distributed and its content introduced to all the personnel working at sites. iii) The contractor not ensure that all personnel working at the site receive an Induction ESHS training the nature of the work, the hazards that may be encountered during the site work and the particular hazards attached to their own function within the operation iv) All personnel no issued a photo identity of size 85mm x 55mm duly signed by the authorized representative of the contractor before they are engaged for any work 	For item i) to iv) Rs. 1,000 for the first violation and Rs. 5,000 for the subsequent violations.
		Not complying to the requirements as mentioned in CMRL ESHS Contract requirement and Employer OHS manual with regard to: a) Induction training not given b) Supervisor/engineer/manager training not conducted CMRL ESHS Contract requirement c) Refresh ESHS training CMRL ESHS Contract requirement d) Tool-box talk not conducted e) Skill development training not conducted f) Daily Safety Oath not conducted	For item a) to j) Rs.5,000 for first violation on and Rs.10,000 for subsequent violations

SI No	TOPIC	UNSAFE ACT/UNSAFE CONDITION	DEDUCTIBLE AMOUNT *
5	ESHS Training	 g) Top management behaviour based ESHS training conducted h) Not submitted a Training implementation plan to be cleared by Employer i) Not able to produce adequate records as per the approved Training implementation plan j) Not able to conduct training on construction safety plan, operational and 	
		systems procedures with record of durations.	
6	ESHS Inspection	 ESHS inspection a) Not complying to the requirements as mentioned in CMRL ESHS Contract requirement and Employer ESHS manual b) All inspection records and reports not properly kept and filed for audit purpose, inspection reports of Planned General Inspection and Routine Inspection not used for discussion during Safety Committee Meetings with MOM. c) Not conducted independent of the plant and equipment inspection, testing and maintenance, that has been stated in the Contractor's Plant and Equipment Procedures with records. d) Not calibrated any of the monitoring equipment's as per the manufacturing requirements e) Not conducting internal ESHS inspections. f) Site Engineers(contractors) not participating in internal ESHS inspections. g) Not submitting the Formal site inspection report for each site on weekly basis to Project director h) Formal site inspection report not to be signed by both the Site Manager and the ESHS officer 	For item a) to h) Rs.5,000 for first violation on and Rs.10,000 for subsequent violations
		Internal Audit: MARS and Electrical	For item i) to viii)
		Safety i) Not conducted as per ESHS Plan ii) Report not sent to Employer iii) Action not taken for any month iv) Fail to conduct MARS before the monthly ESHS meeting to form a part of agenda	Rs. 25,000 for first violation and Rs. 50,000 for subsequent violations.
7	ESHS audit	External H&S Audit v) Not conducted as per ESHS plan vi) Report not sent to Employer vii) Action not taken for quarter month viii) Fail to conduct external third-party audit as per BOCW Rule ix) Fail to conduct ISO certification audit for the scope of the CMRL project	For item ix) Rs 3,00,000 for first violation and Rs.6,00,000 for subsequent violations.

SI No	TOPIC	UNSAFE ACT/UNSAFE CONDITION	DEDUCTIBLE AMOUNT *
8	ESHS Communication	 i) Important days to be observed for ESHS awareness as furnished by Employer / Engineer not observed ii) Posters as furnished by Employer / Engineer not printed and displayed iii) Contractor failed to produce a 'High Quality' quarterly newsletter iv) Contractor failed to change signage and posters on a monthly basis to bring pertinent awareness v) Poster campaigns not discussed at the Engineer's Committee meeting and not recorded with improvement program vi) Informational posters, banners are not provided both in Tamil/Hindi and English vii) Records of all toolbox talks undertaken together with the date, topic, participant's names and signatures are not mentioned on daily basis viii) Not maintaining the records of briefings/communications of Method statement and risk assessment before commencement of a new task or when a change to the method of working arises ix) Public informational signage and Contractor contract information not posted externally to the site including all legal communication <i>x</i>) Non-function Grievance Redress Mechanism and no documentation of Grievance log 	For item i) to ix)Rs. 1,000 per single violation, compounded to a maximum of Rs. 5,000 at any single instance.
09	ESHS Submittals (Hazard identification, risk assessment and	The contractor failure to submit the following submittals to the ER a minimum 28days prior of task commencement A.REPORTS: i) Risk Register & Hazard Log ii)Grievance Log iii) Operational Control Procedure not submitted iv)ESHS Monthly Report v)ESHS Inspection Report v)ESHS Inspection Report vi) Electrical safety audit vii)Daily reporting of total no of workmen viii)ESHS Audit reports ix)Monthly Audit Score (MARS) report x)Air and Noise Quality monitoring report xi) Specific Method statement xii)Changes in organizational, personnel, systems, procedures, equipment, products, materials, or substance not communicated by the Contractor B.PLANS: i) Specific Lift plan	For item i) to xix)Rs. 1,000 per single violation, compounded to a maximum of Rs. 5,000 at any single instance.

determining controls) ii) ESHS Management System Procedure iii) Emergency Preparedness and Response plan iv) Traffic Management Plan v) Fire Plan vi) Health Plan vi) Health Plan vii) Onsite traffic Management plan 10 Injury and Incidence Injury and i)Fatal accidents or major injuries and i)Fatal accidents or major injuries and For item 1.00.00.000(One	
Incidence i)Fatal accidents or major injuries and dangerous occurrences not reported immediately to Employer 1,00,000(Once ach fatality Reporting iii)Abnormal delay in reporting accidents or wilful suppression of information about any accidents. / dangerous incidents. For item 20,00,000(Twen for each accident investigated report within 24 hours vi)Not submitted accident investigated report within 72 hours vi)Not submitted accident investigated report within 72 hours For item iii) iv) 5,00,000(Five at accident investigation a) Contractor and his staff not extend necessary co-operation and do not testify about the accident. For item vi) and Rs.1,00, subsequent violations b) The contractor not take effort to preserve the scene of accident till the Employer / Engineer in connection to witness recording not obey the instructions For item i) to x for item vi) and Rs.1,00, subsequent violations i) Emergency plan not cleared by Employer within 28 days of construction commencement For item i) to x for first violation so violations i) The contractor not prepared an Emergency Response Plan for all the work sites as a part of the contractor ESHS Plan For item i) to x for drasport equipment i) Collapse of buildings, or structures etc d) Gas leakages or spillage of dangerous goods or chemicals Oal acea leakages or spillage of dangerous goods or chemicals i) Drowning of workers g) Landslides getting workers buried floods, Earthquake, storms and other natural calamities	ii) Rs ty lakhs) injury us Injury as Workmen Act) and v) Rs Lakhs) for d vii) rst violation ,000 for ations

SI No	TOPIC	UNSAFE ACT/UNSAFE CONDITION	DEDUCTIBLE AMOUNT *
11	Emergency preparedness Plan	iii) Arrangements not made for emergency medical treatment and evacuation of the victim in the event of an accident or dangerous incident occurring, the chain of command and the responsible persons of the contractor with their telephone numbers and addresses for quick communication not adequately publicized and conspicuously displayed in the workplace iv) Contractor not tied-up with the hospitals and fire stations located in the neighbourhood for attending the casualties promptly and emergency vehicle kept on standby duty during the working hours for the purpose v) contractor not conducted onsite emergency mock drill once in every month for all his workers and his subcontractor's workers vi) Contractor not keep the Local Law & Order Authorities informed along with communication to ER, CMRL to mitigate the consequences of an emergency vii) Not submitting the project specific Emergency Plan within 4 weeks of Commencement of contract viii) Not provide training with records for emergency preparedness and response procedures on monthly basis with records ix) Not conducted the mock drilled Emergency preparedness and response procedures on monthly basis with records ix) Not erected hording for Emergency Process flow charts on conspicuous places xi) Not erected hording for Emergency Process flow charts on conspicuous places xi) Not erected hording for emergency telephone numbers like fire, ambulance, police, nearest hospital and any other legal relevant xii) The contractor not provided a fully equipped ambulance on-site as per legal requirement xiii) The ambulance van not maned by adequate number of paramedics	
		 i) Housekeeping maintenance register not properly maintained up to date ii) Surrounding areas of drinking water tanks/taps not hygienically cleaned/maintained iii) Office, stores, toilet / urinals not properly cleaned and maintained. iv) Required dustbins at appropriate places not provided / not cleaned. v) Stairways, gangways, passageways blocked. 	For item i) to xx) Rs. 10,000 per single violation Compounded to a maximum of Rs. 20,000 at any single instance for non- compliance of any of the clauses

SI No	TOPIC	UNSAFE ACT/UNSAFE CONDITION	DEDUCTIBLE AMOUNT *
12	Housekeeping	 vi)Lumber with protruding nails left as such vii)Openings unprotected viii)Excavated earth not removed within a reasonable time. ix)Truck carrying excavated earth not covered / tyres not cleaned. x)Vehicles / equipment's parked / placed on roads obstructing free flow of traffic xi) Unused surplus cables / steel scraps lying scattered xiii)Wooden scraps, empty wooden cable drums lying scattered xiii)Water stagnation leading to mosquito breeding xv)Full height fence, barriers etc not installed at the site to preserve the surrounding area from excavated soil and rubbish xvi)Not maintained Drip pans for oil leakages and splits of suitable size while servicing of plants/equipment/machinery and disposed off generated waste in approved manner. xvii)Proper Housekeeping not carried out at work sites, labour camps, stores and offices with Housekeeping maintenance register xviii)Supervisors and Engineers working at the site not educated and trained on the necessity of good Housekeeping xix)Not treating still water once every week with oil in order to prevent mosquito breeding xx)Posters in both language and English not displayed prominently to draw attention for the dangers of permitting mosquito breeding 	
		1)Work at Height/Ladders and Scaffolds i)Not using or anchoring Safety Belt ii)Not using Safety Net iii)Absence of life line or anchorage point to anchor safety belt iv)Using Bamboo ladders v)Painting of ladders vi)Improper usage (less than 1m extension above landing point, not maintaining 1:4 ratio) vii)Aluminium ladders without base rubber bush viii)Usage of broken / week ladders x)Usage of re-bar welded ladders xi)Improper guardrail, toe board, barriers and other means of collective protection xii)Improper working platform	For item 1) to 7) Rs.10,000 per single violation Compounded to a maximum of Rs.1,00,000 at any single instance for non- compliance of any of the clauses

SI No	TOPIC	UNSAFE ACT/UNSAFE CONDITION	DEDUCTIBLE AMOUNT *
		xiii)Working at unprotected fragile surface xiv)Working at unprotected edges xv)Worker not passed Vertigo test xvi Non-skilled worker working at height.	
13	Working at Height / Ladders and	2)Contractor not carried out risk assessments for all the work where workers or materials can fall from more than two meters3)Not provided Edge protection to work above two meters as specified below	
	Scaffolds	 a) A main Guard rail at least 1 meter above the edge b) A Toe board at least 200 mm high c)An intermediate guard rail or other 	
		barrier so that there is no gap more than 470 mm 4)All Scaffolds not inspected by a competent person at least in every three days after erection and not recorded	
		 5)Tags not fitted to all scaffoldings to show they are safe for use or not and all safe for use tags not signed by senior site engineer 6)All scaffolds not constructed of sound 	
		materials and not free from patent defect 7)The measures not taken by contractor i)The scaffold not constructed for the correct use (Light or Heavy Duty)	
		 ii)Security not fixed to existing structures or adequately buttressed iii)The use of barrels, boxes, loose tiles or other unsuitable material used as supports for working platforms 	
		iv)All working platforms not fully boarded and not covered with net to prevent Height Phobiav)All working platforms not provided guard	
		rails at one metre height and not provided an intermediate rail at half height vi)All working platforms not provided with Toe boards vii)All working platforms not kept free of	
		unnecessary obstruction or rubbish viii)Secure ladder access shall be provided ix)Metal ladders used near or adjacent to	
		 overhead live power lines x)Non-usage of full body harness at safe working platform with secure anchorage points i) Non-availability of fitness certificate 	For item i) to xxviii)
		 ii) Documents not displayed on the machine or not available with the operator iii) Maximum Safe Working Load not written on the machine 	Rs.10,000 per single violation Compounded to a
		iv) Automatic safe load indicator not provided or not in working condition	

SI No	TOPIC	UNSAFE ACT/UNSAFE CONDITION	DEDUCTIBLE AMOUNT *
		 v) Age of the operator less than 21 years or without any licence vi) Failure to submit Lift Plan vii) Person riding on crane. viii) Creating more noise and smoke ix) Absence of portable fire extinguisher in driver cabin x) No fencing of hoist rope movement 	maximum of Rs.1,00,000 at any single instance
14	Lifting appliances and	area xi) Hoist platform not in the horizontal position xiv) Fail to guard hoist platform xv) No fencing of hoist rope movement area xvi) Hoist platform not in the horizontal	
	gear	position xvii) All lifting appliances, including synchronized mobile jacks, pit jacks, mobile cranes, lower cranes, gantry cranes, launching beams and lorry mounted cranes not inspected and not	
		certified by competent person xviii) Competent person not approved by ER/CMRL xix)Lifting capacity of more than one ton not fitted with Automatic Safe Load Indicators, Anemometer and Audible	
		warning devices with no proper records of inspection xx)Lifting appliances not maintained in accordance with manufacturer's instructions and irregular preventative	
		maintenance program with available schedule xxi)All lifting appliances not inspected every six months by a third-party	
		competent person with records xxii)The operators of lifting appliances not conducted daily record of inspections of their respective lifting appliances xxiii)Load slewed over public areas	
		without stopping pedestrians and vehicles xxiv)Working closer to any live overhead power lines without the operation of a strict Permit to Work system being in place	
		xxv)All lifting gear not properly stored and left lying on the ground xxvi)Untrained and unexperienced slingers and riggers deployed to give directions to crane operators	
		xxvii)Untrained and unexperienced person deployed as Crane driver xxviii)While working near isolated overhead power lines, the lifting appliances not grounded to earth as a	
		secondary precaution against accidental energization	

SI No	TOPIC	UNSAFE ACT/UNSAFE CONDITION	DEDUCTIBLE AMOUNT *
15	Launching operation	Non-adherence of any of the provisions mentioned in Employer's H&S manual Volume 2, (ii) Volume 3 Env mgmt. arrangement and (iii) EMP in PCC	Rs. 50,000 for first violation and Rs.1,00,000 for subsequent violations
16	Site Electrical safety	Site Electrical Safety i)The contractor not deploy qualified and competent C Licence electrical personnel as per law ii)The main contractor not take consideration, the requirements of the sub/petty contractor's electrical power supply and arrive at the capacity of power supply from diesel supply from diesel generators, small capacity diesel generators, small capacity diesel generators allowed for whatever type of job to be executed under this contract iii)Unsafe noise making small capacity diesel generators are found used by sub/petty contractors iv)The contractor not submitted electrical single line diagram, schematic diagram and the details of the equipment for all the temporary electrical installation and those diagrams together with the temporary electrical equipment not submitted to the Employer's for necessary approval v)Cables not selected after full consideration of the condition to which exposed and the duties for which they are required. Supply cable up to 3.3 KV not in accordance vi)Damage to 1. Civil utilities such as water pipe line, sewer pipeline, storm water pipe line, drainage pipe line and structures etc 2. Electrical and telecom utilities such as all types of cable and installation, street lights, poles, and panels, Bus Q shelters, Joints, feeder pillars, cable ducts, junction boxes, transformers, ring main and structures provided for both telecom as well as telecom etc 3. Traffic signal cables, CCTV cables and CCTV cameras and poles, LPG/LNG Gas pipelines, petroleum tanks/pipeline, dispensers etc vii)Inserting of wires directly into the sockets viii)Inserting of wires directly into the sockets viii)Inproper grounding for the electrical appliances ix) Electrical cables running on the ground x)The contractor not appointed an Electrical engineer with certificate to comply IE act xi)The name and contact telephone number of the electrical engineer not	For item i) to xviii) Rs.10,000 per single violation Compounded to a maximum of Rs.1,00,000 at any single instance

SI No	TOPIC	UNSAFE ACT/UNSAFE CONDITION	DEDUCTIBLE AMOUNT *
		xviii)Use of inadequate capacity fuse wire/HRC (High ruptured capacity fuse) as per the IE act xxix) Utility shifting plan not prepared and complied with.	
17	Hand tools and Power tools	The contractor not ensure that i)Electric tools are properly grounded or / and double insulated ii)GFCI's/RRCB's shall be used with all portable electric too operated especially outdoors or in wet condition iii)Before making any adjustments or changing attachments, his workers shall disconnect the tool from the power source iv)When operating in confined space or for prolonged period, hearing protection shall be required. The same shall also supply to working with equipment's which gives out more noise v)Tools is held firmly and the material is properly secured before turning on the tool vi)All drills shall have suitable attachments respective of the operation and powerful for ease of operation vii)When any work/operation need to be repeatedly or continuously, tools specifically designed for that work shall be used. The same is applicable to detachable tool bit also viii)Size of the drill shall be determined by the maximum opening of the chuck n case of drill bit ix)Attachments such as speed reducing screwdrivers and buffers shall be provided to prevent fatigue and undue muscle strain to his workers x)Stock should be clamped or otherwise secured firmly to prevent it from moving xi)Workers shall never stand on top of the ladder to drill holes in walls/ceilings, instead standing on fourth or fifth rung shall be recommended xii)Electric plane shall be not be operated with loose clothing or long scarf or open jacket xiii)Safety guards used on right angle head or vertical portable grinders must cover a minimum of 1800 of the whole wheel and the spindle/wheel specifications shall be checked xiv)All power tools/hand tools shall have guards at their nip points xv)Low profile safety chain shall be used in case of wood working machines and the saw shall run at high RPM when cutting	From item i) to xxii) Rs.1,000 per single violation Compounded to a maximum of Rs.5,000 at any single instance

and also correct chain tension shall be ensured to avoid "kickback" xvi) Leather aprons and gloves shall be used as an additional personal protection xvii)Push sticks shall be provided and properly used to hold the job down on the table while the heels move the stock forward and thus preventing kickbacks xviii)Air pressure is set at a suitable level for air actuated tool or equipment being used, before changing or adjusting pneumatic tools, air pressure shall be turned off xix)Only trained employees shall use explosive actuated tools and the tool shall also be unloaded when not in use xx)Usage of such explosive actuated tools shall be avoided in case of places where explosive/flammable vapours or gases maybe present xxi)Explosive actuated tools and their explosive/flammable before the time of immediate use xxii)Misfired cartridges of explosive actuated tools must be placed in a container of water and be removed safely from the project Gas cutting and welding
 i) Wrong colour coding of cylinder. ii) Cylinders not stored in upright position. iii) Flash back arrester, non-return valve and regulator not present or not in working condition. iv) Fail to put cylinders in a cylinder trolley. v)Damaged hose. vi)Using domestic LPG cylinders vii) Fail to store cylinder 6.6m away from fire prone materials viii) Fail to use hose clamps ix)Fire extinguisher not placed in the vicinity during operation x) Contractor not issued work permit for welding over areas where others are working and areas with increased fire risks or hazardous environments. xi)All gas and welding equipment not inspected by a competent person with records on weekly basis xii)Welders not wear the correct PPE like face and eye protection with correct grade of shield, Gauntlet gloves Safety footwear xii)Plificient ventilation and fume extraction system not provided in enclosed areas and pits xiv)Naked flames or high temperature

SI No	TOPIC	UNSAFE ACT/UNSAFE CONDITION	DEDUCTIBLE AMOUNT *
18	Gas Cutting and Welding	xv)Cylinders kept in enclosed areas (unventilated) with unsecure upright position xvi)Flash back arrestors not fitted to both the fuel gas and oxygen cylinders xvii)Non-return valves not fitted to the torch or cutting torch xviii)Screwed fittings and hoses are not screwed properly and sealed to free from contaminants xix)Daily checks for gas leaks not carried out by using soapy water xx)Not removed all torches from enclosed areas when not in use xxi)Firewatchers not present if there is a possibility of ignition unobserved by the operator xxii)The equipment earthing and work piece earthing is same xxiii)Duckboards or rubber protection is not used to avoid being in contact with water or wet floors when welding xxiv)Screens not provided to limit exposure of others to glare from area xxv)The correct codified eye and face protection with the correct filter glass is not issues	
		 xxvi)Voltmeter and Ammeter not working xxvii)Improper grounding and return path. xxvii)Damaged welding cable xxix)Bare openings in the cable. xxx)Non-availability of separate switch in the transformer xxxi)Non-availability of main switch control to switch off power to the welding unit. xxxii)Usage of reinforcement rod as return conductor xxxii)Damaged holder xxxii)Damaged holder xxxii)Fire extinguisher not placed in the vicinity during operatio xxxv)Site should be inspected for workers not wearing PPEs xxxvi)Workers of proper shift not in place. i)Smoking and open flames in fire prone area ii)Using more than 24V portable electrical appliances in the fire prone area ii)Not proper ventilation in cylinder storage area. iv)Absence of fire extinguisher v) Fire extinguisher not refilled once in a year. vi) Fire extinguisher placed in a not easily accessible location 	From item i) to xxiii) Rs.1,000 per single violation Compounded to a maximum of Rs.5,000 at any single instance.

SI No	TOPIC	UNSAFE ACT/UNSAFE CONDITION	DEDUCTIBLE AMOUNT *
20	Fire precaution	vii) The contractor not deployed specially trained personnel to deal with fires due to electrical causes, gas explosions etc as per the specified law or manual viii)Combustible scrap and other construction debris not disposed off from site on a regular basis with records ix)Signage not erected at prominent positions showing the correct use of portable first aid fire extinguishers x)Emergency plans and Fire Evacuation	
20	Fire precaution	xi)Mock drills not conducted once in one months to ensure the effectiveness of the arrangements xii)Site clearly visible fire points not established for use in an emergency either with Dry powder type or water type extinguishers xiii)Recharging of fire extinguishers and their proper maintenance not done as per Indian National Standards xiv)Water not supplied for fire-fighting purposes in the form of static water tank of adequate capacity or a hydrant line with adequate water pressure at outlet points as per Indian National Standards xv)Sufficient number of fire hoses with branch pipes, emergency lights not provided at site as per Indian National Standards xvi)The Telephone Number of the site fire brigade not prominently displayed near each telephone on site xvii)Supervisors and workmen at the site not trained in the use of Firefighting equipment provided at the site as per Indian National Standards xviii)All flammable liquids without any leaks and proper stopper without marked "FLAMMABLE LIQUID" xix)Rags soaked in paints, kerosene and other flammable liquids not disposed of daily under supervision xx)All Diesel fuel storage tanks not bunded around in order to control any spillage or leakage xxi)"NO SMOKING" signs not prominently displayed at all areas of potential location of fire xxii)Lack of site inspection xxiii)Correction from Audit not	
		implemented	
21	Excavation	Excavation	For item (i) to (vii)
		i) The contractor not ensures	

 a) Whether any construction building worker engaged in excavation is exposed to hazard of falling or siding material or article from any bank or side of such excavation which is more than 1.5m above his footing, such worker is protected by adequate plinig and bracing against such bank or side b) Where banks of an excavation are undercut, adequate shoring is provided to support the material or article overhanging such bank c) Excavated material is not stored at least 0.65m from the edge of an open excavation or trench are stripped folcose rocks and other materials which may slide, roll or fall upon a construction building worker working below such bank d) Metal ladders and staircases or ramps are provided, as the case maybe, for safe access to and egress from excavation where, the depth of such tench or excavation exceeds 1.5m and such ladders, staircases or ramps comply with the relevant National Standards e) Trench and excavation are protected against filling of a person by suitable measures if the depth of such tench or excavation exceeds 1.5m and such protection in accordance with the design and drawing of a professional engineer, where such depth exceeds 4m ii) The contractor not ensure that a) Suitable warning signs or notices, required for the safety ob luiding workers carrying out the work of an excavation, displayed or erected at conspicuous places in Hindi and in a language understood by majority of such building workers carrying out the work of an excavation and the support system not inspected prior to the commencement of any works on a daily basis with records of checklist iv) Emergency pumping sumps and ladders of the lowing: a) Collapse of the sides b) Materials falling onto people working in
the excavation c) People and vehicles falling into the excavation

SI No	TOPIC	UNSAFE ACT/UNSAFE CONDITION	DEDUCTIBLE AMOUNT *
		 f) Contact with underground services g) Fumes and h) Make sure the necessary equipment needed such as trench props vii) The contractor not taken following precautions a) The sides battering them to a safe angle or supporting them with timber, proprietary support systems b) Unsupported excavations c) In shallow trenches contractor need to provide support if the work involves bending or kneeling in the trench d) Prevention of materials falling in to the excavation e) Make sure the edges of the excavation are protected against falling materials f) Wear a hard hat when working in excavations g) Provide substantial barriers, e.g. guard rails and toe boards h) Keep vehicles away from excavations use brightly painted baulks or barriers i) Where vehicles have to tip materials into excavations, use stop blocks to prevent them from over-running. j) Supervising excavation work of contractor does not have service plans 	
		 Work permit system 1) A permit system is not taken for construction work a) Entry into confined spaces b) Wok in close proximity to overhead power lines and telecommunication cables c) Hot work d) To dig where under-ground services maybe located e) Work with heavy moving machinery f) Working on electrical equipment g) Work with radio-active isotopes h) Heavy lifting operation and lifting operations closure to live power line 2) Woking to any live overhead power line 2) Woking to any live overhead power line is permitted without the operation of a strict permit to work 3) The contractor not develop a permit -To-work system 4) The permit to work not issue for activities as per CMRL ESHS contract requirement 5) To permit-to-work system not covered a) How the system works b) The jobs it is to be used for c) The responsibilities and training of those involved d) How to check its operations 	For item 1 to 10 Rs.1,000 per first violation and Rs.5,000 for subsequent violations

SI No	TOPIC	UNSAFE ACT/UNSAFE CONDITION	DEDUCTIBLE AMOUNT *
22	Work permit system	 6) The permit-to-work not forms the communication between everyone involved of respective site conditions and requirements 7) The permit to work form does not contain as per the ESHS contract requirements. a) Authorised person for jobs (and any limits to their authority) b) Responsibilities for precautions (e.g. isolation, emergency arrangement, etc) c) Associated hazards d) Plant and diagram its location and limitations e) Precautionary measures f) Procedure to control or abandon in the case of an emergency g) Time limitations h) Job specific toolbox talk conducted by the supervisor 8)A permit-to-work authorised more than a period of twenty-four hours 9)A copy of each permit to work not displayed during its validity in a conspicuous location in close proximity to the actual works location to which it applies 10)A pre-permit activation job specific toolbox-talk not conducted by the supervisor with following details a) All identified hazards are explained b) Risk mitigation process clarified c)Method of work explained stressing points (a &b above) d)Emergency response procedure is clarified and the person assigned tasks in the event of emergency f) Personnel Protective Equipment (PPE) requirements including PPE serviceability checks and training 	
		 Traffic Management i. The Contractor shall develop detailed and robust traffic management plans consistent with the Indian Guidelines on Traffic Management in work zones (IRC:SP:55-2014), prior to mobilization for respective sections with site- or station-specific plans and measures to minimize the overall impact on traffic throughout the construction and operation periods. ii. At congested sections, the temporary traffic coordinators will be engaged by CMRL to facilitate the traffic management. iii. At the minimum, the traffic management plans will have the 	From item i) to xix) Rs. 10,000 per first violation and Rs.1,00,000 for subsequent violations

SI No	TOPIC	UNSAFE ACT/UNSAFE CONDITION	DEDUCTIBLE AMOUNT *
SI No 23	TOPIC Traffic Management	 following components: construction traffic, ensuring access to properties, accommodating pedestrians, parking, access by construction vehicles, faulty traffic lights and problem interchanges, use of public roads, parking provision during construction, use of residential streets and traffic diversion due to temporary road closures, and construction and use of temporary access roads. iv. At the minimum, the traffic management plans will have the following components: construction traffic, ensuring access to properties, accommodating pedestrians, parking, access by construction vehicles, faulty traffic lights and problem interchanges, use of public roads, parking provision during construction, use of residential streets and traffic diversion due to temporary road closures, and construction and use of temporary access roads v. Strengthening impact and risk prevention measures, such as establishing construction site works to minimize the entrance and exit of vehicles at stations during peak traffic. vi. The logistics should be considered to manage transport materials from storage areas outside of the dense urban core to worksites and to return excavated soil and other materials to disposal locations. If needed, construction traffic may be confined to certain routes (based on infrastructure capacity) or restricted to certain off -peak hours (that is, to reduce noise pollution at night or to avoid commuting and school hours during the day). 	DEDUCTIBLE AMOUNT *
		certain off -peak hours (that is, to reduce noise pollution at night or to avoid commuting and school hours	
		minimize the effects of the diversion or reorganization, it is necessary to conduct communication campaigns and disseminate appropriate information to urban residents and taxi and bus drivers in advance of disruptions. Efforts will be given to divert traffic to roads wide enough to accommodate extra traffic. Compliance with scheduled deadlines for the detour is essential. If	

SI No	TOPIC	UNSAFE ACT/UNSAFE CONDITION	DEDUCTIBLE AMOUNT *
		 necessary, bus service and other public and private transport services in the area should be improved to meet residents' transportation needs viii. Incorporation of community safety considerations into plan design, especially at locations such as Kutchery Road where buildings are close to the construction site. ix. CMRL and local authorities continue to play an oversight role in approving these plans during construction, evaluating their cumulative impact with other infrastructure projects in the region, and ensuring their dissemination to all relevant stakeholders. 	
		 x) In all cases, the contractor not employ proper precautions. Wherever operation undertaken are likely to interfere with public traffic, specific traffic management plans not drawn up and implemented by the contractor in consultation with the approval of local police authorities and / or the concerned metropolitan/civil authorities /competent authorities xi) A warning not installed at all secondary road which merges with the primary road where the construction work is in progress at sufficient distance before it merges with the primary road regarding the 'Chennai Metro Work in Progress' xii) Traffic cones of 500mm, 750mm, and 1000mm high and 300mm to 500mm in diameter are in square shape at base and are often made of plastic or rubber and normally have retro-reflectorizes red and white band not used whenever required xiii) Drums about 800mm to 1000mm high 	
		and 300mm in diameter not used either as channelizing or warning devices xiv)The contractor not make arrangements keeping low away van/manpower to low away any break down vehicle in the traffic flow xv)The contractor not ensure the cleanliness of road and footpaths by deploying proper manpower for the same. The contractor not ensure proper grooming, cleaning washing of roads and footpaths on all the time xvii)All barricade not conspicuously seen in the dark/night time by the road users. Ix)Conspicuously not ensured by affixing retro reflective stripes of required size and shape at appropriate angle at the bottom and middle portion of the barricade at a	

SI No	TOPIC	UNSAFE ACT/UNSAFE CONDITION	DEDUCTIBLE AMOUNT *
SI No	TOPIC	minimum gap of 1000mm. In addition, minimum one red light or red-light blinker not placed at the top of each barricade. i) Barricade and pedestrian walkway a) Not Cleaned b) Not in alignment c) Not numbered d) Not painted e) Red lights / reflectors not working f) Damages not repaired g) Not secured properly h) Barricade inspector not employed i) Protruding parts / portions repaired j) Barricades maintaining register not properly maintained up to date ii) Contractor Vehicles a) Over loading of vehicles b) Unfit drivers or operators c) Unlicensed vehicles d) Absence of traffic marshals e) Absence of fog light (at winter) g) Power / hand brakes not in working condition. iii) Splashing of Bentonite on roads / non- cleaning of tyres of dumpers and transit mixers i) Mishandling of bentonite like splashing of bentonite outside specified width of barricading ii) Non-cleaning of tyres of dumpers and transit mixers before leaving the site and thereby creating a traffic safety hazard to road users. viii) Adequate and clear warning signs not displayed at appropriate distance before the commencement of the site working ix) Prior warning not given concerning the location of approaching site entry and exit points x) All traffic signs, barriers, cones, and lighting not kept maintained and cleaned xi) Regular inspection of the traffic management schemes not conducted by the contractors in both the day time and night time hours with records xii) The removal of excavated soil from the sites not done by licensed vehicle xiii) Unchecked medical examination of the drivers allowed for removal of excavated soil xiv) Overloaded vehicle allowed for movement excavated soil	DEDUCTIBLE AMOUNT *
		xv) Any vehicle leaving the sites carrying load produce air borne contaminants during transportation of the public highway	

SI No	TOPIC	UNSAFE ACT/UNSAFE CONDITION	DEDUCTIBLE AMOUNT *
		 xvi) Any vehicle revised without the control of trained banksman xvii) Vehicles prior to leaving the site shall did not wheels xviii) Any soil removed from the work sites disposed of at unauthorised dumping sites xix) Not maintained and painted all the traffic barriers on yearly basis 	
		i) Batching plant/Casting yard	From item i) to xxiii)
		ii) The batching plant/casting yard not effectively planned for smooth flow of unloading and stacking the aggregates reinforcement and cement, batching plant, transport of concrete, casting the segment, stacking the segment, and loading the segment to the trucks	Rs. 1,000 for single violation compounded to a maximum of Rs.5,000 at any single instant.
		iii) The batching plant/casting yard not barricaded and not made as compulsory PPE zone	
		iv) Electrical system not suitably not planned for diesel-generator	
		 V)Drainage not effectively provided and waste water not disposed after proper treatment as per the law 	
		Vi) Time office, canteen, drinking water, toilet and rest place not suitably located for the easy access to the workers	
		vii) Manual handling of cement not avoided to a larger extent	
24	Batching plant/Casting yard	viii) The PPE's provided to the cement handling workmen not conform to international standard	
		ix) Access roads and internal circulation roads not well laid and maintained properly at all time	
		x)Material stacking is not provided	
		xi) Not provide 50 Lux of illumination or as per law	
		xii) Batching plant/Casting yard	
		xiii) The contractor release dust due to their activities beyond the permissible limit as per the relevant law	
		xiv) The waste treatment plant not provided and the ER/CMRL norms not followed	
		xv) High GI sheet screens and water sprinkling will be employed.	
		xvi) The use and storage of hazardous materials at the casting yard and batching plant should adhere to SPCB requirements.	

SI No	TOPIC	UNSAFE ACT/UNSAFE CONDITION	DEDUCTIBLE AMOUNT *
		xvii) The transport, handling and storage of hazardous waste will be done in accordance with the provisions of Hazardous Chemicals (Management & Handling) Rules. Hazardous wastes from construction activity and equipment are labeled, recorded, stored in impermeable containment and for periods not exceeding mandated periods and in a manner suitable for handling storage and transport.	
		xviii) The contractor shall maintain a record of sale, transfer, storage of hazardous waste and make these records available for inspection.	
		xix) The contractor shall get Authorized Recyclers to transport and dispose Hazardous Waste.	
		xx) Proper collection and storage facilities will be provided especially for hazardous waste.	
		xxi) If power from the grid is used, permission from power supply company must be obtained by the Contractor.	
		 xxii) DG sets, if used, should: (a) conform to height of stack norms as per CPCB rules; (b) conform to emission norms as per E (P) Act, 1986; (c) noise level at 1 m distance from enclosure should not be >75 dB(A). xxiii)Diesel storage if done beyond threshold limit (1000 L) permission should be obtained. Diesel should be stored on 	
		pukka platforms and spillages should be avoided.	-
		PPE (Personnel Protective Equipment) i)Not having	From item i) to vi).
		ii)Not wearing (or) using and kept it elsewhere iii)Using damaged one	Rs.200 per single violation For item vii) to xi)
		 iv)Using wrong type v)Using wrong colour helmet or helmet without logo vi)Using for other operation (e.g. Using safety helmet for storing materials or carrying water from one place to other) vii)Not conforming to BIS standard viii)The contractor not pay cash amount in lieu of PPE to the workers/Subcontractors and expect them to buy and use during work 	Rs. 1,000 for first violation and Rs. 5,000 for subsequent violations for item
25	PPE	ix)The contractor not at all time maintain a minimum of 10% spare PPE's and safety appliances and properly record and not	

SI No	TOPIC	UNSAFE ACT/UNSAFE CONDITION	DEDUCTIBLE AMOUNT *
		showed to the Employer / Engineer during the inspections x)Adequate quantity of PPE's not kept always as the security post xi)The contractor not all times keep and maintain an adequate supply of suitable PPE for use at all times a) Safety helmets b) Hearing protection c) Respiratory protection d) Eye protection e) Protective gloves f) Safety footwear g) High visibility clothing xii) In all construction sites person identified other without HARD HAT or SAFETY BOOTS or both	
		Industrial Health, Safety and Welfare	From item i) to xxi)
26	Health and Safety	 i)Fail to conduct Medical examination to workers ii)Absence of ambulance van & room iii)Workers not having ID card iv)Inadequate number of toilets v)Toilets not cleaned properly 	Rs.1,000 per single violation Compounded to a maximum of Rs.5,000 at any single instance
		 v) Tollets not cleaned properly vi)Absence of water facilities for tollets and washing places vii)Tollet placed more than 500m from the work site viii)Absence of drinking water ix)Absence or inadequacy of first-aid box. xi)Absence or inadequacy of first-aid box. xi)Misuse of first-aid box. xii)First-aid box not satisfy the minimum Indian standard. xiii)Smoking inside the construction site xiv)Drink and drive or work xv)Excessive noise and vibration xviii)Creche not provided xix)Accommodation not provided as per BOCWA xx)Fumigation / insecticides not sprayed to prevent Mosquito breeding xxi)Contractor not maintain material safe data sheet (MSDS) for all substances at the point of inventory xxii)Contractor not conducted an assessment of the hazardous substances would be used in confined space with assessment record xxiii)For continuous exposure of noise, i.e. for eight hours in any one-day, the sound level exceeds 85DB XXiV) Contractor not introduced a noise control programme. If noise levels exceed above 90DN. The use of hearing protection should be enforced actively when the equivalent sound 	

SI No	TOPIC	UNSAFE ACT/UNSAFE CONDITION	DEDUCTIBLE AMOUNT *
		level over 8 hours reaches 85 dB(A), the peak sound levels reach 140 dB(C), or the average maximum sound level reaches 110dB(A). Hearing protective devices provided should be capable of reducing sound levels at the ear to at least 85 dB(A)	
		 xxv) Contractor not introduced a noise control programme. If noise levels exceed above 90DN xv) The ventilation system not adequate to maintain circulation of following any one: a) Less than 19.5% oxygen by volume b) More than 0.05% carbon dioxide by volume 	
		 c) More than 0.01% carbon monoxide by volume by volume d) More than 0.001% hydrogen sulphide by volume e) More than 0.005 oxides of nitrogen f) More than 0.0002% of aldehyde g) Any other poisonous gas in harmful amounts. 	
		xvi)The contractor not provided at least 6m3 of fresh air per minute per employee xvii)Regular checking of gas at the faces not done before each shift by using a multi gas detector xviii) Motive power other than electric or petrol used	
		xix)Diesel engines used underground without filters to remove all carbon monoxide and oxides of nitrogen	
		Labour welfare measures i)Compliance with Gol labor legislation, ratified International Labour Organization conventions i)Non-adherence of Labour welfare provisions of BOCWA ii)Fail to register establishment and display the registration certificate at workplace	From item i) to xvi) Rs.1,000 per single violation Compounded to a maximum of Rs.5,000 at any single instance
		iii) Grievance Redress Mechanism for workersiii)Absence of workers register and recordsiv)Absence of muster roll and wages	
27	Labour Welfare measures	register v)Fail to display an abstract of BOCWA and BOCWR vi)Inadequate number of toilets vii)Toilets not cleaned properly viii)Absence of water facilities for toilets and washing places	

SI No	TOPIC	UNSAFE ACT/UNSAFE CONDITION	DEDUCTIBLE AMOUNT *
		ix)Toilets placed more than 500m from the work site x) accommodation not provided as per BOCWA xi)Absence of drinking water xii)Excessive noise and vibration xiii)Canteen not provided xiv)Food stuff not served on no loss no profit basis	
28	Floor Openings	i)No Provision of Protection, ii)No Relevant Signage iii)work Permit Procedure not followed	From item i) to iii) Rs.10,000 per single violation Compounded to a maximum of Rs.1,00,000 at any single instance
29	Environmental Management	 i)Tyre wash facility not provided ii)Spillage from vehicles not arrest iii)Air monitoring not practiced iv)Noise and vibration monitoring not practiced v)Surface and ground water monitoring not practiced. vi)The values of air monitoring and noise monitoring not within acceptable limits vii)Dust control measures at sites not practiced viii)Improper disposal of debris / residues ix)Detailed Analysis of vibration, such as visual inspections of buildings and baseline monitoring not conducted by contractor prior to construction. x)Non-compliance in legal provisions for water treatment and disposal and environmental loss. xi)Site-specific EMP and Environment monitoring plan not cleared by Employer. 	From item i) to xi) Rs. 1,000 per single violation Compounded to a maximum of Rs. 5,000 at any single instance

Without limiting to the unsafe acts and or conditions mentioned above in the clause 4.8 the Employer /Engineer shall have the right to deduct charges for any other unsafe act and or condition depending upon the gravity of the situation on a case-to-case basis. The charges shall be in comparison with that of the similar offence indicated in the above table-6.

* Maximum cumulative amount deductible for items at S.No. 1 to S. No. 29 during the entire contract duration shall not exceed 1% of contract value.

Updated Environmental Impact Assessment

April 2024 Revision 1

India: Chennai Metro Rail Investment Project Corridor 4

Annexure 6 - 8

Prepared by the Chennai Metro Rail Limited (CMRL) for the Asian Development Bank.

Annexure 6: Terms of Reference of General Consultant in Implementation of EMP and EMoP

1. Review and update EIA including EMP and EMoP as appropriate; incorporate necessary technical specifications following design and contract documentation;

2. Assist CMRL in preparation of documents and taking necessary procedures in accordance with in the EIA Report for the Project, if any;

3. Assist CMRL in dissemination and explanation of additionally confirmed and identified environmental issues to public including holding public consultations;

4. Assist CMRL in obtaining necessary permits from relevant authorities and/or departments in accordance with the planned implementation schedule stated in the EIA Report;

5. During the preparation of bidding documents, clearly include environmental responsibilities as explained in the EIA Report and EMP as "Environmental Contract Specifications (ECS)";

6. Ensure that designs and construction methods provide for, as per the EMP, environment-friendly building materials, reuse, resource saving and climate adaptation elements like natural ventilation, solar power installations and rain water harvesting; piling methods and track design which minimize noise and vibration;

7. Ensure the primary baseline data of environmental elements are in place prior to mobilization;

8. Assist CMRL in reviewing the Contractor's Environmental Program (CEP) to be prepared by the contractor in accordance with EIA, EMP, ECC (Environmental Compliance Certificate) and ECS, relevant plans, conditions set out in relevant permits and clearances and Funding Agencies' Environmental Policy and to make recommendations to CMRL regarding any necessary amendments for its approval;

9. Assist CMRL to implement the measures identified in the EMP;

10. Monitor the effectiveness of EMP and negative impacts on environment caused by the construction works and provide technical advice, including a feasible solution, so that CMRL can carry out improvement when necessary;

11. Monitor compliance with the requirements under EMP and Funding Agencies' Environmental Policy. Submit the Environmental Monitoring Report to CMRL at every month after the commencement of the services until the completion of the Project. After the completion of the Project, the Report will be submitted **semi-annually for two (2) years**. The Environmental Monitoring as per Funding Agencies E&S templates will be filled and attached to the Report;

12. After verifying the Environmental Monitoring Report by CMRL, assist submitting the report to Funding Agencies as part of the Progress Status Report at every **three months** after the commencement of the services until the completion of the Project and **semi-annually for two (2) years** after the completion of the Project;

13. Assist CMRL in preparation of the answer to the request from Funding Agencies for environmental considerations if necessary;

14. Assist CMRL in facilitating stakeholder's participation (including focus group discussions for vulnerable PAPs) and providing feedbacks on their comments regarding EMP and EMoP;

15. Supervise Contractor's activities to check compliance with CEP and prepare periodic monitoring reports;

16. Assist CMRL to establish a multi-layer Grievance Redress Mechanism (GRM) including Grievance Redress Committee (GRC) to resolve the Grievances of environment, health and safety matters in a timely manner;

17. Assist CMRL in the capacity building of CMRL staff on environmental management through on-the-job training on environmental assessment techniques, mitigation measure planning and implementation, supervision and monitoring, and reporting;

18. At the completion of project, (a) undertake final environmental monitoring and evaluation against the set indicators, (b) evaluate sustainability of environmental benefits associated with the project, taking into account both positive and negative impacts associated with the project, and (c) prepare an evaluation report for the project.

Annexure 7: Terms of Reference for Engaging External Monitoring Agency/Expert

A. Background

1. **Project Description.** The Chennai Metro Corridor 4 from Lighthouse to Poonamallee Depot is 26.085km long upto depot entry, comprising underground length of 10.071km and elevated length of 16.014km, 12 underground stations and 18 elevated stations.

2. **Project Category.** The Project is assigned as category A for Environment and Involuntary Resettlement as the project is likely to have significant adverse environment and social (E&S) impacts. Chennai Metro Rail Limited (CMRL) will retain **external** monitor to conduct the third party monitoring and verify the monitoring information submitted by General Consultant (GC).

B. Objective(s) of the Assignment

1. To conduct third party monitoring of implementation of the E&S requirements under the project;

2. To ensure that the Project will be implemented in conformity with the policies of Government of India (GoI), Government of Tamil Nadu (GoTN), as well as the lenders' E&S policies; and

3. To identify any environment and social related implementation issues and necessary corrective actions and reflect these in a time-bound corrective action plan for CMRL to implement.

4. Capturing social, environmental and economic benefits and particular potential benefits to the poor and vulnerable groups in the corridor;

5. Involving users and stakeholders in the monitoring process; and

6. Strengthening the capacity of the CMRL to manage and replicate third-party monitoring with rail users and stakeholders

C. Scope of Services, Tasks and Expected Deliverables

1. **Scope of Services.** Monitor the implementation of the Environmental Management Plan (EMP), Resettlement Action Plan (RAP), Gender Action Plan (GAP), Vulnerable Communities Plan (VCP) / Indigenous Peoples Development Plan (IPDP) as applicable and monitoring activities by the respective contractors and supervision consultants. Provide technical guidance and feedback to the respective contractors and supervision consultants. Monitor operational stage and residual impacts during project implementation.

- 2. **The Tasks** include but not limited to the following,
 - (i) Review the Social Impact Assessment with a focus on (RAP), and the Environmental Impact Assessment (EIA) with a focus on EMP;
 - (ii) Review the Environmental, Health and Safety clauses included in the civil works contract agreement;
 - (iii) Review the internal E&S monitoring reports;
 - (iv) Undertake independent field inspections to verify the implementation of RAP GAP, VCP / IPDP and consult community and affected people;
 - (v) Review the Grievances register logs at project sites;

- (vi) Visit the project sites, oversee quantitative environmental monitoring activities of CMRL to confirm appropriate methodologies being used and results correctly interpreted, and consult potentially affected people about the environmental nuisances;
- (vii) Randomly interview the labors about health and safety compliance;
- (viii) Assess EMP implementation performance, qualitatively or by conducting additional quantitative environmental monitoring as required;
- Discuss findings of assessment with CMRL and provide recommendations to resolve any issues or problems on implementing EMP RAP, GAP and VCP / IPDP;
- (x) Prepare the external E&S monitoring reports, which should confirm the project's compliance with the EMP, RAP GAP, VCP / IPDP, and reflect in the time-bound corrective action plan for any non-compliances.

D. Deliverables. The following are the key outputs expected from the consultants:

- 1. External SMP monitoring reports:
 - (i) Once upon payment of compensation and entitlements
 - (ii) Implementation of livelihood restoration and its efficacy: semi-annually during construction stage
 - (iii) Implementation of gender action plan and its efficacy: annually during first 2 years of operation and maintenance
- 2. External EMP monitoring reports:
 - (i) Implementation of EMP, EMoP, Grievance Redressal and their efficacy: semi-annual during construction stage
 - (ii) Implementation of EMP, EMoP, Grievance Redressal and their efficacy: annually during operation & maintenance during first 2 years of operation and maintenance.

E. Team Composition & Qualification Requirements

1. One environmental expert and one social expert would be required with E&S related disciplines and with at least 10 years of work experience in E&S management of linear projects, preferably in transport sector.

Annexure 8: Guidance for Construction Workers/ Contractors in View of COVID-19

Ministry of Home Affairs and Ministry of Health and Family Welfare, Gol have issued various Guidelines to be followed during COVID:- (<u>https://www.mha.gov.in/notifications/circulars-covid-19</u>, <u>https://www.mha.gov.in/sites/default/files/PR_ConsolidatedGuidelinesofMHA_28032020_0.pdf</u>, <u>https://www.mohfw.gov.in/</u>. Further, amendments on COVID various orders are updated from time to time on <u>https://www.mha.gov.in/media/whats-new</u>, need to be followed in all operations. In addition, various guidelines / interim notes for construction sites have been prepared by institutions and organizations, some of which are listed below:

- a. ILO's Guidance: Considerations for employment intensive works in response to COVID 19 (April 12, 2020). <u>https://www.ilo.org/wcmsp5/groups/public/---</u> ed emp/documents/publication/wcms 741669.pdf
- b. WB's ESF/Safeguards interim note: COVID-19 considerations in construction/civil works projects (April 7, 2020)
- c. WHO's guidelines: Getting your workplace ready for COVID-19 (March 03, 2020)<u>https://www.who.int/docs/default-source/coronaviruse/getting-workplace-ready-for-covid-19.pdf</u>; Water, sanitation, hygiene, and waste management for the COVID-19 virus (March 19, 2020)<u>https://www.who.int/publications-detail/water-sanitation-hygiene-and-waste-management-for-covid-19</u>; Rational use of personal protective equipment (PPE) for coronavirus disease (March 19, 2020)<u>https://apps.who.int/iris/bitstream/handle/10665/331695/WHO-2019-nCov-IPC PPE use-2020.3-eng.pdf</u>.
- d. IASC Interim Guidance: Scaling-Up Covid-19 Outbreak Readiness and Response Operations in Humanitarian Situations, Including Camps and Camp-Like Settings (March 17, 2020)<u>https://interagencystandingcommittee.org/other/interim-guidance-scaling-covid-19-outbreak-readiness-and-response-operations-camps-and-camp</u>
- e. IDB's Guidance for infrastructure projects on COVID-19<u>https://www.idbinvest.org/en/download/9625</u>
- f. IFC Guidance: Workers' accommodation: processes and standards (2009) http://documents.worldbank.org/curated/en/604561468170043490/pdf/602530WP0worke10B ox358316B01PUBLIC1.pdf

Labor would continue to be the major player in corridor 4 construction activities. In view of the prevailing COVID-19 pandemic, the contractors and workers would need to take additional measure to avoid the spread of the disease. On the basis of above guidelines/guidance notes, a brief "To Do" list is summarized below (sl.no.in brackets refer to the above mentioned guidelines/guidance notes). For details and preparation of COVID Response and Management Plan, the above documents may be referred.

Brief 'To Do' List

Daily Drill:

- All workers to report some time earlier before the start of the shift. An attendance register is to be maintained for each shift. Social distancing of at least 2m to be followed in the holding area. The focal point to provide information update. (a, c, d)
- The workers need to wash their hands thoroughly (for at least 20-30 seconds) with soap or use sanitizers just before reporting screening. Adequate provision for hand washing, soaps, sanitizers needs to be made at the reporting location. (a, b, c)
- Health screening to be done for all workers in the shift including temperature monitoring using a non-contact thermometer. Any worker reporting with temperature higher than 37.3°C shall be sent to the isolation quarters and periodic observation be made. (a, b, c, d)
 - In case the worker shows symptoms of the pandemic (including COVID-19), the procedures as laid down by the national and state laws need to be followed for testing, quarantine of at least 14 days or hospitalization, depending upon individual case.

- All the co-workers in the shift, and other persons with known contact history in the construction site should be quarantined for a period of at least 14 days, followed by regular checkups/ observation/ examinations as laid down by the national and state laws.
- The workers found fit need to proceed to work with all required personal protective equipment, e.g. masks, gloves, goggles, boots, helmets, harness, etc. (a, b, c)
- The workers be encouraged to avoid contact with co-workers as far as possible and wash their hands at regular intervals. (a, b, c)
- Lunch/meal break be staggered into two so that workers proceed for lunch/meal at different times (a).
- There needs to be a provision of separate drinking bottles/cups for each worker, and these need to be cleaned thoroughly after meals. (a)
- Proper hand washing arrangement (water/soaps/sanitizers) needs to be ensured at eating locations. Hand washing facilities are ideally to be located within 5m of toilets and at close range of eating space. (a, b)
- The workers returning to the shift after lunch/meal break need to thoroughly wash their hands and follow the same procedure as that followed at the start of the shift. (a, b)
- At the close of shift, the workers need to thoroughly wash their hands with soap/sanitizers etc. (a, b)
- The PPE should be thoroughly washed/cleaned/sanitized (depending upon the type of PPE) after the shift ends. (a)
- The meal timings should be phased in each shift during which the sensitive areas of the workplace should be cleaned / sanitized as far as possible. (b)
- The time between two shifts should be used for cleaning and sanitizing machines, hand tools and areas of regular contact grab handles, control levers, steering wheels, control panels shall be regularly cleaned, and at the end of shifts used across shifts (or continuous operations) where operators/helpers change. (a)

General Guidance for contractors:

- Site specific Risk assessment needs to be undertaken and COVID Response and Management Plan be prepared for all sites. (a, b, d, e)
- Protocols for medical treatment, etc. should be prepared/followed, including for reporting, referral, treatment and discharge as per national and state laws and other guidelines. (a, b, c, d)
- A health and safety officer to be deployed as the focal point at all project sites, and wherever, the same is not in place, urgent action needs to be taken by the contractor to recruit someone. (a, b)
- Register for all the workers needs to be maintained, along with their health records (a, b, d).
- Limit the number of workers on site at any one time to minimize contact, including exploring operations for multi-shift working rotation. (a, b, d)
- Entry/exit to the site should be documented. Transport vehicles used during construction activities to carry construction materials should be sanitized on regular basis (at least once a day). (a, b)
- Hygienic living conditions need to be ensured in the camp sites with regular/daily cleaning, adequate hand washing facilities. Adequate provision for solid waste management needs to be provided. (a, b, d, f)
- Provide health and safety training/orientation on COVID19, or any other pandemic, to all workers and staff.(a, b, d)
- Ensure adequacy of necessary supplies of energy, water, food, medical supplies, cleaning equipment, PPE (both for regular use and those for medical exigencies) etc. (a, b, c, d, f)
- Quarantine and isolation facilities should be established in the camps (WHO Guidelines). The isolation facilities should have separate and dedicated toilets with proper arrangement for cleaning and removal of faeces. (c)
- Any medical waste produced during the care of ill workers should be disposed as per the national and state laws or relevant guidelines (e.g. WHO guidelines from time to time). PPE used for medical treatment/care purposes should be stored securely and kept separate from other waste. Current WHO recommendations are to clean utility gloves or heavy duty, reusable plastic aprons with soap and water and then decontaminate them with 0.5% sodium hypochlorite solution after each use.

Single-use gloves (nitrile or latex) and gowns should be discarded after each use and not reused; (a, b, c)

- > Incentivize workers lodging in the local community to move to site accommodation. (b)
- The community should be made aware, through posters etc., of procedures put in place at site to address issues related to COVID-19. This should include all measures being implemented to limit or prohibit contact between workers and the community. (a, b, c, d)

Updated Environmental Impact Assessment

April 2024 Revision 1

India: Chennai Metro Rail Investment Project Corridor 4

Annexure 9

Prepared by the Chennai Metro Rail Limited (CMRL) for the Asian Development Bank.

Public Consultations at Station Locations Onsite 2016-2018 (SIA for Corridor 4, Jan. 2019)

FORMAT FOR PUBLIC CONSULTATION location: Alwaypeth Shall (Line 4) Date/Time: 3/11/2016 Perception about the project: 1. Do you think that Metro rail is necessary Chennai city? Yes/ No 2. What impacts, both positive and negative of the project dip you foresee? S.N Positive Impact Remark S.N Negative Impact Remark Land Acquisition Shorten the trip 1 Enhance local economy Loss of livelihood 2 Increase employment opportunity Loss of income 3 4 Increase facilities 4 Loss of house/shop Decrease in accident 5 5 Loss of customers & supplie Increase in property value 6 Disruption of 6 social/cultural/economic Improvement in transportation 7 Increase in Crime Bates system Decrease Greenhouse gas emission 8 8 Increase in Migration Increase educational level 9 Disadvantage to the environment[damage of park,tree etc] 10 Others (Specify) many schools 10 Other(Specify 3. Issues Issued raised/ Discussed Suggestion by Stakeholders Remark Land acquisi. I the smuchan can be denoted and in case of we wontgeln Adequate compensation. it will be difficult for us Mary school/colleges at nearby and it could facilitate Transportation heidening of road is alread there. I ticket changes are more mere well not be able to movel though we loove our hand. Transportation will be carby compensation. had to bright a comparisation Bue to brewell metrostation of the social borewell may set affected. Borehell issue. Building Gracks There is provided by building of The

Love of tenarcy we are the tenents and due to metro. there we like price hike and we works set place here at the same rate. Loss of liveling This is buriness area and all the omnow of attended, it will be difficult forces. Signature Name of Participant Name of Participant Signature 1 Alok Trivedi सालाक दिवेदी Ashipue Labord
Mazeer () Sadik (5) Khawaja (Mahd Ali

(Line4 Location : * depaleni ٧a

Date/Time: 11/11/ 2016 Perception about the project:

1. Do you think that Metro rail is necessary Chennai city? Yes/ No 2. What impacts, both positive and negative of the project do you foresee?

S.N	Positive Impact	Remark	S.N	Negative impact	Remark
1	Shorten the trip	4	1	Land Acquisition	
2	Enhance local economy	1.00	2	Loss of livelihood	
3	Increase employment opportunity	~	3	Loss of income	
4	Increase facilities		4	Loss of house/shop	
5	Decrease in accident		5	Loss of customers & supplie	
6	Increase in property value		6	Disruption of social/cultural/economic	
7	Improvement in transportation system	1	7	Increase in Crime Rates	
8	Decrease Greenhouse gas emission		8	Increase in Migration	
9	Increase educational level	-	9	Disadvantage to the environment(damage of park.tree etc)	
10	Others(Specify)		10	Other Specify attes the	owner

	Suggestion by Stakeholders	Remark
	and, alloage there is trathic am, irreputive boot peak tim	•
Shorten the top N	and the second se	
Au	ready so many hampertali-	
Castly tonight Chi	cillas, neorby metro of raily	ty.
St malanda	ervices, of reduced mile	
u	ervices. of reduced price optied it will be helpful	0.00
and the second second		1.0.0
place ou	ing a small shop oroner, is directioned would abbe	L
Reduce Pollution 1	Bun to metro, there well be	
2	harp reduce & pollection	
L.A	thick is at higher property	1

By reducing of memotiches costly charges charges, we can increase the metro concurrer 4 of metro road accorders & pollection & develop clenna Signature Name of Participant Signature Name of Participant Mr. s. Kalidas 9562228780 - 5 km 3-2 -Mr Mani ELARP 797174 C. May. R. Ugoszani B220491824 Rugo. Palaniur B220491824 Rugo. B. M. 97102 berel ASPU Morales N. Selvapandi 9852816112 SPAR 9444324957 S. RAMESH 9941708738 D.K. 99628/1562 Sol Dikunan 5 South Madks PEDO Knowen 893922.7757 Blo 292397912 - 45 M.Dage

FORMAT FOR PUBLIC CONSULTATION

Location: Vadapalani

•

Date/Time: 2.6 /05/2017-

Perception about the project:

1. Do you think that Metro rail is necessary Chennal city? Yes/ No 2. What impacts, both positive and negative of the project do you foresee?

S.N	Positive Impact	Remark	S.N	Negative Impact	Remark
1	Shorten the trip	~	1	Land Acquisition	
2	Enhance local economy		2	Loss of livelihood	
3	Increase employment opportunity		3	Loss of income	
4	Increase facilities		4	Loss of house/shop	
5	Decrease in accident		5	Loss of customers & supplie	
6	Increase in property value		6	Disruption of social/cultural/economic	
7	improvement in transportation system -	~	7	Increase in Crime Rates	
8	Decrease Greenhouse gas emission		8	Increase in Migration	
9	Increase educational level		9	Disadvantage to the environment(damage of park, tree etc)	
10	Others(Specify)		İŬ	Other(Specify	

Issued raised/ Discussed	Suggestion by Stakeholders	Remark
Time sainy	Metro well save transported in time. neeth confirst.	
Naths Redue	Que to vicilizing of . Vadapalan: Bus shop. all the time there is	100
Dea	huge baths .	
Lervin the pol	halic meno had reduce the esi doal of statethe bern the po send of pallite	shop profilie
Heed of other	stis advally needed. Anne	
modesof	IT offices are in sepred, since	
transpondition	Atten is hardly frequery is sen	

Motoris also needed in Pohue, Low frequery Of Barres suttis Repromable as the residents route . There are solily dependent on and pregnant line services Frequery of by is too low Time staring for metro need abate the time. Truthic is two made , not only in peak bous for one himme for Memo will dere le traffic Redux nattic Load & reduce in accident of palletia.

Name of Participant Signature D. PREN KUMAR Maherh Padmithe Inithe vija Mard heur blir. A John .

10-

A. Sottee A.

9840308309 8675335097 9540531986 9 8405 31 985 9752196692 6157899868

Name of Participant

Signature

9894368407

FORMAT FOR PUBLIC CONSULTATION

Luz Juctice, MyLappore, Thirumy Location: las 29/05/2017 Date/Time: Perception about the project:

1. Do you think that Metro rail is necessary Chennai city? Yes/ No 2. What impacts, both positive and negative of the project do you foresee?

S.N	Positive impact	Remark	S.N	Negative Impact	Remark
1	Shorten the trip		1	Land Acquisition	
2	Enhance local economy	1	2	Lass of livelihood	
3	Increase employment opportunity		3	Loss of income	
4	Increase facilities		4	Loss of house/shop	
5	Decrease in accident		5	Loss of customers & supplie	
6	increase in property value	1.1.1	5	Disruption of social/cultural/economic	
7	Improvement in transportation system		7	Increase in Crime Rates	1
8	Decrease Greenhouse gas emission		8	Increase in Migration	
9	Increase educational level	-	9	Disadvantage to the environment(damage of park, tree etc)	
10	Others(Specify)		10	Other(Specify	

Issued raised/ Discussed	Suggestion by Stakeholders	Remark
Incress Connectivity	Connectivity Long run it will	
Solve Traffic Sin-	Theo much traffic in this area metro is never reduce the traffic	- And
Old area & building may callepse during tunneling hourte.	underground metro, De Old	Many hon tage Building is Nearboy Many building a contrary old
Tunneling accident	This is the main area, if the similar accident, will be difficult & cancelly	
Reduce proffic	Trathic Less. Due to vehicles there is huge traffic pollulier several it so high. Metro well solve the	-

underground track not suitable for hypoper- as it is a very old area with heritage buildings temples, durch, etc. Many building / veridences are certain old, therefore there in great visk of collapses Business to bs due If cashulia activity go long to construction more than expected, then in activity commencials/slops their business will be affected. The commutation/transportation charges are higher. The charges should be sens. Name of Participant Name of Participant Signature Signature - 98407 42 54 5 Forzol Irshad AC - 9884835501 Cionthom 9444464066 Leona karthileyan 9790923875 99523 49495 SETHU venugopa 9884975252

PUBLIC CONSULTATION

Location: POONAmallee Bus Date/Time: 03/07/2018 enmeners

Perception about the project:

Do you think that Metro rail is necessary for the city?Yes/ No
 What impacts, both positive and negative of the project do you foresee?

\$.N	Positive Impact	Remark	S.N	Negative Impact	Remark
1.	Shorten the time/trip -	100000000	1.	Land Acquisition	
Ζ.	Enhance local economy		2:	Loss of livelihood/income	-
3.	Increase employment opportunity		3.	Loss of house/shop	
4.	Increase facilities		4	Loss of customers	
5.	Decrease in accidents		5.	Disruption of social/cultural/economic	
б.	Increase in property value		6.	Increase in Crime Rates	-
7.	Improvement in transportation system		7.	Increase in Migration	
8.	Decrease Greenhouse gas emission		8.	Damage of park,tree etc.	-
9.	Increase educational facilities		9.	Other(Specify)	-
10,	Others(Specify)			o enertype enty	

Issued raised/ Discussed	Suggestion by Stakeholders	Remark
Compensation	Due to metro train, other factities and information will sendly develop, but participants strang suggested that the abbected	8
	staucture/people should get adequate compensation in	
Lease of	order to ac-instate the like of people.	
Loss of Livelineed	Been a small shop or over our livelihoods will totally less. There has to be adequate Pro provision of compensation.	

Peduction in	motoro will reduce the existing
pollution	frablic and reduce the level of pollution.
Reduced Read A cicidents	matero will reduce the trablic and reduced in road accidents.
constructions sesuer in toolhir ram	and constanction activity will result trackic Jam. Asthin
	webre construction muy dost disrupt the tarbbic blow.
Goven House Ebbeet	indianiat it is low and towner enforcement
	development will burkner will reduce the green cover and need to to be torkenoare
Time millbe reduced boy	The tradic is huge due to hear by colleger and
toravelling Area	Commercialaren nearby. Metro taain will be helpful to seduce the trablic lead.
Development	Due to metro trach, other bacilities will come such
	Local economy will boost
	wp.

we dont want a metro we NO Requisement Want "highways and of metro overbaildes only The existing transportation Low metro changer are too high unless ternen fares it in less on decreased metro are required will not be successful foir Forre must be reasonable.

Name of Participant

Signature Mobile No. 9884871117 dit.b 0) Satish Niyanashelman. AMERIN Das Rajan: 9 Ramorh -Mani. 8428600820 V Anna 8525063699 G. Mohan -10)(0) k. Visulsh -Raja 1-la W Arunpan. 9791011282 & G. Gangadbara 8428671189 Asun Kewan, & Welly. - 9025034145

PUBLIC CONSULTATION

L Bun Depot 1yaps anthough Location: with Date/Time? 03/07/2018

Perception about the project:

Do you think that Metro rail is necessary for the city?Yes/ No.
 What impacts, both positive and negative of the project do you for esee?

S.N	Positive Impact	Remark	S.N	Negative Impact	Remark
1.	Shorten the time/trip	12	1	Land Acquisition	
2.	Enhance local economy	-	2	Loss of livelihood/income	
3.	Increase employment opportunity	100	3.	Loss of house/shipp	12
4.	Inconase facilities	~	4.	Loss of customers	1
5	Decrease in accidents	~	5.	Disruption of social/cultural/economic	
6.	Increase in property value	101	6.	Increase in Crime Rates	
7±	Improvement in transportation system	1	7.	Increase in Migration	0
8.	Decrease Greenhouse gas emission	V	8.	Damage of park, tree etc.	12
9.	Increase educational facilities	1	9.	Other(Specify)	
10,	Others(Specify)		-	and operation	-

Issued raised/ Discussed	Suggestion by Stakeholders	Remark
Time Source	The respondends said that the metero facility in the city of chemical will save then time to reach to the destinations. in companison with other means.	
Tarblic James and increase connectivity	The respondence suggested that the metro project will reduce trabbic and commencication in the city. The long distance travel will be easy and metro will increase the connectivity.	

thavel time	The suppondents sold that the
mill be	topped time will & reduce
are duce and	due to the peropased metro
the tablic.	project.
combarbible	It would be easy to regan
foravel.	we dostriation.
Pollution will be reduced. Topologe	There in the scope bon an podution networkill Lesson limit the traffic and ultimotely reduce the existing ligh Level of pullinhors both wise and air.
Reduced Road	There would be no accidents.
Accidents	while travelling in metro,
Traveltime would reduced	The The metrobacility on the city will some the time of the presengers.
Employment	There would be scope for
Oppositurity	Job oppositunity or boon
aspisout	Engineers.

Local Vendors would be Lowsof assected badly. Livelihood. The parce of the metro High cost love simil be as minimum an possible considering the of metro ticket. burning pursel of the poople burgainie Name of Participant Mobile No. Signature occepation SGUNA 9566208257 S. GUNA Saiphan 9894773228 S. Manoy S. Manoi - 9094521242 1. Sheller 7058247381 Swina (Langer). 9626982579 9.8. Sounivaran 6 Mugern - 8940395189 Silambarasan Hanish (Fugineor) 2056920845 Martin (Eusinen) 7502158671 Q. Kachiperun, 7299539796) & R. Kumareavel (Juple) - 1 (Hyundai) 11 - 7419606607 Chandric (Emplee). Mil (2) - 9500231658 (Huydai can coupany

PUBLIC CONSULTATION

Location: DEPOT AREA - Corridor- 4 Extension Date/Time: 20/11/2018, 12:34 P.M.

Perception about the project:

1.Do you think that Metro rail is necessary for the city?Yes/ No-

2. What impects, both positive and negative of the project do you foresee?

S.N	Positive Impact	Remark	5.N	Negative Impact	Remark
1.	Shorten the time/trip		1	Land Acquisition	1.1.1.1.1.1.1.1
2	Enhance local economy		2	loss of invelihood/income	_
3.	Increase employment opportunity		3	Loss of house/shop	
4	Increase facilities		4	Loss of customers	
5	Decrease in accidents		5	Disruption of social/cultural/economic	
б.	Increase in property value		6	Increase in Crime Rates	
π.	Improvement in transportation system		7,	Increase in Migration	
8.	Decrease Greenhouse gas emission		8.	Damage of park,tree etc.	
9.	Increase educational facilities		-9	Other(Specify)	_
10	Others(Specify)				

^{3.} Issues

Issued raised/ Discussed	Suggestion by Stakeholders	Remark
Time saving	It becames easier tar in to bave have conviniend/ easy transport system.	
Lossor liveline	of The respondent sound that they	
Jucome.	will loose their liveli hood ice	me
	-eb trenwoods wancplace 1 land	
34	gets acquired bontone metaro	
	pacriect.	
and tablic	The respondent soid tood there	
Pollection being	in a possibility to nove paller	tion
constanction of the ponej eck site		
1 9	construction of the metro	

High Rode of	The winner and and and
metroricut	Ponice in channing meters -in
	250. The minute of all a
	250. The middle class citizens
	weill not be able to abband that money on a regular basis. So,
	they are using the law sonices
	mastly. The ticket gate in 50 Brow
	1st to 2nd point but Barn the 2nd point
1	to at the point the cust shall be
	less considering the larger distance
	and lesser ticket note like the
	Indian Railway . As a result the
12	labouer chan will be benefitted.
Lossor pollution	Abten the industrian of the
and and	i togo je ci tue ain a l
Noise).	Pollution will decrease.
Lossof Land -	The lass of land and the
and small extension	The lass of land and the shall company is a major
- Andrewski -	ussue bon the employees (small)
	Commily they will loose their some
	the lady respondent sound that
	FUCHA DADTAGE
	A DATE OF THE PARTY OF THE PART
	y. She wull topavel
(A)	- a and secure mature the
4	Dravelling in BM.

Loss of trees well oss of trees is another major concern according to the porote Lands respondents. The force plantation needs to be taken to care of and ballowed up by the compotent authority.

Name of Participant

- 1. Felix
- 2. & P. Shouthivel
- 3. R. Thennarasu
- 4. K. Kaleimena
- 5 Vined Kuman.
- 6. Diveran.
- 7. Sudhakan.
- 8. No8203.

Signature

Mobile Na.

7708681990 8939251236 7010436589

10²⁰

956619266936

91946913199

a 56-60 0 2 4 2

021

Kutchery road

Alwarpet

Poonamallee Bus Terminal

lyyappathangal Bus Depot

Proposed Metro Depot

Public Consultations at Station Locations Onsite 2018 and 2019

Bharathidasan Road

PUBLIC CONSULTATION

Location :

Bharathickien Real Date/Times 219/2018

Yes - 8

NO: 2

Yes/ No

Perception about the project:

1. Do you think that Metro rail is necessary for your city?

2. What impacts, both positive and negative of the project do you foresee?

S.N	Positive Impact	Remark	S.N	Negative Impact	Remark
1	Shorten the trip	V	1	Land Acquisition	
2	Enhance local economy		2	Loss of livelihood	V.
3	Increase employment opportunity	\checkmark	3	Loss of income	V
4	Increase facilities		4	Loss of house/shop	\sim
5	Decrease in accident	V	5	Loss of customers & supply	
6	Increase in property value	6 Disruption of social/cultural/economic			
7	Improvement in transportation system	\checkmark	7 Increase in Crime Rates		
8	Decrease Greenhouse gas emission	\checkmark	8	Increase in Migration	
9	Increase educational level		9 Disadvantage to the environment(damage of park, tree etc)		
10	Others(Specify)		10	Other(Specify	

issued raised/ Discussed	Suggestion by Stakeholders	Remark

S.No	Name	Age	Sex	Occupation	Signature
1.	Sadia	42	Maie	Feed Styr (+++)) TOWN
2	Krismakumas	31	male	YELDI Stop.	Kumer.K.
3	kinibamadeu	291 29	Female	Nuzseall.	Cuampeterspin
4	Thilak	30	Male	Saleno.	8 B. B. C.
5	Syazaa	- 21	Female	Dry cleaner	Wingen a.
6	Selva	29	Renale	States Shop	30
-1	Sainisha	_ <u>SC</u>	Fronte	Beatly Park	1 North
8	Puvinano	31	Male	manaley	Transon
9	1. Ramesh	32	male	MOVISION STRE	- panyli
10	Vayarth.K.	£ 2	Male	Susiness (Les	to) 1 prof pr
					V- (*

Vadapalani

PUBLIC CONSULTATION

location: Vadapalant

Date/Time: 819 2018

Perception about the project: 405 - 4 L Do you think that Metro rail is necessary for your city? Yes/ No 600 = 53

2. What impacts, both positive and negative of the project do you foresee?

S.N	Positive Impact	Remark	S.N	Negative Impact	Remark
1	Shorten the trip	V	1	Land Acquisition	
2	Enhance local economy	L	2	Loss of livelihood	1000
3	Increase employment opportunity	 3 Loss of income 		Loss of income	2
4	Increase facilities		4	Loss of house/shop	· · ·
5	Decrease in accident	V	5	Loss of customers & supply	
6	Increase in property value	6 Disruption of social/cultural/economic			
7	Improvement in transportation system	V^{-}	7 Increase in Crime Rates		
8	Decrease Greenhouse gas emission		8	Increase in Migration	
9	Increase educational level	envin		Disadvantage to the environment(damage of park, tree etc)	ν^{*}
10	Others(Specify)		10	Other(Specify	

Issued raised/ Discussed	Suggestion by Stakeholders	Remark

S.No	Name	Age	Sex	Occupation	Signature
1.	V laiatekha	37	Nale	Business	Video
2	Chandas	35	Nale	RECOFS.	Chenel
- 3	Selvern	12	male	Cit & Flour She	Olantel
1	Udhayabeymax	33	Make	Studie	Uphalips
- 5	Raikuman	12	Male	Electronics (hep)	Paikama
6	Michigan	43	Mak	Bunk shep	Al Banni
-1	Sambandas	4.2	male	1KOM MODEL	. Dentralin
Q	Chandsa Sekas	43	Male	He tel.	changly asking.
С,	Sargo	A5	Feinak	Fleues Shop	260020
!t	Vinal Ry	35	Male	Busineur	Mach
1.4	Altopsa	41_	Female	Petti Shop	SIN SUDDAR
12	Adams Ray	42	Male		4
	J			Certa	Adary

Valasaravakkam

nnai Merro Rail Limited

PUBLIC CONSULTATION

Location: Vala sasa Uakkam

Date/Time: 2.1 0 2018 .

Perception about the project:

1. Do you think that Metro rail is necessary for your city?

Nes = 6 No = 2.

Yes/No

2. What impacts, both positive and negative of the project do you foresee?

S.N	Positive Impact	Remark	5.N	Negative Impact	
1	Shorten the trip	. /	5		Remark
2	Enhance local economy	V	1	Land Acquisition	V
3	Increase employment opportunity		2	Loss of livelihood	
4	Increase facilities		3	Loss of income	V
5	Decrease in accident	\sim	4	Loss of house/shop	+ ¥
6			5	Loss of customers & supply	
0	Increase in property value	\checkmark	6	Disruption of	
7		_ ·		social/cultural/economic	
^	Improvement in transportation system	\checkmark	7	Increase in Crime Rates	
8	Decrease Greenhouse gas emission	-7			/
>	Increase educational level	\sim	8	Increase in Migration	\checkmark
	the case coocononal level		9	Disadvantage to the	
- 1				environment(damage of park,	
10	Others March 18 1			tree etc)	
10	Others(Specify)		10	Other(Specify	

	Issued raised/ Discussed	Remark to the second	
		Suggestion by Stakeholders	Remark
1			

S.No	Name	Age	Sex	Occupation	Signature
1.	Yellai samy	4.5	Male	Tea Shop	6 aurimant no
- 2.	Gr. Schar U	40	Mak	Nedical than	Contraction of the
	sanjeuron_	30	Male	Ton Shap	a station and
-41	-Segar Fal	-26	Male	Electronika	n than
- Levi	Mayneth	<u>Z6</u>	Male	Balery	Maheshith
6,	- to yaraay	41_	Male	Salood	TT BAGALIA T
- 71	Tartemanay /	347	10 10	cectic	Philo noch
- 43-		3.4	FOULTE	(Unici. Mizzon)	600000-
					00 41

Alapakkam

hennai Motro Rail Limited

PUBLIC CONSULTATION

Location: Alapakkam

Date/Time: 24/10/2018

Perception about the project:

1. Do you think that Metro rail is necessary for your city?

Yes - 3.

Yes/No

2. What impacts, both positive and negative of the project do you foresee?

S.N	Positive Impact	Remark	S.N	Negative Impact	Remark
1	Shorten the trip	1	1	Land Acquisition	
2	Enhance local economy		2	Loss of Ivelihood	
3	Increase employment opportunity		3	Loss of income	V
4	Increase facilities		4	Loss of house/shop	V.
5	Decrease in accident		5	Loss of customers & supply	V
6	Increase in property value		6	Disruption of social/cultural/economic	~
7	Improvement in transportation system	2	7	Increase in Crime Rates	
8	Decrease Greenhouse gas emission	V	8	Increase in Migration	
9			9	Disadvantage to the environment[damage of park, tree etc)	
10	Others(Specify)		10	Other/Specify	

Suggestion by Stakeholders	Remark
	Suggestion by Stakeholders

No Name	Age	Sex	Occupation	Signature
1. Prathakasan	38	Malo	Too shop	intervision
2 Engene	37	Mille	Electric Same	Querel
3 S. Wam	39	Male	COOLIC . 1	Cherry Cherry
4 Surthan &	32	Male	Martilingens	non Robert
S Darndw.R	24	Female	Shelying NORA	Dele P.

lyyappathangal Bus Depot

PUBLIC CONSULTATION

Location: I yyapanthangal Bus Depot Date/Time: 12/1/2019

Yes/ No

Perception about the project:

1. Do you think that Metro rail is necessary for your city?

Ves + A No + B.

2. What impacts, both positive and negative of the project do you foresee?

S.N	Positive Impact	Remark	S.N	Negative Impact	Remark
1	Shorten the trip	V	1	Land Acquisition	~
2	Enhance local economy		2	Loss of livelihood	V
3	Increase employment opportunity		3	Loss of income	
4	Increase facilities	\checkmark	4	Loss of house/shop	1
5	Decrease in accident		5	Loss of customers & supply	
6	Increase in property value	\checkmark	6	Disruption of social/cultural/economic	
7	Improvement in transportation system	\checkmark	7	Increase in Crime Rates	
8	Decrease Greenhouse gas emission	\checkmark	8	Increase in Migration	
9	Increase educational level	\sim	9	Disadvantage to the environment(damage of park, tree etc)	
10	Others(Specify)		10	Other(Specify	

Suggestion by Stakeholders	Remark
	Suggestion by Stakeholders

S.No	Name	Age	Sex	Occupation	Signature
1.	Rejentions	12	tracte	 (initial slama) 	Lawalat in
2.	Frath. P.	37	Mile	he sider Cake	andik
3.	Nandbici+h	510	ler ale	P141	The N.
-4	Sadkiyaray	⊇λ	Male	SEEckes shop	Ripathingold
્	Deriverailta	2.3	1 Or als	A Saw Clake	- hanke
6	Almitten	2.3	Kaule	JIR	had of
·/	1 FULLUAS SU	(Inale	Refail Freiff	- May
	/				

Kattupakkam

PUBLIC CONSULTATION

Yes/No

Location: Kallyparkam

Date/Time: 10110019

Yes - 8 No - 3.

Perception about the project:

1. Do you think that Metro rail is necessary for your city?

2. What impacts, both positive and negative of the project do you foresee?

S.N	Positive Impact	Remark	5.N	Negative Impact	Remark
1	Shorten the trip	V	1	Land Acquisition	V
2	Enhance local economy	V	2	Loss of livelihood	V
3 .	Increase employment opportunity		3	Loss of income	
4	Increase facilities	1-	4	Loss of house/shap	
5	Decrease in accident	V	5	Loss of customers & supply	
6	Increase in property value		6	Disruption of social/cultural/economic	-
7	Improvement in transportation system	V	7	Increase in Crime Rates	
8	Decrease Greenhouse gas emission	12	8	Increase in Migration	V
9	Increase educational level		9	Disadvantage to the environment(damage of park, tree etc)	
10	Others(Specify)		10	Other(Specify	

Issued raised/ Discussed	Suggestion by Stakeholders	Remark

S.No	Name	Age	Sex	Occupation	Signature
1	Sixalingan	38	Male	Xiter Shoe	S
2	Santodiam	80	Millo	Mechanie /	<u>ஆற்கானம்</u>
2	Kumag T	48	Wille	BUCOCK	Lunige Shipo
4	Tranguel T	11.12	N 16	Laundry Shir	Myrein diash
5	Mary,	53	Tenale	Haur keeping	BON
6	Kergeliana	13	Fright	Hours lates	5 Brighton
7	1- UnSer M	142	Mile	Brigani Shop	Jerrio M.
8	10:28 M	8.8	Nile	Balline Shet	TETO M.
9	Julank	29	Mile	Chieren Shep	- beckny
151	Munkandan	3.0	Mile	1 rathan Stde	· mountablestution ·
1	Fuela	-31	154.110	Henry Makin	and the second
					- Vanifer . Ma
					NN 1

Updated Environmental Impact Assessment

April 2024 Revision 1

India: Chennai Metro Rail Investment Project Corridor 4

Annexure 10

Prepared by the Chennai Metro Rail Limited (CMRL) for the Asian Development Bank.

ANNEX 10-1: GUIDELINES FOR SITE SELECTION AND MANAGEMENT

A. Purpose

Labour camps and construction plants of a contractor represent the potentially most polluting locations during implementation of an infrastructure project. Air pollution may be caused by emissions from Crushers, Hot-Mix plants, Concrete Batching Plants and Casting Yards. Water pollution may be caused by discharge of sediment, oil & grease, and organics laden run-off from these plants and their ancillary facilities as well as workshops and residential quarters for the labour. Land may be polluted due to indiscriminate disposal of domestic waste or (accidental) release of hazardous liquids or solids from storage areas.

While the installation and operation of construction plants in general is regulated by the respective Pollution Control Boards, detailed guidance on the environmental management aspects of the Contractor's campsites is often lacking. This guideline for site selection and management is designed to fill this gap.

B. Siting of labour camp and construction plant

The following guidelines are recommended to avoid any environmental issues while siting construction camps. Further specific guidance maybe taken from the relevant national/state regulations or conditions issued with the Consent to Establish:

- Labour camps, plant sites and debris disposal site are not located close to habitations, schools, hospitals, religious places and other community places. A minimum distance of 500 m must be maintained for setting up such facilities.
- Maintain a distance of about 1 km (or as per clearance conditions from forest department) from boundaries of designated Reserved Forests, Sanctuary or National Park area for locating any temporary or permanent camps.
- Maintain a distance of 1 km from any archeological site.
- Maintain 500 m distance from river, stream, lake and ponds
- Maintain 200 m distance from the boundary of state and national highways.
- Locate facilities in areas not affected by flooding and clear of any natural or storm water courses.
- Locate facilities in the (most prevalent) downwind direction of nearest village(s). The boundary of the facilities should be at a suitable distance from the nearest habitation and in compliance with relevant national or state regulations such as the state pollution control board requirements so that the incoming labor does not stress the existing local civic facilities.
- The ground should have gentle slope to allow free drainage of the site.
- Recorded consultations should be held with residents of the nearest settlement and/or their representatives to understand and incorporate where possible, what they would like to see within their locality.
- While complying with the above, labour- and construction camps and muck and waste disposal sites must be located as close to the construction site as reasonably possible in order to minimize travelling distances.

C. Facilities at camps

During the construction stage of the project, the contractor will construct and maintain necessary (temporary) living accommodation, rest area and ancillary facilities for working staff & labour. Facilities required are listed and elaborated below.

- Site barricading
- Clean Water Facility
- Clean kitchen area with provision of clean fuel like LPG
- Sanitation Facilities
- Waste Management Facilities
- Rest area for workers at construction site
- Adequate Illumination & ventilation
- Safe access road is required at camps
- Health Care Facilities
- Fire-fighting Facility
- Emergency Response Area

Site barricading. Site should be completely barricaded from all the sides to prevent entry of outsiders and animals into the site. Entry gate should be provided at the site and labour camp which should be guarded by security guard. All workers should be issued ID cards and entry of outsiders shall be maintained in the register at the gate. Board should be displayed at the site and the labour camp, the name of project, capacity of project, authority carrying our projects, restriction of entry without authorization, and no smoking zone and associated risks.

Clean water facility. Potable water shall be provided for working staff & construction labour for drinking & cooking purpose. Clean water shall be provided for bathing, cleaning and washing purpose. Water quality testing for water shall be carried out on quarterly basis.

Clean kitchen area. Provision of clean kitchen area for cooking and storage of eatables shall be provided. Clean fuels like LPG shall be provided for cooking purpose. Burning of firewood, garbage, paper and any other material for cooking or any other purpose shall strictly be prohibited at the site.

Sanitation facilities. Construction camps shall be provided with sanitary latrines and urinals. Toilets provided should have running water availability all the time. Bathing, washing & cleaning areas shall be provided at the site for construction labour. Washing and bathing places shall be kept in clean and drained condition. Workers shall be hired especially for cleaning of the toilets and bathing area. Septic tanks and soak pits shall be provided at site for disposal of the sewage generated.

Waste management facilities. Waste generated should be segregated at the site by providing the different color bins for recyclable and non-recyclable waste. Recyclable waste shall be sold to authorized vendors and non-recyclable shall be handed over to authority responsible in area for waste management. Waste management for construction site shall be as per waste management plan proposed in EMP.

Rest area. A rest area/shelter shall be provided at the site for construction workers where they can rest after lunch time and shall not lay down at site anywhere. The height of shelter shall not less than 3m from floor level to lowest part of the roof. Sheds shall be kept clean and the space provided shall be on the basis of at least 6X6 sq. feet per head.

Illumination and ventilation. Construction worker camps shall be electrified and adequately illuminated. Illumination level shall be maintained after 5.30 Pm at the site to minimum 200 lux. Labour camps shall be adequately ventilated. Fans shall be provided for ventilation purpose.

Access road. Temporary paved surface shall be constructed to approach the labour camp from the site. Movement shall not be hampered during monsoon season due to water logging and muddiness.

Health care facilities. First aid box, first aid room and personnel trained in first aid shall be available at labour camp and site all the time (24X7). A resident doctor shall be available at camp. Equipment in first-aid box shall be maintained as per State Factory's Law. Ambulance/ 4 wheeler motorized vehicle shall be available at the site for carrying injured to the nearby hospital. Tie-ups should be made with nearby hospital to handle emergency, if any. Nos. of ambulance, doctors and nearby hospital shall be displayed in first-aid room, site office & labour camps. Workers shall be made aware about the causes, symptoms and prevention from communicable diseases such as Covid-19 and HIV/AIDS through posters and awareness programs.

Fire fighting. Fire-fighting facility such as sand filled buckets and potable fire-extinguishers shall be provided at labour camps and at site. Fire-extinguishers shall be provided as per NBC norms.

Emergency response area. Area shall be demarcated as emergency collection area near the gate where all the workers shall be guided to collect in case of any emergency like fire, flood and earthquake.

D. Activities prohibited at site

Activities which should be strictly prohibited at site shall include

- Open burning of wood, garbage and any other material at sit for cooking or any other purpose
- Disturbance to the local community.
- Operation of the plant and machinery between 10 pm to 6 am unless approved by team leader
- No animal (wild or domestic or bird) shall be harmed by any construction worker in any condition at site and nearby areas
- Cutting of tree without permission of team leader/authorized person
- No indigenous population shall be hurt or teased

E. Guidelines for night time working at the site.

No activity generating noise shall be carried out at the site after 10:00 PM. Night working protocol should be followed (if required) as per guidelines prepared by contractor and approved by the General Consultant (GC). Site should be well illuminated to maintain minimum illumination level of 200 lux. Personnel working shall obtain permit to work from the team leader prior carrying out any work in night time and the record of such working shall be maintained in register. Any accidents, if occurs at site during night time working shall be immediately reported and recorded. Penalty shall be imposed on the contractor for the accident. Analysis shall be carried out to find the reason for such accidents for future learning.

F. Record keeping & Maintenance

Record of entry/exit of the people in the construction site and labour camp area shall be maintained in register at gate. Record of material coming in and going out from site also shall be maintained.

G. Auditing & Inspection

Conditions of labour camp and site shall be inspected and audit report shall be submitted to GC on monthly basis.

H. Establishment, Operation, and Closure of Camps and Plants

- The facilities within the camp and plant sites should be laid out so that the separation distances suggested in other guidelines are maintained.
- Topsoil from the area of the plant shall be stored separately for the duration of the operation of the camp and protected from being washed away, unless agreed otherwise in writing with the owner. If stored, it will be returned on to its original location at the time of closure of the site.
- The Contractor shall prepare, make widely available (especially to staff responsible for water and material management), and implement a Storm water Management Plan (SWMP) for (all) the site(s) following approval of the same by the Engineer.
- The Contractor shall prepare an Emergency and Spill Response Plan to cover the spillage of fuel, oil, grease bitumen and/or chemicals like retarders, curing compounds, etc.
- The Contractor shall prepare a Waste Management Plan describing the types and quantities that are likely to be generated from within the camp site, with the period and duration during the construction schedule; methods to be adopted to minimize these; methods of removal, treatment and (on-site or off-site) disposal for each type; as well as location of final disposal site, if any.
- The Contractor shall provide safe ingress and egress for vehicles from the site and public roads and shall not impact existing through traffic.
- Water tankers with sprayers must be available at the camp site at all times to prevent dust generation.
- In case of stockpiles of stored material rising higher than wind-breaking perimeter fencing provided, sprinklers shall be available on site to prevent dusting from the piles during windy days.
- On completion of works, the Contractor shall restore the site to the condition it was in before the establishment of the campsite, unless agreed otherwise in writing with the owner(s) of the site(s). If such a written agreement has been made, the Contractor shall hand over the site to the owner(s) in accordance with such an agreement. Following measures are required to be taken during closure:
 - Septic tanks/soak pits should be dismantled
 - Any temporary/permanent structure constructed shall be dismantled
 - Construction/demolition waste, hazardous waste and municipal waste at site and labour camp site shall be disposed off as per waste management plan in EMP
 - The site shall be cleaned properly
 - Tree plantation to be carried out, if any required for stabilizing the area
 - Any pit excavated shall be filled back
 - Closure of the site and labour camp shall be approved by authorized person.
- Construction waste disposal should be disposed only at landfill facilities which are selected, designed, constructed and operated to ensure environmentally safe disposal, and these facilities have to be approved by the regulators.

I. Workshop and Maintenance areas

- These areas must have impervious flooring to prevent seepage of any leaked oil & grease into the ground. The area should be covered with a roof to prevent the entry of rainwater.
- The flooring shall be sloped towards from both directions to one corner where an oil-andgrease trap with sufficient capacity should be installed. All discharges from the workshop area must pass through the trap to remove the floating oil and grease before entering the drainage system of the site. The trap should be designed to provide a hydraulic residence time of about 20 minutes for the peak hourly discharge anticipated from the area (as per following figure).
- Alternatively, degreasing can also be carried out using mechanical spray type degreaser, with complete recycle using an enclosure with nozzles and two sieves, coarse above and fine below, may be used as shown in the adjacent photograph. This arrangement will require some initial investment and running cost for the pump, but the payback period, in terms of the use of diesel, under Indian conditions, has been reported to be less than 1 year.
- All the waste oil collected, from skimming of the oil trap as well as from the drip pans, or the mechanical degreaser shall be stored in accordance with the Environment Protection (Storage and Disposal of Hazardous Wastes) Rules, 1989. For this purpose, metallic drums should be used. These should be stored separately in sheds, preferably bunded. The advantage of this arrangement is that it allows for accurate accounting in case the waste material is sold to oil waste recyclers or other users like brick-kiln owners who can burn such inferior fuel.
- A separate vehicle washing ramp shall be constructed adjacent to the workshop for washing vehicles, including truck mounted concrete mixers, if any, after each day's construction is over, or as required. This ramp should have an impervious bottom and it should be sloped so that it drains into a separate chamber to remove the sediment from the wash water before discharge. The chamber should allow for a hydraulic residence time of about 10 minutes for discharge associated with the washing of each truck.

ANNEX 10-2: GUIDELINES FOR MUCK DISPOSAL

Muck generated from tunneling and excavation of any project component is required to be disposed in a planned manner so that it takes a least possible space and is not hazardous to the environment. An account of the same has been given in the following paragraphs.

A. Criteria for selection of muck disposal sites

Based on the geological nature of the rocks and engineering properties of the soil, a part of the muck can be used as construction material. The remaining muck is to be disposed of at muck disposal sites. The identification of muck disposal areas is done in line with the topographic and site specific conditions. The following points will be considered and followed as guidelines for finalization of the areas to be used as muck disposal sites:

- The dumping sites have been selected as close as possible to the project area to avoid long distance transport of muck.
- The dumping sites are located in already modified habitat.
- The sites are free from possibility of toe erosion and slope instability.
- The dumping sites are either at higher level than the flood level or are away from the river course so that the possibility of muck falling into the river is avoided at all times.
- There is no active channel or stream flowing through the dumping sites.
- The sites are far away from human settlement areas.

The muck that needs disposal is expected to be comprised of fragmented rock mixed with soil and would be piled at an angle of repose less than 30° at the proposed dumping sites. For this, the slopes would be broken up by creating benches across the slope. This will be done to provide stability to the slopes and also to provide ample space for planting trees, which would further help in holding and consolidating the material stacked at different sites. The description regarding the stabilization of the stacked material along the proposed roads has been discussed in the following paragraphs.

The options like dumping muck in stages and allowing it to consolidate/settle through the monsoon, compacting the dumped muck with Dozer movement, zoning the dump judiciously to ensure the stability of 30° slope under all superimposed conditions will be utilised.

B. Methodology of dumping

The main objectives of process of muck dumping and restoration of these muck disposal sites are:

- to protect and control soil erosion;
- to create greenery in the muck disposal areas;
- to improve and develop the sites into recreational sites;
- to ensure maximum utilization of muck for the construction purpose;
- to develop the muck disposal sites/ dumping yards to blend with the surrounding landscape;
- And to minimise damages due to the spoilage of muck in the project area.

The generated muck will be carried in dumper trucks covered with heavy duty tarpaulin properly tied to the vehicle in tune with international practice. All precautionary measures will be followed during the dumping of muck. All dumpers will be well maintained to avoid any chances of loose

soil from being falling during the transportation. All routes will be periodically wetted with the help of tanker prior to the movement of dump trucks. Dumping would be avoided during the high speed wind, so that suspended particulate matters (SPM) level could be maintained. Further, transportation will be avoided during heavy traffic. After the dumping the surface of dumps will be sprayed with water and then compacted.

A retaining wall shall be constructed prior to dumping of muck. Loose muck would be compacted layer-wise. The muck brought by dumpers will be spread in layers behind the wire crate walls and then compacted by rollers till the top level is achieved. The retaining wall shall be laid with proper berm and the muck dumped behind it in layers and compacted by rollers. The process shall be repeated up to 50 cm level below the desired height which shall be laid with good soil for providing grass cover. At a regular vertical interval of 1.5 m and 3.0 m c/c masonry drains (catch water drains) shall be provided to drain off the rain water. Proper fencing of the entire area will be done. The muck disposal area will ultimately be covered with fertile soil and suitable plants will be planted adopting suitable bio-technological measures. The project authorities would ensure that the dumping yards blend with the natural landscape by developing the site with gentle slope, patches of greenery in and around them. These sites can also be developed later as recreational parks and tourist spots with sufficient greenery by planting trees.

All measures would be adopted to ensure that the dumping of muck does not cause injury or inconvenience to the people or the property around the area. The spillage of muck into water bodies must be prevented at any site, if necessary by making concrete retaining walls to retain the muck pile. It shall be ensured that dumping is carried out at a minimum distance of 50 m away from any water body. The top surface would be leveled and graded after the capacity of any dumping site is exhausted. The top surface will be covered with soil and grass seeding will be ensured to promote vegetation cover.

ANNEX 10-3: GUIDELINES FOR CONSTRUCTION WASTE DISPOSAL

A. Purpose

Solid waste will be generated from the construction site and labour camps during the construction phase. To maximize re-use of material generated during construction and to avoid environmental hazards due to improper disposal of construction waste material the following procedures should be followed for upkeep of storage and disposal sites.

B. Procedure

- Municipal waste will be generated from labour camp. Dustbins for recyclable and nonrecyclable waste shall be provided in labour camp area. Recyclable waste shall be sold to authorized vendors on a regular basis and non-recyclable shall be disposed off through authorized agency in area responsible for waste collection and management;
- Construction waste should be segregated into recyclable and non-recyclable waste. Recyclable waste shall be stored in the covered area and shall be sold to authorized vendors on a regular basis. Non-recyclable waste shall be disposed off at approved sites, transported in covered vehicles;
- Disposal sites shall not contaminate ground water or any surface water sources, therefore the site should be located away from water body and disposal site should be lined properly to prevent infiltration of water;
- Contractor shall maintain register for keeping records on kilometer-wise quantities of material generated during demolition, excavation and any other activity that generates debris;
- Contractor shall re-use construction material to the extent possible based on engineering properties. Possible re-use areas are fill sections, embankment slope, approach roads etc. Debris without bitumen could be used for backfilling of quarry / borrow areas as recommended by the GC. At locations identified for dumping of residual bituminous wastes, the dumping shall be carried out over a 60mm thick layer of rammed clay so as to eliminate the possibility of the leaching of the wastes into the ground water. The contractor shall ensure that the filled area is covered with a layer of preserved topsoil.
- Contractor shall prepare a plan including detailed lay out and cross-section for disposal of debris and bitumen waste and get approval of the same by the GC;
- Bentonite slurry or similar debris generated from pile driving or other construction activities shall be disposed such that it does not flow into the surface water bodies or form mud puddles in the area;
- Contractor and GC shall ensure that disposal areas are properly treated as per agreed plan;
- Contractor and GC's representatives shall undertake joint weekly inspection to ensure compliance of various environmental requirements.
- GC's representatives shall issue non-compliance if disposal site is not managed as per agreed plan;
- All arrangement for transportation during construction including provision, maintenance, dismantling and clearing debris, where necessary will be considered incidental to the work and should be planned and implemented by the contractor as approved and directed by the GC.
- Construction waste disposal should be disposed only at landfill facilities which are selected, designed, constructed and operated to ensure environmentally safe disposal, and these facilities have to be approved by the regulators. Contractor shall dispose of

waste strictly at fully legally compliant and approved site/s only. Record of all such sites should be maintained along with the area of disposal site, type & quantity of material disposed off daily and capacity of disposal site.

Updated Environmental Impact Assessment

April 2024 Revision 1

India: Chennai Metro Rail Investment Project Corridor 4

Annexure 11

Prepared by the Chennai Metro Rail Limited (CMRL) for the Asian Development Bank.

VIBRATION LEVEL FORECASTING IN THE PROPOSED CHENNAI METRO RAIL PHASE II – CORRIDOR 3, CORRIDOR 4 AND CORRIDOR 5 DURING CONSTRUCTION AND OPERATION PHASES

DRAFT VIBRATION FORECASTING REPORT FOR CORRIDOR 4

	Name
Produced by	Behshad Noori
Approved by	Joan Cardona

Ref.	20506-IN1
Review	0
Date	30-04-2021

TABLE OF CONTENTS

1	List o	f revisions	. 3
2	Introd	duction	. 4
2.1.	- E	Background	4
2.2.	- A	Aim of the project	8
2.3.	- 5	Scope of the work	8
3	Applic	cable regulations	9
3.1.	- 0	Quality procedures	9
3.2.	- N	Mandatory regulations	9
4	Infras	structure description	11
4.1.	- A	Alignment	11
4.2.	- 8	Sensitive locations to be studied	13
4.3.	- F	Railway superstructure	15
4.4.	- T	Frack structure	16
4.5.	- F	Rolling stock	17
4.6.	- T	Fraffic demand	18
4.7.	- 0	Geology	20
5	Predi	ction methodology	22
5.1.	- 0	Construction phase	22
5	.1.1	Building damage assessment	23
5	.1.2	Annoyance assessment	23
5.2.	- 0	Dperational phase	24
5	.2.1	Identify sensitive receptors	24
5	.2.2	Base curve	25
5	.2.3	Project-specific adjustments	26
5	.2.4	Vibration impact criteria	27
5	.2.5	Vibration mitigation measures	27
6	Resu	lts	29
6.1.	- 0	General vibration impact assessment	29
6	.1.1	Construction phase - Damage impact assessment	
6	.1.2	Construction phase - Annoyance impact assessment	31
6	.1.3	Operation phase – Underground section	32
6	.1.4	Operation phase – Elevated section	34
6.2.	- V	/ibration impact assessment at 13 receptors	
6	.2.1	Near Porur Lake	
6	.2.2	Vadapalani Junction	39

Draft Vibration Forecasting Report for Corridor 4

6.2.3	Santhome Church	40
6.2.4	St. Bede's Anglo Indian School	41
6.2.5	Aashraya Hospital	42
6.2.6	Jain Temple	43
6.2.7	Luz Church	44
6.2.8	Anjaneyar Temple	45
6.2.9	S.I.E.T College	46
6.2.10	Thirupathi Thirumala Devastanam	47
6.2.11	Koncept Hospital	48
6.2.12	The Holy Cross Matric Hr. Sec. School	49
6.2.13	Government Hospital, Poonamallee	50
Conclu	usions & recommendations	51
Refere	ences	53
	6.2.4 6.2.5 6.2.6 6.2.7 6.2.8 6.2.9 6.2.10 6.2.11 6.2.12 6.2.13 Concle	 6.2.3 Santhome Church

1.- List of revisions

Revision	Date	Scope of revision	Author	Checked
1	30/04/2021	Document creation	Behshad Noori	Joan Cardona

2.- Introduction

2.1.- Background

Metro Chennai Rail Phase II corridors C3, C4 and C5 comprises an area covering Chennai City, 16 Municipalities, 20 Town Panchayats and 214 Village Panchayats known as Chennai Metropolitan Area, CMA. See Figure 2.1.

According to 2011 census, Chennai Metropolitan Area population is 89.2 lakh and Chennai City population is 46.8 lakh, with about 48 lakh vehicles as per Tamil Nadu government statistics. This significant amount of vehicles means that private mode is increasing unabated mainly due to inadequate public transport facilities.

Figure 2.1. Chennai Metropolitan Area.

To face this lack of public transport facilities, Phase-I of Chennai Metro was designed and constructed and became operational by the end of 2016. Phase-I of Chennai Metro covers 54 km in two corridors:

- Corridor 1: Wimco Nagar Washermenpet Airport, with a total length of 32.085 km
- Corridor 2: Chennai Central to St. Thomas Mount, with a total length of 21.96 km plus a 10.7 km stretch from Koyambedu to Alandur

In addition to this Phase-I of Chennai Metro as well as to other existing public transportation network, and to develop effective and efficient mass transit system in Chennai Metropolitan Area, Phase-II corridors C3, C4 and C5 of Metro Chennai with a total length of 118.9 km are now under study. In Table 2.1 Phase-II total length is divided into each corridor partial length. This table also shows that each corridor has an elevated and an underground part.

Corridors	Elevated (Km)	Underground (Km)	Total Length (Km)
C-3 Madhavaram to SIPCOT	19.1	26.7	45.8
C-4 Lighthouse to Poonamallee Bypass	16.0	10.1	26.1
C-5 Madhavaram to Sholinganallur	41.2	5.8	47.0
		Total	118.9

Table 2.1. Route length of each corridor of Metro Chennai Phase-II.

Figure 2.2 shows a general view of corridor C3, corridor C4 and corridor C5 alignment as well as all stations planned in each of these corridors.

A travel demand assessment was carried out and its results are shown in Table 2.2.

Year	Year		Max. PHPD				ioarding Lakh)	(S
	C3	C4	C5	C3	C4	C5	Total	
2025	16,289	11,707	17,539	6.6	5.5	7.2	19.2	
2035	22,115	18,944	24,528	10,1	9.3	13.2	32.6	
2045	24,301	23,816	29,441	11.8	10.3	15.6	37.7	
2055	27,361	29,940	35,714	13.6	11.4	18.5	43.5	

Table 2.2. Travel demand projections for corridors C3, C4 and C5.

Draft Vibration Forecasting Report for Corridor 4

Figure 2.2. Chennai Metro Phase-II corridors C3, C4 and C5.

The proposed alignment of corridor C4 starts from Lighthouse as underground and heads in east direction up to Poonamallee Bypass with a total length of 26.09 km including 16.01 km elevated and 10.07 km as underground section. See Table 2.3.

Alignment Type	From(m)	To(m)	Length(m)
Underground	-255	9567	9822
Switch over Ramp (-)8.0m to (+)7.5m	9567	10027	460
Elevated	10027	25830	15803
Total			26085

Table 2.3. Corridor C4 alignment summary.

Train operation plan for Chennai Metro Phase-II corridors considers running of services for 19 hours a day, from 05:00h to 00:00, with a station dwell time of 30 seconds and a scheduled speed of 32 km/h.

This train operation plan is envisaged with the combination of e car and 6 car rake composition in the inception year 2025 and 6 car rake composition in the design year 2055. Based on traffic demand assessment, a circular train operation is envisaged between corridor C3 and corridor C5 whereas corridor C4 is proposed to have independent train operation. Table 2.4 collets the rolling stock main features.

S. No.	Parameter	Rolling Stock
1	Basic Unit	3 Car basic unit 2 DMC and 1 TC. Every coach should be fully interchangeable with any other coach of same type.
2	Train Composition	3- Car: DMC + TC + DMC 6- Car: DMC + TC + MC + MC + TC + DMC Capable of GoA4 operation
3	Coach Dimensions	L= 22.6m, W=2.9m, H= 3.9m
4	Coach construction	Light weight Stainless Steel / Aluminum body
5	Axle load	≤16 T

Table 2.4. Rolling stock main features.

Linear infrastructures such as a railway lines or urban metro networks causes different impacts, some of them negative but others positive. The positive impacts include employment opportunities, benefits to economy, faster and safety mobility and air pollution reduction. But negative impacts also exist, and they include project affected people, soil erosion, risk to existing buildings specially during construction phase and noise and vibration caused primarily by construction work but also during operation phase.

As per RDSO (Research Designs and Standards Organization) Guidelines 2015, vibration studies have to be conducted along the corridors to determine the extent of impacts. Pile driving for piers and tunnel driving generate vibrations. Apart from

distance from the alignment, age and condition of buildings adjacent to the alignment determines extent of damage to such buildings due to vibration. Continuous effect of vibration on the buildings can cause damage to buildings. As a rule of thumb, buildings subjected to the vibration of more than 150 VdB might be subjected to structural damage. If significant impacts are expected, mitigation measures have to be implemented and building condition survey have to be conducted before and during construction phase. Cost of such building condition survey can be estimated after vibration study is conducted and structures falling within likely corridor of impacts are identified.

2.2.- Aim of the project

The aim of the project is to carry out a predictive calculation of ground-borne vibration induced into 13 buildings of corridor C4 during the construction phase as well as during the operational phase of this corridor as well as

Existing vibration levels at these 13 locations previous to corridor construction and operation are also assessed, based on results from a previous study.

2.3.- Scope of the work

The scope of the work is divided in three main categories:

- Baseline vibration assessment: Vibration measurements were carried out in the frame of previous work at 13 locations under study along the alignment of the future corridor C4 metro infrastructure. These locations were selected accordingly to final client, considering to cover different scenarios. Peak Particle Velocity (PPV) were measured and calculated as it is the indicator that is widely used to evaluate the strength of vibration.
- Vibration induced during the construction phase: A quantitative assessment is required as a prolonged annoyance is expected during the construction phase. This assessment is carried out based on the methodology proposed by the Federal Transient Administration of USA in Transit Noise and Vibration Impact Assessment Manual [1].

3. Vibration induced during the operational phase: also USA Federal Transient Administration's methodology I used to create a ground-borne vibration prediction model to assess metro operation related vibration into buildings.

3.- Applicable regulations

3.1.- Quality procedures

AV Ingenieros' procedures according to quality management system ISO 9001:2015 are followed to develop this project. Quality procedures are the following ones:

- Procedure P1.1. Vibroacoustic projects' management
- Procedure S1.1. Projects' technical management

3.2.- Mandatory regulations

In India, no criterion has been prescribed in "The Noise Pollution (Regulation and Control) Rules, 2000" regarding the limits of ground-borne vibrations and noise due to railway systems.

Document "Metro Rail Transit System. Guidelines for Noise and Vibrations" elaborated by CT-38 Track Design Directorate, Research Designs and Standards Organisation (RDSO), Ministry of Railways of India, analyses different worldwide vibration standards and conclude that all of them are more or less in agreement with FTA Manual provisions. Hence, in India FTA Manual provisions are adopted for railway induced ground-borne vibrations during infrastructure's operation phase as well as FTA Manual provisions regarding construction vibration impact.

Vibration limits are presented in Table 3.1 and Table 3.2 for Chennai Metro operation phase, and in Table 3.3 as construction vibration damage criteria for Chennai Metro construction phase.

Draft Vibration Forecasting Report for Corridor 4

Land use category	Ground-borne vibration limit [VdB ref = 25.4 μmm/s]
Category 1:	
Buildings where vibration would interfere with interior	65 VdB
operations	
Category 2:	72 VdB
Residences and buildings where people normally sleep	12 VUD
Category 3:	
Institutional land uses with primarily day-time use	75 VdB

Table 3.1. Vibration limits into buildings.

There are some buildings such as concert hall, TV and recording studios and theatres that can be very sensitive to vibration and noise but do not fit into any of the three categories of Table 3.1. Table 3.2 recommends criteria for acceptable ground-borne vibration levels into different types of such buildings.

Land use category	Ground-borne vibration limit [VdB ref = 25.4 μmm/s]
Concert Halls	65 VdB
TV Studios	65 VdB
Recording Studios	65 VdB
Auditoriums	72 VdB
Theatres	72 VdB

Table 3.2. Recommended criteria for ground-borne vibration into special buildings.

Building / Structural category	PPV [in/sec]	Approximate Lv* [VdB]
I. Reinforced-concrete, steel or timber (no plaster)	0.5	102
II. Engineered concrete and masonry (no plaster)	0.3	98
III. Non-engineered timber and masonry buildings	0.2	94
IV. Buildings extremely susceptible to vibration damage	0.12	90

Table 3.3. Construction vibration damage criteria.

4.- Infrastructure description

Main characteristics of the infrastructure which is being studied are described in the following sub-sections.

4.1.- Alignment

Corridor C4 alignment starts from Lighthouse as underground section with a rail level kept at -15 m below ground level, and heads in East direction up to Poonamallee Bypass station which is proposed as elevated section with a rail level kept at +18 m above ground level. Corridor C4 total length is 26.09 km including 16.01 km as elevated infrastructure and 10.07 km as underground section. See Figure 4.1.

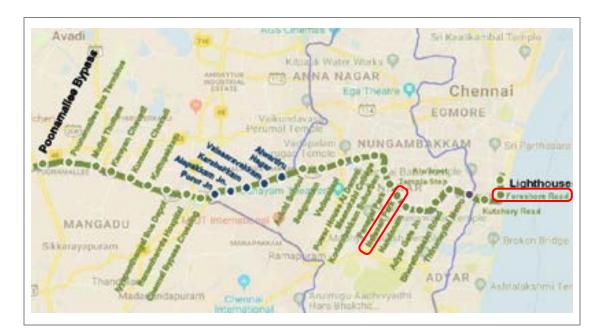


Figure 4.1. Corridor C4 alignment.

Switch over Ramp (SWR) is required to provide transition from underground to elevated alignment after Meenakshi College, on centre of the Arcot Road. In the current design stage, Stations - Foreshore Road and Natesan Par have been removed.

Draft Vibration Forecasting Report for Corridor 4

Alignment Type	From(m)	To(m)	Length(m)
Underground	-255	9567	9822
Switch over Ramp (-)8.0m to (+)7.5m	9567	10027	460
Elevated	10027	25830	15803
Total	10000		26085

Table 4.1. Alignment summary of Corridor C4.

Corridor C4 includes 30 stations, divided into 18 elevated stations and 10 underground (UG) stations (2 UG stations have been revomed). Three different characteristic sections can be defined along the whole length of the alignment:

1. Light house to Meenakshi College

This first section is completely underground with a total length about 9.8 km and 12 underground stations.

Corridor C4 alignment is crossing below Corridor C3 alignment at Thirumaylai station, where Corridor C4 is proposed at third level below ground with rail level kept at -22 m below ground while Corridor C3 rail level is proposed at depth of -15 m below ground. See Figure 4.2.a. Corridor C4 is also crossing Phase-I Corridor 1 near existing Nanadanam station which is about 16 m depth from existing road level. Proposed Phase-II level of Nanadanam station has been planned at 30 m depth. See Figure 4.2.b

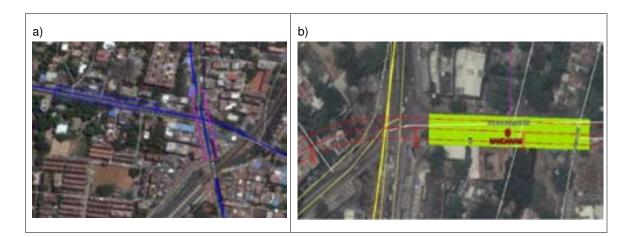


Figure 4.2. Corridor C4 crossing at a) Thirumaylai Station and b) Nanadanam Station.

2. Switch over Ramp from underground section to Elevated section

The alignment after passing below railway lines at Kodabakkam station, comes on centre of Arcot road. The switch over ramp is proposed on the centre line of existing road, between the underground station at Meenakshi College and elevated station at

Power House, i.e. from Chainage 9567.281 m to 10027.102 m (459.8 m long ramp) with RL rising from -8 m to +7.5m.

3. Power House to Poonamallee Bypass

The alignment in this section runs elevated along the centre of the Arcot road from Power Housewestwards and terminates at Poonamallee bypass. Total length of the section is about 15.8 km and is completely elevated.18 elevated stations have been proposed in this section, being Power House the first elevated station after the switch over ramp.

Corridor C4 and Corridor C5 run on common alignment between Alwathirunagar & Porur Junction section. Both the corridors are proposed to run elevated at different level with common pier arrangement. In this arrangement, Corridor C5 is proposed to run above Corridor C4. Four stations namely, Alwathirunagar, Valasaravakkam, Karabakkam & Alapakkam Junction shall be common to both the corridors with common concourse with platforms at different levels.

4.2.- Sensitive locations to be studied

This vibration assessment is carried out in specific locations given by client. These locations are those specified in Table 4.2 and graphically represented on a map using a house symbol in Figure 4.3.

Figure 4.3. Location of thirteen sensitive buildings to be studied.

As can be seen in Table 4.2:

- Five out of thirteen locations are near elevated sections while the other eight locations are placed where alignment is an underground tunnel.
- Five out of thirteen sensitive buildings (38.5%) are churches / temples, three of them (23%) are schools and two of them (15%) are hospitals.

S. No	Location No	Location	Elevated / Underground	Distance from alignment [m]	Location coordinates
9	C4-A	Near Porur Lake	Elevated	8	Lat: 13° 2'11.12"N Long: 80° 9'5.28"E
10	C4-B	Vadapalani Junction	Elevated	12	Lat: 13° 2'58.66"N Long: 80°12'39.45"E
11	C4-C	Santhome Church	UG	10	Lat: 13° 2'0.85"N Long: 80°16'40.16"E
12	C4-D	St. Bede's Anglo Indian School	UG	80	Lat: 13°02'04.6"N Long: 80°16'41.6"E
13	C4-E	Aashraya Hospital	UG	2	Lat: 13° 2'1.09"N Long: 80°16'33.16"E
14	C4-F	Jain Temple	UG	10	Lat: 13° 2'4.72"N Long: 80°16'17.58"E
15	C4-G	Luz Church	UG	68	Lat: 13° 2'17.32"N Long: 80°15'44.74"E
16	C4-H	Anjaneyar Temple	UG	9	Lat: 13°02'18.7"N Long: 80°15'31.5"E
17	C4-I	S.I.E.T College	UG	>100	Lat: 13° 2'9.79"N Long: 80°14'51.81"E
18	C4-J	Thirupathi Thirumala Devastanam Temple	UG	18	Lat: 13° 2'8.91"N Long: 80°14'11.09"E
19	C4-K	Koncept Hospital	Elevated	33	Lat: 13° 3'7.64"N Long: 80°13'7.18"E
20	C4-L	The Holy Cross Matric Hr. Sec. School	Elevated	85	Lat: 13° 2'23.40"N Long: 80°10'19.90"E
21	C4-M	Government Hospital, Poonamallee	Elevated	18	Lat: 13° 3'1.61"N Long: 80° 5'57.75"E

Table 4.2. List of sensitive receptors to be studied.

4.3.- Railway superstructure

As defined in alignment section, Corridor C4 considers elevated sections and underground sections.

In case of elevated sections, three types of superstructures are considered which can be graphically seen in Figure 4.4:

Precast segmental box grider

The superstructure shall be constructed span by span sequentially, starting at one end of a continuous stretch and finishing at the other end. Some of the main advantages of precast segmental construction are reduction in structural concrete thickness, good corrosion protection and simplified segment casting.

• Precast U-channel

Single/doble U type viaduct structure is also a precast construction with 25-28 m span. Some of the main advantages of this type of superstructure are lower the longitudinal profile, saving in construction cycle time and built-in sound barrier.

 Precast I-Grider superstructure Pre-cast I-Griders for various span ranges 20-34 m can be designed. Precast, pres-stressed I-Griders are casted in casting yard, transported to site and erected as ³/₄ I-Griders per span by using road cranes.

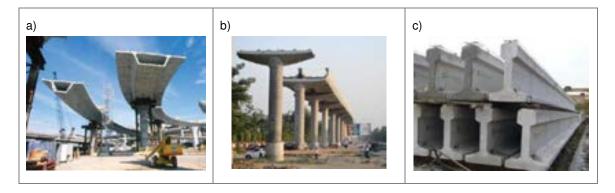


Figure 4.4. Three main types of superstructure considered in elevated sections.

In case of underground sections, two twin tunnels arrangement is considered, as can be seen in Figure 4.5. The tunnel excavation diameter will be 6700 mm with an internal

useful tunnel diameter of 5800 mm. The Tunnel Boring Machine, TBM, will use 6 rings per segment, with a total thickness of 275 mm and a total weight of 3 T per ring.

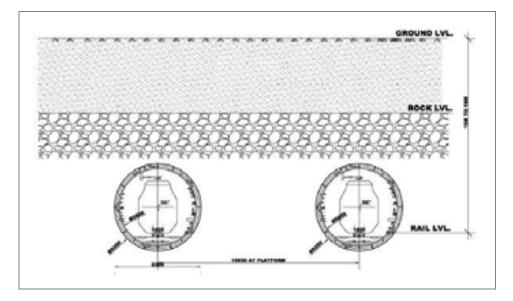


Figure 4.5. Two twin tunnels arrangement considered for underground section.

4.4.- Track structure

To reduce maintenance and renewal efforts, Head Hardened (HH) rails of grade 1080 are proposed for main lines. UIC 60 rail section will be used.

Ballastless track is proposed for elevated and underground stretches and fastening system to be installed will be a direct fixation type selected accordingly to "Procedure for safety certification and technical clearance of Metro System" written in 2015 by Govt. of India, ministry of Railways. Figure 4.6 shows a typical cross section of ballastless track on viaduct.

Draft Vibration Forecasting Report for Corridor 4

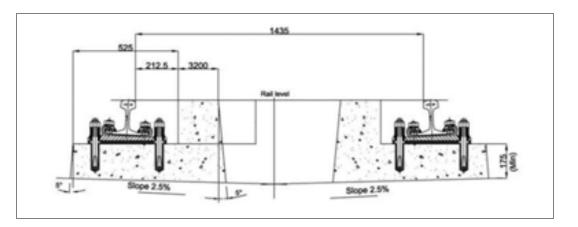


Figure 4.6. Typical cross section of ballastless track on viaduct.

4.5.- Rolling stock

Rolling stock selected to operate Corridor C4 will be based on Table 4.3 specifications.

Parameter	Value
Coach Width	2.9 m wide coaches
Basic Unit	3 car basic unit: 2 DMC and 1 TC
Train Composition	3-car: DMC+TC+DMC
	6-car: DMC+TC+MC+MC+TC+DMC
Coach construction	Light weight stainless steel / aluminium body
Axle load	16 T
Breaking System	Regenerative braking
	Max. speed: 90 km/h
Performance	Max. acceleration: 1 m/s ²
	Max. deceleration: 1.1 m/s ² (normal brake)
	Max. deceleration: 1.3 m/s ² (emergency brake)

Table 4.3. Rolling stock main characteristics.

Figure 4.7 shows the simplified velocity – time operation curve to achieve the desired schedule and Figure 4.8 shows a sample of rolling stock that is currently used in other Metro Chennai existing corridors.

Draft Vibration Forecasting Report for Corridor 4

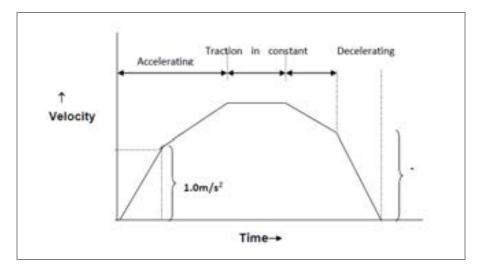


Figure 4.7. Simplified velocity – time operation curve.

Figure 4.8. Sample of Rolling stock used in other Metro Chennai existing corridors.

4.6.- Traffic demand

The underlying operation philosophy is to provide mass rapid transit services at economical cost with fixed Infrastructure and rolling stock planning.

Frequency of train services shall be optimized to provide sectional capacity ٠ commensurate with peak direction traffic demand during peak hours.

- Minimum train service frequency shall be provided during lean period so as to keep option of this service attractive even during lean period
- The frequency of services shall be regulated to meet the growing traffic demand in horizon years
- Basic unit selected is two motor car and one trailer car

Train operation plan for Corridor C4 will be based on the following salient features:

- Running of normal services for 19 hours of the day (5 AM to 00:00AM i.e. midnight) with average station dwell time of 30 seconds
- Make up time of 5-10% (on tangent track) with 8-12% coasting
- Scheduled average speed for the corridors shall be 32 km/h

Train operation plan for Phase II corridors has been formulated considering PHPDT for different sections of corridors. The PHPDT considered for the preparation of train operation plan is given in Table 4.4.

Corridor	2025	2035	2045	2055
C4 – Lighthouse – Poonamallee Bypass	11,707	18,944	23,816	29,940

Table 4.4. PHPDT for different horizon years
--

Train operation for Lighthouse - Poonamallee Bypass corridor in the design year is planned with 6 car rake composition at 240 seconds headway during peak period. The carrying capacity of the trains during peak hours will be 23640 at 6 passengers/m² rate of standee area (capacity of 30,060 at 8 passengers/m² rate of standee area). The planned PHPDT capacity is less than PHPDT demand of 29,940 passengers in section between Kumananchavadi and Porur Junction station. However, capacity in this section can be met by carrying standees at 8 passengers/m² rate which has been deliberatively planned for peak hour train operation for optimum utilization of rolling stock.

Draft Vibration Forecasting Report for Corridor 4

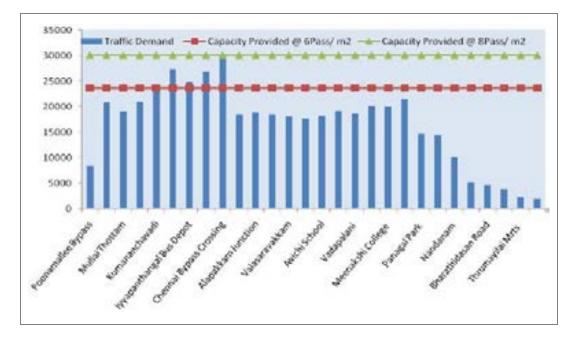


Figure 4.9. PHPDT demand and capacity provided (2055) for Lighthouse-Poonamallee Bypass corridor.

4.7.- Geology

The geology of Chennai comprises of mostly sand deposits, clay, granite, gneiss and traces of shale and sandstone. The city is classified into three regions based on geology i.e. sandy areas, clayey areas and hard-rock areas.

Sandy areas are found along the river banks and the coasts. In sandy areas such as Tiruvanmiyur, Adyar, Kottivakkam, Santhome, George Town, Tondiarpet and the rest of coastal Chennai, rainwater run-off percolates very quickly.

Clayey regions cover most of the city while hard rock areas are Guindy, Velachery, Adambakkam and a part of Saidapet. In clayey and hard rock areas, rainwater percolates slowly, but it is held by the soil for a longer time. The city's clayey areas include T. Nagar, West Mambalam, Anna Nagar, Perambur and Virugambakkam.

Chennai district forms part of coastal plains of Tamil Nadu. Major part of the district is having flat topography with very gentle slope towards east. The altitudes of land surface vary from 10 m above MSL in the west to sea level in the east. Fluvial, marine and erosional landforms are noticed in the district. Marine transgression and regressions and neo-tectonic activity during the recent past have influenced the morphology and resulted in various present landforms. Meandering streams with small

sand bars are present along the course of Adyar River. The pediment and buried pediment in Guindy area in and around the reserved forest, is the only area where the ecological system is less disturbed, while the other areas are completely disturbed by built up area with largescale human interference and pollution.

The geology of Chennai is shown in Figure 4.10.

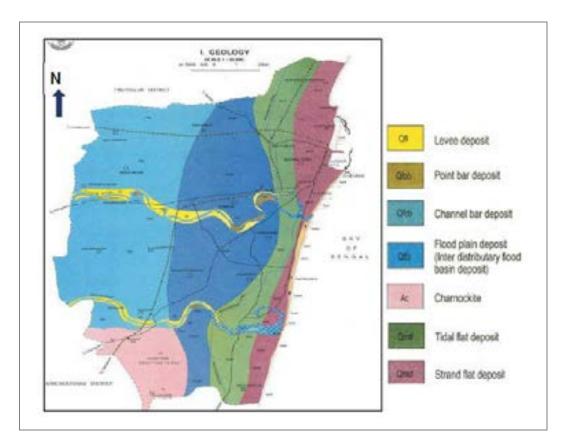


Figure 4.10. Geology of Chennai city and shoutern part.

5.- Prediction methodology

5.1.- Construction phase

Varying degrees of ground-borne vibration may be induced in the construction phase considering the type of the equipment and methods used in this phase. The induced vibrations propagate through the soil and its strength reduces with distance.

The first step in construction vibration assessment is to determine level of assessment required for the project. Considering that construction of the tunnel for SPUR tunnel alignment will be prolonged annoyance, a quantitative assessment is required. In this regard, first. vibration source levels from typical construction equipment and operations are introduced and then procedures on how to estimate construction vibration for damage and annoyance are provided. Noteworthy, both vibration source levels and the procedure are the ones proposed by Federal Transient Administration (FTA) of USA.

Table 5.1 presents average source levels at 25 ft in terms of PPV and RMS velocity in decibels (L_v), for various types of construction equipment measured under a wide variety of construction activities. Note that although the table gives one level for each piece of equipment, there might be considerable variation in reported ground vibration levels from construction activities. The data in Table 5.1 provide a reasonable estimate for a wide range of soil conditions.

Equipment	PPV (in/sec)	L _v at 25 ft (VdB re 1 micro-in/sec)
Impact Pile Driver: Upper range/Typical range	1.518/0.644	112/104
Sonic Pile Driver: Upper range/Typical range	0.734/0.17	105/93
Clam shovel drop	0.202	94
Hydromill: in soil/ in rock	0.008/0.017	66/75
Vibratory Roller	0210	94
Hoe Ram	0.089	87
Large bulldozer	0.089	87
Caisson drilling	0.089	87
Loaded trucks	0.076	86
Jackhammer	0.035	79
Small bulldozer	0.003	58

Table 5.1. Vibration source levels for construction equipment at 25 ft.

Assess for building damage and for annoyance due to each piece of equipment need to be carried out.

5.1.1.- Building damage assessment

Construction vibration is generally assessed in terms of peak particle velocity (PPV). In this regard, first, the vibration source level (PPV_{ref}) for each piece of equipment at a reference distance of 25 ft is determined using Table 5.1, then Eq. 6.1 is used to apply adjustment to the source reference level to account for the distance from the equipment to the receiver,

$$PPV_{equip} = PPV_{ref} \times \left(\frac{25}{D}\right)^{1.5};$$
(6.1)

where PPV_{equip} is the peak particle velocity of the equipment, PPV_{ref} is the source reference vibration level at 25 ft (Table 5.1) and *D* is the distance from the equipment to the receiver.

The predicted vibration levels obtained using this quantitative construction vibration assessment is compared with the impact criteria introduced Section 3.2.- to assess the construction vibration damage impact.

5.1.2.- Annoyance assessment

Ground-borne vibration related to human annoyance is related to RMS velocity levels, expressed in VdB (L_v). In this regard, first, the vibration source level ($L_{v,ref}$) for each piece of equipment at a reference distance of 25 ft is determined using Table 6.1, then Eq. 6.2 is used to apply adjustment to the source reference level to account for the distance from the equipment to the receiver,

$$L_{\nu,distance} = L_{\nu,ref} - 30 \log\left(\frac{D}{25}\right); \tag{6.2}$$

where $L_{v,distance}$ is the RMS velocity level adjusted for distance (in VdB), $L_{v,ref}$ is the source reference vibration level at 25 ft (in VdB) as proposed by FTA in Table 5.1 and D is the distance from the equipment to the receiver.

The predicted vibration levels obtained using this quantitative assessment is compared with the impact criteria introduced in Section 3.2.- for annoyance assessment during the construction phase.

5.2.- Operational phase

Steps need to be followed to assess the vibration impact during the operational phase are the followings:

- Step 1: Employ FTA vibration screen procedures developed based on the land use and type of the vibration source to identify the sensitive locations to groundborne vibration.
- > Step 2: Select the base curve for ground surface vibration level.
- Step 3: Apply project-specific adjustments to the standard vibration curve including the adjustments in source, propagation, and receiver.
- Step 4: Compare the predicted vibration level after applying the adjustment with the vibration impact criteria to assess the vibration impact.
- Step 5: Proposing vibration abatement solutions if the predicted vibration exceeds the vibration criteria.

In the following subsections step will be explained in more details.

5.2.1.- Identify sensitive receptors

Identifying the sensitive receptors are mainly defined using two main criteria, type of the project (or type of the source) and land use category; based on which the screening distances for vibration assessments, as shown in Table 5.2, is defined. Regarding Chennai Metro Rail Phase II – Corridor 4, 13 sensitive receptors has been already identified, including 5 sensitive receptors for elevated section and 8 sensitive receptors for the underground section. So, in this report the vibration impact assessment for these 13 receptors is carried out. Table 4.2 shows the list of these receptors along with their distance from the source, which is either elevated or underground.

Draft Vibration Forecasting Report for Corridor 4

	Critical Distance for Land Use Categories Distance from ROW or Property Line, ft				
Type of Project	Land Use Cas. I	Land Use Cas. 2	Land Use Cat. 3		
Conventional Commuter Railroad	600	200	120		
ART	666	200	120		
LRT and Streetcars	450	150	100		
ICT .	200	100	50		
Bus Projects (if not previously screened out)	100	50			

"For the Vibration Screening Procedure, evaluate special buildings as follows: Category 1 - concert halls and TV studios. Category 2 - theaters and auditorsame

Table 5.2. Screening distances for vibration assessments

5.2.2.- Base curve

Three base curves are proposed by FTA guidelines. These based lines categorize the induced vibration level as a function of distance between the source and the receptor for three different type of sources, locomotive-powered passenger or freight curve, rapid transit or light rail vehicles curve and rubber-tired vehicles curve. Considering the type of the characteristics of the rolling stocks used in corridor 4, as explained in 4.5.-, rapid transit or light rail vehicles curve is used in this study as a base curve for ground surface vibration level. Noteworthy, the main base curve proposed by FTA is for the reference train speed of $vt_{ref} = 50$ mph, however, it is expressed that vibration level is approximately proportional to $20log(vt/vt_{ref})$. for Figure 5.1 shows the base ground surface vibration curves for five different train speeds, it can be observed that the faster the train is, the higher induced vibration will be. For corridor 4, the prediction is carried out for both design speed of 49.7 mph (80 kmph) and scheduled speed of 19.9 mph (32 kmph).

Draft Vibration Forecasting Report for Corridor 4

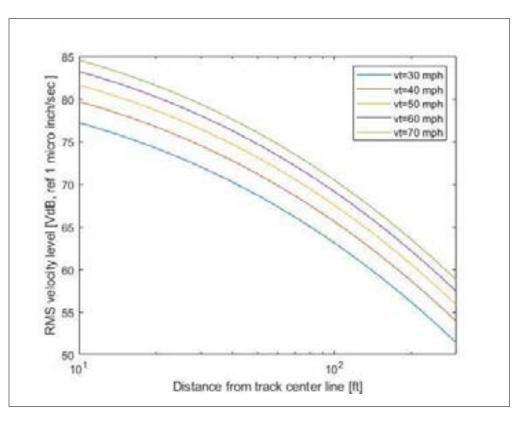


Figure 5.1. Ground surface vibration curves for different train speeds.

5.2.3.- Project-specific adjustments

Once the base curve has been selected, the adjustments in can be used to develop vibration projections for specific receiver positions inside buildings. All of the adjustments are given as single numbers to be added to, or subtracted from, the base level. The adjustment parameters can be categorized in three groups: adjustment factor for source adjustment factor for propagation path and adjustment factor receiver.

The main adjustment parameters for the source include worn wheels or wheels with flats, track worn or corrugated track, special track work within 200 ft and jointed track. Wheel flats or wheels that are unevenly worn can cause high vibration levels. Corrugated track is a common problem. Mill scale on new rail can cause higher vibration levels until the rail has been in use for some time. If there are adjustments for vehicle parameters and the track is worn or corrugated, only include one adjustment. Wheel impacts at special trackwork will greatly increase vibration levels up to 10 dB. The increase will be less at greater distances from the track. If the trackwork is more than 200 ft away from the receptor, no adjustment factor is needed. Jointed track can cause higher vibration levels than welded track. In this study it has been considered

that neither wheel nor track have special defects that can affect the induced groundborne vibration. Moreover, it is assumed that all special track works including turnouts and crossovers are more than 200 ft away from the receptors.

The most important adjustment factors for the propagation path consist of type of transit structure, geologic conditions and coupling to building foundation. In general, the heavier the structure, the lower the vibration levels; and the heavier the building construction, the greater the coupling loss. The geological condition near the sensitive receptors of corridor 4 shows that the soil type can be associated with efficient vibration propagation. As proposed by FTA guidelines, a conservative approach would be to use for efficient propagation for areas where efficient propagation is likely. This approach is followed in this study.

Regarding the receptor adjustment factors, there are floor-to-floor attenuation factor and amplification factor due the resonances of floors, walls, and ceilings. The former factor accounts for dispersion and attenuation of the vibration energy as it propagates through a building starting with the first suspended floor. In this study, the prediction is carried out only for the first floor where the highest vibration level will be perceived.

5.2.4.- Vibration impact criteria

The criteria for ground-borne vibration land use categories 1-3 are presented in Table 3.1. The criteria are presented in terms of acceptable indoor ground-borne vibration and noise levels. Impact will occur if these levels are exceeded. Criteria for ground-borne vibration are expressed in terms of rms velocity levels in VdB. The criteria for ground-borne vibration and noise for special land uses are presented in Table 3.2.

5.2.5.- Vibration mitigation measures

The purpose of vibration mitigation is to minimize the adverse effects that the project ground-borne vibration will have on sensitive land uses if the predicted vibration level exceeds the criteria limits. Targeting the mechanisms of ground-borne vibration generation to reduce transmitted forces by the vehicle to the track would be the most efficient approach. Due to high cost of the maintenance actions, countermeasures are necessary to address railway-induced ground-borne vibration problem at a more reasonable cost. Several solutions have been proposed to address the problem of

ground-borne vibration induced by railways. The mitigation measures can be categorized according to the location at where they are applied: i) the source; ii) the receiver and iii) the propagation path.

Mitigation measures at the source mainly target the track and its resiliency to reduce vibration transmission into the ground. An effective measure to reduce the vibration at the point of the emission is using floating-slab and high-resilience fasteners. Damping treatments, localized stiffening or mass addition are some mitigation measures at receivers, that can be used to reduce the post-construction vibration.

The countermeasures applied at the propagation path are all based on the same idea of interrupting the propagation of waves through the soil. Wave-impeding blocks (WIP) subgrade stiffening, and wave barriers are the most common mitigation measures in the category.

It should be recognized that the effectiveness of these mitigation measures is strongly dependent on the frequency spectrum of the vibration source and the frequency dependence of the vibration propagation. In this study the effect of using floating slab system and high-resilience fasteners in reducing the ground-borne railway-induced vibration are evaluated as there are adjustment factors associated to these mitigation measures in FTA guidelines.

6.- Results

In this section, the methodology explained previously is used to obtain a general overview on vibration level induced during construction and operation phases with regard to distance between the source and receptors. Then, the methodology is employed to predict the vibration level during construction and operation phases at 13 identified sensitive receptors.

6.1.- General vibration impact assessment

6.1.1.- Construction phase - Damage impact assessment

The equation (6.1) has been used to predict the induced vibration during the construction phase for different equipment as a function of distance between construction zone and receptor. The results are shown in Figure 6.1. Moreover, the damage criteria have been shown in this figure. Noteworthy, four damage criteria (PPV in inch/sec) proposed by FTA guidelines based on the structure of the receptors:

- Criteria structure type 1 presents reinforced-concrete, steel or timber (no plaster) with PPV=0.5 inch/sec.
- Criteria structure type 2 presents engineered concrete and masonry (no plaster) with PPV=0.3 inch/sec
- Criteria structure type 3 presents non-engineered timber and masonry buildings with PPV=0.2 inch/sec
- Criteria structure type 4 presents buildings extremely susceptible to vibration damage with PPV=0.2 inch/sec.

In this figure, all the construction equipment defined by FTA guidelines has been presented regardless of its application in the present project. According to FTA guidelines, different pile drive methods could result in different vibration. Therefore, the upper range is proposed for pile drive. Noteworthy, it can be observed from Figure 7.1 that pile drivers, either impact or sonic, along with clam shovel drop and vibratory roller are among the most problematic equipment. To clarify the effect of this equipment, the distance up to which the equipment can induce the vibration levels higher than the damage criteria are presented Table 6.1.

b) 102 10 10 Impact Pile Driver: Upper rang Impact Pile Driver: Typical range onic Pile Driver: Upper range Sonic Pile Driver: Typical range Clam shovel drop Hydromilt in sol Hydromilt in rock Vibratory Roller Hoe Rain Large buildoze Caisson drilling 10 Loaded trucks Jack har Smill buildure **Criteria Structure Type 1** Criteria Structure Type 2 10 Criteria Structure Type 3 Criteria Structure Type 4 10-5 0 10 20 30 40 50 60 30 80 90 100 Distance from track center line [m] a)

Figure 6.1. a) Predicted vibration level (PPV in inch/sec) for eleven type of construction equipment and impact criteria for four different type of structures and b) figure legend.

	Affected area distance from construction zone (m) – Considering the structure type			
Construction equipment	structure	structure	structure	structure
	type 1	type 2	type 3	type 4
	(0.5 inch/s)	(0.3 inch/s)	(0.2 inch/s)	(0.12 inch/s)
Impact pile drive (upper range)	16 m	23 m	30 m	41 m
Sonic pile drive (upper range)	10 m	14 m	19 m	25 m
Impact pile drive (typical range)	9 m	12 m	16 m	23 m
Clam shovel drop	4 m	6 m	8 m	11 m
Vibratory roller	4 m	6 m	8 m	11 m
Sonic pile drive (typical range)	4 m	6 m	6 m	9 m

 Table 6.1. Affected area in construction phase due to five use of five most problematic equipment.

 Categorized based on four different criteria impact of four type of structures.

6.1.2.- Construction phase - Annoyance impact assessment

The equation (6.2) has been used to predict the induced vibration during the construction phase for different equipment as a function of distance between construction zone and receptor. The results are shown in Figure 6.2. Moreover, the annoyance criteria have been shown in this figure. Three criteria proposed by FTA guidelines based on the land use, as explained in Section 3.2.-, are shown in the figure as well. Noteworthy, here it is considered that the use of construction equipment is considered as a frequent event (used more than 12 event per day). If the frequency event is less between 5 to 12 events per day, the criteria category 3 will not change, but, the criteria categories 3 and 2 will increase 3 dB. In addition, if the frequency event is less than 5 event per day, the criteria category 3 will not change, but, the criteria categories 3 and 2 will increase 8 dB. In this section, the conservative approach, assuming the frequent events, has been considered.

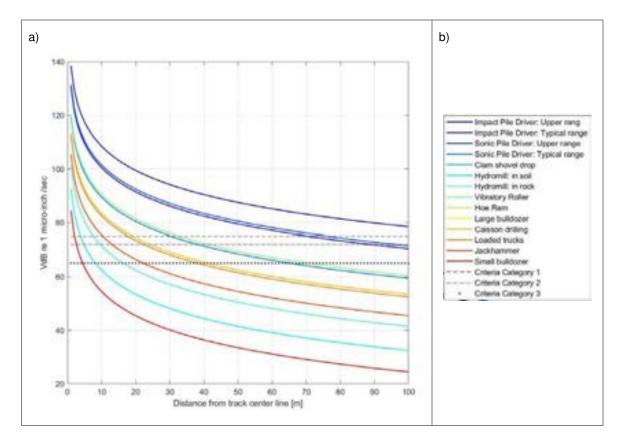


Figure 6.2. Predicted vibration level (VdB ref 1 micro-inch/sec) for eleven type of construction equipment and impact criteria for three different type of land use and b) figure legend.

To clarify the effect of most problematic equipment, the distance up to which the equipment can induce the vibration levels higher than the annoyance criteria are presented in Table 6.2.

Building structure		rea distance f Considering t	
	Category 1 (65 VdB)	Category 2 (72VdB)	Category 3 (75 VdB)
Impact pile drive (upper range)	100 m	100 m	100 m
Sonic pile drive (upper range)	100 m	93 m	76 m
Impact pile drive (typical range)	100 m	89 m	70 m
Clam shovel drop	69 m	41 m	32 m
Vibratory roller	69 m	41 m	32 m
Sonic pile drive (typical range)	64 m	37 m	30 m

Table 6.2. Affected area due to t construction phase due to five use of five most problematic. Categorized based on three different criteria impact of three land use category and the type of the building structure.

6.1.3.- Operation phase – Underground section

The methodology explained in Section 5.2.- has been used to predict the induced vibration due to train pass-by in underground section for both design and scheduled speeds as a function of distance between the centre of track and receptor. The results are shown in Figure 6.3. Moreover, the annoyance criteria have been shown in this figure. Noteworthy, three criteria, proposed by FTA guidelines based on the land use as explained in Section 3.2.-, are shown in the figure as well.

As it can be observed, the type of the building could affect the level of the vibration into the receptor. To clarify the effect of the type of the building foundation and the train speed, the distance up to which the train pass-by can induce the vibration levels higher than the annoyance criteria are presented in Table 6.3 and Table 6.4 for design and schedule speeds, respectively.

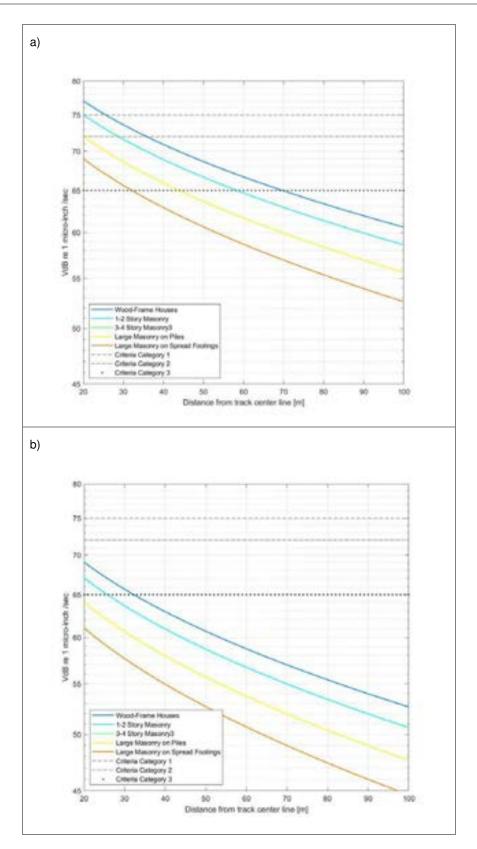


Figure 6.3. Predicted vibration level (VdB ref 1 micro-inch/sec) for 5 different types of buildings induced to train pass-by in underground sections with a) designed speed of 80 kmph and b) with scheduled speed of 32 kmph. Horizontal lines present the criteria impact for 3 different land use.

Design speed 80 kmph

Duilding structure	Affected area radius from track centre (m) – Considering the land use		
Building structure	Category 1 (65 VdB)	Category 2 (72VdB)	Category 3 (75 VdB)
Wood-Frame Houses	70 m	36 m	26 m
1-2 Story Masonry	58 m	29 m	20 m
3-4 Story Masonry/ Large Masonry on Piles	44 m	20 m	13 m
Large Masonry on Spread Footings	32 m	13 m	

Table 6.3. Affected area due to train-pass by in underground section with designed speed of 80 kmph. Categorized based on three different criteria impact of three land use category and the type of the building structure.

Scheduled speed 32 kmph

Building structure	Affected area radius from track centre		
	(m) – Considering the land use		
	Category 1	Category 2	Category 3
	(65 VdB)	(72VdB)	(75 VdB)
Wood-Frame Houses	32 m	14 m	
1-2 Story Masonry	20 m	10 m	
3-4 Story Masonry/ Large Masonry on Piles	18 m		
Large Masonry on Spread Footings	12 m		

Table 6.4. Affected area due to train-pass by in underground section with scheduled speed of 32 kmph. Categorized based on three different criteria impact of three land use category and the type of the building structure.

6.1.4.- Operation phase - Elevated section

The methodology explained in Section 5.2.- has been used to predict the induced vibration due to train pass-by in elevated section for both design and scheduled speeds as a function of distance between the centre of track and receptor. The results are shown in Figure 6.4. Like before, the annoyance criteria have been shown in this figure. To clarify the effect of the type of the building foundation and the train speed, the distance up to which the train pass-by can induce the vibration levels higher than the annoyance criteria are presented in Table 6.5 and Table 6.6 for design and schedule speeds, respectively.

Draft Vibration Forecasting Report for Corridor 4

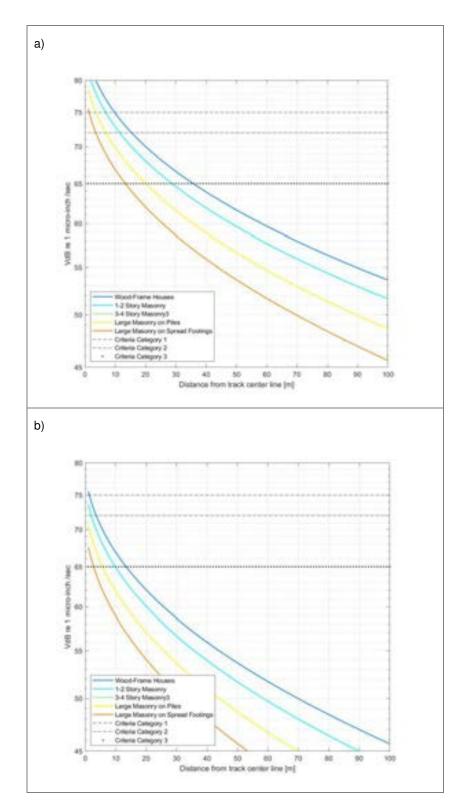


Figure 6.4. Predicted vibration level (VdB ref 1 micro-inch/sec) for 5 different types of buildings induced to train pass-by in elevated sections with a) designed speed of 80 kmph and b) with scheduled speed of 32 kmph. Horizontal lines present the criteria impact for 3 different land use.

Design speed 80 kmph

Building structure	Affected area radius from track centre			
	(m) – Considering the land use			
	Category 1	Category 2	Category 3	
	(65 VdB)	(72VdB)	(75 VdB)	
Wood-Frame Houses	36 m	16 m	10 m	
1-2 Story Masonry	29 m	12 m	7 m	
3-4 Story Masonry/ Large Masonry on Piles	20 m	7 m	4 m	
Large Masonry on Spread Footings	13 m	3 m	2 m	

Table 6.5. Affected area due to train-pass by in elevated section with designed speed of 80 kmph. Categorized based on three different criteria impact of three land use category and the type of the building structure.

Scheduled speed 32 kmph

	Affected area radius from track centre			
Building structure	(m) – Considering the land use			
	Category 1	Category 2	Category 3	
	(65 VdB)	(72VdB)	(75 VdB)	
Wood-Frame Houses	14 m	4 m		
1-2 Story Masonry	10 m	2 m		
3-4 Story Masonry/ Large Masonry on Piles	5 m			
Large Masonry on Spread Footings	3 m			

Table 6.6. Affected area due to train-pass by in elevated section with scheduled speed of 32 kmph. Categorized based on three different criteria impact of three land use category and the type of the building structure.

6.2.- Vibration impact assessment at 13 receptors

The summary of the predicted results of all 13 sensitive receptors for the construction and operation phase are presented in this section. As explained previously, the building structure, its foundation, land use and frequency of events are important parameters to define the criteria for assessing the vibration impact either in construction phase or operation phase. However, there are two receptors, i.e. Near Porur Lake and Vadapalani Junction, in which no specific building has been defined. Moreover, there are some receptors which the type of foundation is not clearly defined. Therefore, the following approach has been followed for the criteria:

- For damage assessment during construction phase. if there is uncertainty about the receptor structure, four damage criteria for four different type of structures (St1/St2/St3/St4) as explained in Section 3.2.- are considered.
- For annoyance assessment during construction phase, if there is uncertainty about the frequency of the events, three annoyance criteria associated with frequent event, occasional even and infrequent even (as explained in Section 6.1.2.-) are considered.
- For annoyance assessment during construction phase, if there is uncertainty about the land use three annoyance criteria associated with three different land use (Cat1/Cat2/Cat3) are presented.
- For annoyance assessment during operation phase, if there is uncertainty about the building foundation, several predicted results have been obtained.

6.2.1.- Near Porur Lake

	Construction phase Damage assessment		Construction phase Annoyance assessment	
Near Porur Lake	Predicted	Criteria (in/sec) St1/St2/St3/St4	Predicted	Criteria (VdB 1 μ inch/sec) Cat1/Cat2/Cat3
Impact Pile Driver: Upper range	1.41		111.4	
Impact Pile Driver: Typical range	0.60		103.4	
Sonic Pile Driver: Upper range	0.68		104.4	
Sonic Pile Driver: Typical range	0.16	0.5/0.3/0.2/0.12	92.4	
Clam shovel drop	0.19		93.4	Frequent Event:
Hydromill: in soil	0.01		65.4	65/72/75
Hydromill: in rock	0.02		74.4	Occasional Event:
Vibratory Roller	0.20		93.4	65/75/78
Hoe Ram	0.08		86.4	Infrequent Event:
Large bulldozer	0.08		86.4	65/80/83
Caisson drilling	0.08		86.4	
Loaded trucks	0.07		85.4	
Jackhammer	0.03		78.4	
Small bulldozer	0.00		57.4	

Table 6.7. Prediction results for construction phase of Near Porur Lake receptor.

Near Porur Lake	Operation phase		
	Predicted	Criteria	
	(VdB 1 μ inch/sec)	(VdB 1 μ inch/sec)	
	Design/Schedule speed	Cat1/Cat2/Cat3	
Wood-Frame Houses	76.2/68.2	65/72/75	
1-2 Story Masonry	74.2/66.2	65/72/75	
3-4 Story Masonry/ Large Masonry on Piles	71.2/63.2	65/72/75	
Large Masonry on Spread Footings	68.2/60.2	65/72/75	

Table 6.8. Prediction results for operation phase of Near Porur Lake receptor.

6.2.2.- Vadapalani Junction

	Construction phase Damage assessment		Construction phase Annoyance assessment	
Vadapalani Junction	Predicted	Criteria (in/sec) St1/St2/St3/St4	Predicted	Criteria (VdB 1 μ inch/sec) Cat1/Cat2/Cat3
Impact Pile Driver: Upper range	0.77		106.1	
Impact Pile Driver: Typical range	0.33		98.1	
Sonic Pile Driver: Upper range	0.37		99.1	
Sonic Pile Driver: Typical range	0.09		87.1	
Clam shovel drop	0.10		88.1	Frequent Event:
Hydromill: in soil	0.00		60.1	65/72/75
Hydromill: in rock	0.01	0 5/0 2/0 2/0 12	69.1	Occasional Event:
Vibratory Roller	0.11	0.5/0.3/0.2/0.12	88.1	65/75/78
Hoe Ram	0.05		81.1	Infrequent Event:
Large bulldozer	0.05		81.1	65/80/83
Caisson drilling	0.05		81.1	
Loaded trucks	0.04		80.1	
Jackhammer	0.02		73.1	
Small bulldozer	0.00		52.1	

Table 6.9. Prediction results for construction phase of Vadapalani Junction receptor.

	Operation phase		
Vadapalani Junction	Predicted (VdB 1 μ inch/sec) Design/Schedule speed	Criteria (VdB 1 μ inch/sec) Cat1/Cat2/Cat3	
Wood-Frame Houses	73.7/65.7	65/72/75	
1-2 Story Masonry	71.7/63.7	65/72/75	
3-4 Story Masonry/ Large Masonry on Piles	68.7/60.7	65/72/75	
Large Masonry on Spread Footings	65.7/57.7	65/72/75	

Table 6.10. Prediction results for operation phase of Vadapalani Junction receptor.

6.2.3.- Santhome Church

	Construction phase Damage assessment		Construction phase Annoyance assessment	
Santhome Church	Predicted	Criteria (in/sec) St3	Predicted	Criteria (VdB 1 μ inch/sec) Cat3
Impact Pile Driver: Upper range	0.27		97.0	
Impact Pile Driver: Typical range	0.11		89.0	
Sonic Pile Driver: Upper range	0.13		90.0	
Sonic Pile Driver: Typical range	0.03		78.0	
Clam shovel drop	0.04		79.0	Frequent Event:
Hydromill: in soil	0.00		51.0	75
Hydromill: in rock	0.00	0.2	60.0	Occasional Event:
Vibratory Roller	0.04	0.2	79.0	78
Hoe Ram	0.02		72.0	Infrequent Event:
Large bulldozer	0.02		72.0	83
Caisson drilling	0.02		72.0	
Loaded trucks	0.01		71.0	
Jackhammer	0.01		64.0	
Small bulldozer	0.00		43.0	

Table 6.11. Prediction results for construction phase of Santhome Church receptor.

	Operation phase	
Santhome Church	Predicted (VdB 1 μ inch/sec) Design/Schedule speed	Criteria (VdB 1 μ inch/sec) Cat3
1-2 Story Masonry	73.5/65.5	75

Table 6.12. Prediction results for operation phase of Santhome Church receptor.

6.2.4.- St. Bede's Anglo Indian School

		uction phase e assessment	Construction phase Annoyance assessment	
St. Bede's Anglo Indian School	Predicted	Criteria (in/sec) St1/St2	Predicted	Criteria (VdB 1 μ inch/sec) Cat3
Impact Pile Driver: Upper range	0.04		80.9	
Impact Pile Driver: Typical range	0.02		72.9	
Sonic Pile Driver: Upper range	0.02		73.9	
Sonic Pile Driver: Typical range	0.00		61.9	
Clam shovel drop	0.01		62.9	Frequent Event:
Hydromill: in soil	0.00		34.9	75
Hydromill: in rock	0.00	0 5/0 2	43.9	Occasional Event:
Vibratory Roller	0.01	0.5/0.3	62.9	78
Hoe Ram	0.00		55.9	Infrequent Event:
Large bulldozer	0.00		55.9	83
Caisson drilling	0.00		55.9	
Loaded trucks	0.00		54.9	
Jackhammer	0.00		47.9	
Small bulldozer	0.00		26.9	

Table 6.13. Prediction results for construction phase of St. Bede's Anglo Indian School receptor.

	Operation phase		
St. Bede's Anglo Indian School	Predicted (VdB 1 μ inch/sec) Design/Schedule speed	Criteria (VdB 1 μ inch/sec) Cat3	
1-2 Story Masonry	60.9/53.0	75	
3-4 Story Masonry/ Large Masonry on Piles	57.9/50.0	75	
Large Masonry on Spread Footings	54.9/47.0	75	

Table 6.14. Prediction results for operation phase of St. Bede's Anglo Indian School receptor.

6.2.5.- Aashraya Hospital

	Construction phase Damage assessment		Construction phase Annoyance assessment	
Aashraya Hospital	Predicted	Criteria (in/sec) St1/St2	Predicted	Criteria (VdB 1 μ inch/sec) Cat1
Impact Pile Driver: Upper range	0.31		98.1	
Impact Pile Driver: Typical range	0.13		90.1	
Sonic Pile Driver: Upper range	0.15		91.1	
Sonic Pile Driver: Typical range	0.03		79.1	
Clam shovel drop	0.04		80.1	Frequent Event:
Hydromill: in soil	0.00		52.1	65
Hydromill: in rock	0.00	0 5/0 2	61.1	Occasional Event:
Vibratory Roller	0.04	0.5/0.3	80.1	65
Hoe Ram	0.02		73.1	Infrequent Event:
Large bulldozer	0.02		73.1	65
Caisson drilling	0.02		73.1	
Loaded trucks	0.02		72.1	
Jackhammer	0.01		65.1	
Small bulldozer	0.00		44.1	

Table 6.15. Prediction results for construction phase of Aashraya Hospital receptor.

	Operation phase		
Aashraya Hospital	Predicted (VdB 1 μ inch/sec) Design/Schedule speed	Criteria (VdB 1 μ inch/sec) Cat1	
1-2 Story Masonry	74.2/66.3	65	
3-4 Story Masonry/ Large Masonry on Piles	71.2/63.3	65	

Table 6.16. Prediction results for operation phase of Aashraya Hospital receptor.

6.2.6.- Jain Temple

	Construction phase Damage assessment		Construction phase Annoyance assessment	
Jain Temple	Predicted	Criteria (in/sec) St3	Predicted	Criteria (VdB 1 μ inch/sec) Cat3
Impact Pile Driver: Upper range	0.27		97.0	
Impact Pile Driver: Typical range	0.11		89.0	
Sonic Pile Driver: Upper range	0.13		90.0	
Sonic Pile Driver: Typical range	0.03		78.0	
Clam shovel drop	0.04		79.0	Frequent Event:
Hydromill: in soil	0.00		51.0	75
Hydromill: in rock	0.00	0.2	60.0	Occasional Event:
Vibratory Roller	0.04	0.2	79.0	78
Hoe Ram	0.02		72.0	Infrequent Event:
Large bulldozer	0.02		72.0	83
Caisson drilling	0.02		72.0	
Loaded trucks	0.01		71.0	
Jackhammer	0.01		64.0	
Small bulldozer	0.00		43.0	

Table 6.17. Prediction results for construction phase of Jain Temple receptor.

	Operation phase		
Jain Temple	Predicted (VdB 1 μ inch/sec) Design/Schedule speed	Criteria (VdB 1 μ inch/sec) Cat3	
1-2 Story Masonry	73.5/65.5	75	

Table 6.18. Prediction results for operation phase of Jain Temple receptor.

6.2.7.- Luz Church

	Construction phase Damage assessment		Construction phase Annoyance assessment	
Luz Church	Predicted	Criteria (in/sec) St3	Predicted	Criteria (VdB 1 μ inch/sec) Cat3
Impact Pile Driver: Upper range	0.05		82.8	
Impact Pile Driver: Typical range	0.02		74.8	
Sonic Pile Driver: Upper range	0.03		75.8	
Sonic Pile Driver: Typical range	0.01		63.8	
Clam shovel drop	0.01		64.8	Frequent Event:
Hydromill: in soil	0.00		36.8	75
Hydromill: in rock	0.00	0.2	45.8	Occasional Event:
Vibratory Roller	0.01	0.2	64.8	78
Hoe Ram	0.00		57.8	Infrequent Event:
Large bulldozer	0.00		57.8	83
Caisson drilling	0.00		57.8	
Loaded trucks	0.00		56.8	
Jackhammer	0.00		49.8	
Small bulldozer	0.00		28.8	

Table 6.19. Prediction results for construction phase of Luz Church receptor.

	Operation phase		
Luz Church	Predicted (VdB 1 μ inch/sec) Design/Schedule speed	Criteria (VdB 1 μ inch/sec) Cat3	
1-2 Story Masonry	62.7/54.7	75	

Table 6.20. Prediction results for operation phase of Luz Church receptor.

6.2.8.- Anjaneyar Temple

	Construction phase Damage assessment		Construction phase Annoyance assessment	
Anjaneyar Temple	Predicted	Criteria (in/sec) St3	Predicted	Criteria (VdB 1 μ inch/sec) Cat3
Impact Pile Driver: Upper range	0.28		97.2	
Impact Pile Driver: Typical range	0.12		89.2	
Sonic Pile Driver: Upper range	0.13		90.2	
Sonic Pile Driver: Typical range	0.03		78.2	
Clam shovel drop	0.04		79.2	Frequent Event:
Hydromill: in soil	0.00		51.2	75
Hydromill: in rock	0.00	0.2	60.2	Occasional Event:
Vibratory Roller	0.04	0.2	79.2	78
Hoe Ram	0.02		72.2	Infrequent Event:
Large bulldozer	0.02		72.2	83
Caisson drilling	0.02		72.2	
Loaded trucks	0.01		71.2	
Jackhammer	0.01		64.2	
Small bulldozer	0.00		43.2	

Table 6.21. Prediction results for construction phase of Anjaneyar Temple receptor.

	Operation phase		
Anjaneyar Temple	Predicted (VdB 1 μ inch/sec) Design/Schedule speed	Criteria (VdB 1 μ inch/sec) Cat3	
1-2 Story Masonry	73.6/65.7	75	

Table 6.22. Prediction results for operation phase of Anjaneyar Temple receptor.

6.2.9.- S.I.E.T College

Construction Damage asses			Construction phase Annoyance assessment	
S.I.E.T College	Predicted	Criteria (in/sec) St1/St2	Predicted	Criteria (VdB 1 μ inch/sec) Cat3
Impact Pile Driver: Upper range	0.03		78.2	
Impact Pile Driver: Typical range	0.01		70.2	
Sonic Pile Driver: Upper range	0.01		71.2	
Sonic Pile Driver: Typical range	0.00		59.2	
Clam shovel drop	0.00		60.2	Frequent Event:
Hydromill: in soil	0.00		32.2	75
Hydromill: in rock	0.00	0.5/0.0	41.2	Occasional Event:
Vibratory Roller	0.00	0.5/0.3	60.2	78
Hoe Ram	0.00		53.2	Infrequent Event:
Large bulldozer	0.00		53.2	83
Caisson drilling	0.00		53.2	
Loaded trucks	0.00		52.2	
Jackhammer	0.00		45.2	
Small bulldozer	0.00		24.2	

Table 6.23. Prediction results for construction phase of S.I.E.T College receptor.

	Operation phase		
S.I.E.T College	Predicted (VdB 1 μ inch/sec) Design/Schedule speed	Criteria (VdB 1 μ inch/sec) Cat3	
3-4 Story Masonry/ Large Masonry on Piles	55.3/47.4	75	

Table 6.24. Prediction results for operation phase of S.I.E.T College receptor.

6.2.10.- Thirupathi Thirumala Devastanam

	Construction phase Damage assessment		Construction phase Annoyance assessment	
Thirupathi Thirumala Devastanam	Predicted	Criteria (in/sec) St3	Predicted	Criteria (VdB 1 μ inch/sec) Cat3
Impact Pile Driver: Upper range	0.21		94.8	
Impact Pile Driver: Typical range	0.09		86.8	
Sonic Pile Driver: Upper range	0.10		87.8	
Sonic Pile Driver: Typical range	0.02		75.8	
Clam shovel drop	0.03		76.8	Frequent Event:
Hydromill: in soil	0.00		48.8	75
Hydromill: in rock	0.00	0.0	57.8	Occasional Event:
Vibratory Roller	0.03	0.2	76.8	78
Hoe Ram	0.01		69.8	Infrequent Event:
Large bulldozer	0.01		69.8	83
Caisson drilling	0.01		69.8	
Loaded trucks	0.01		68.8	
Jackhammer	0.00		61.8	
Small bulldozer	0.00		40.8	

Table 6.25. Prediction results for construction phase of Thirupathi Thirumala Devastanam receptor.

	Operation phase		
Thirupathi Thirumala Devastanam	Predicted (VdB 1 μ inch/sec) Design/Schedule speed	Criteria (VdB 1 μ inch/sec) Cat3	
1-2 Story Masonry	72.1/64.1	75	

Table 6.26. Prediction results for operation phase of Thirupathi Thirumala Devastanam receptor.

6.2.11.- Koncept Hospital

		Construction phaseConstruction pDamage assessmentAnnoyance asse		
Koncept Hospital	Predicted	Criteria (in/sec) St1/St2	Predicted	Criteria (VdB 1 μ inch/sec) Cat1
Impact Pile Driver: Upper range	0.17		92.9	
Impact Pile Driver: Typical range	0.07		84.9	
Sonic Pile Driver: Upper range	0.08		85.9	
Sonic Pile Driver: Typical range	0.02		73.9	
Clam shovel drop	0.02		74.9	Frequent Event:
Hydromill: in soil	nill: in soil 0.00		46.9	65
Hydromill: in rock	0.00	0.5/0.3	55.9	Occasional Event:
Vibratory Roller	0.02	0.5/0.3	74.9	65
Hoe Ram	0.01		67.9	Infrequent Event:
Large bulldozer	0.01		67.9	65
Caisson drilling	0.01		67.9	
Loaded trucks	0.01		66.9	
Jackhammer	0.00		59.9	
Small bulldozer	0.00		38.9	

Table 6.27. Prediction results for construction phase of Koncept Hospital receptor.

	Operation phase	
Koncept Hospital	Predicted (VdB 1 μ inch/sec) Design/Schedule speed	Criteria (VdB 1 μ inch/sec) Cat1
1-2 Story Masonry	63.7/55.8	65
3-4 Story Masonry/ Large Masonry on Piles	60.7/52.8	65

Table 6.28. Prediction results for operation phase of Koncept Hospital receptor.

6.2.12.- The Holy Cross Matric Hr. Sec. School

	Construction phase		Constr	ruction phase
The Holy Cross Matric Hr. Sec.	Damage assessment		Annoyance assessment	
School	Predicted	Criteria (in/sec) St1/St2	Predicted	Criteria (VdB 1 μ inch/sec) Cat3
Impact Pile Driver: Upper range	0.04		80.6	
Impact Pile Driver: Typical range	0.02		72.6	
Sonic Pile Driver: Upper range	0.02		73.6	
Sonic Pile Driver: Typical range	0.00)	61.6	
Clam shovel drop	0.01		62.6	Frequent Event:
Hydromill: in soil	0.00		34.6	75
Hydromill: in rock	0.00		43.6	Occasional Event:
Vibratory Roller	0.01	0.5/0.5	62.6	78
Hoe Ram	0.00		55.6	Infrequent Event:
Large bulldozer	0.00		55.6	83
Caisson drilling	0.00		55.6	
Loaded trucks	0.00		54.6	
Jackhammer	0.00		47.6	
Small bulldozer	0.00		26.6	

Table 6.29. Prediction results for construction phase of The Holy Cross Matric Hr. Sec. School receptor.

	Operatio	n phase
The Holy Cross Matric Hr. Sec. School	Predicted (VdB 1 μ inch/sec) Design/Schedule speed	Criteria (VdB 1 μ inch/sec) Cat3
3-4 Story Masonry/ Large Masonry on Piles	50.6/42.7	75

Table 6.30. Prediction results for operation phase of The Holy Cross Matric Hr. Sec. School receptor.

6.2.13.- Government Hospital, Poonamallee

	Construction phase Damage assessment			ruction phase
Government Hospital, Poonamallee	Predicted	Criteria (in/sec) St1/St2	Predicted	Criteria (VdB 1 μ inch/sec) Cat1
Impact Pile Driver: Upper range	0.42		100.8	
Impact Pile Driver: Typical range	0.18		92.8	
Sonic Pile Driver: Upper range	0.20		93.8	
Sonic Pile Driver: Typical range	0.05		81.8	
Clam shovel drop	Clam shovel drop 0.06	82.8	Frequent Event:	
Hydromill: in soil	0.00	0.5/0.2	54.8	65
Hydromill: in rock	0.00		63.8	Occasional Event:
Vibratory Roller	0.06	0.5/0.3	82.8	65
Hoe Ram	0.02		75.8	Infrequent Event:
Large bulldozer	0.02		75.8	65
Caisson drilling	0.02		75.8	
Loaded trucks	0.02		74.8	
Jackhammer	0.01		67.8	
Small bulldozer	0.00		46.8	

Table 6.31. Prediction results for construction phase of Government Hospital, Poonamallee receptor.

	Operation phase		
Government Hospital, Poonamallee	Predicted (VdB 1 μ inch/sec) Design/Schedule speed	Criteria (VdB 1 μ inch/sec) Cat1	
1-2 Story Masonry	68.8/60.9	65	
3-4 Story Masonry/ Large Masonry on Piles	65.8/57.9	65	

Table 6.32. Prediction results for operation phase of Government Hospital, Poonamallee receptor,

7.- Conclusions & recommendations

The conclusions after the assessment of vibration levels to be induced along the alignment of Chennai Metro Rail Corridor C4 during its constructions phase as well as during its operation phase, are the following ones:

- 1. FTA Manual provisions are adopted for railway induced ground-borne vibrations during infrastructure's operation phase as well as regarding construction vibration impact.
- 2. FTA Manual prediction methodology is implemented into a Matlab-based code to assess the vibration levels induced during Corridor C4 construction phase as well as during its operation phase.
- 3. Regarding Chennai Metro Rail Corridor C4 construction phase:
 - a. Pile drivers (impact or sonic), clam shovel drop and vibratory roller are among the most problematic equipment.
 - b. Distance up to which this equipment can induce vibration levels higher than the damage criteria are presented in Table 6.1. Depending on the building structure type, impact pile driving can affect up to 40 m distance.
 - c. And distance up to which this equipment can induce vibration levels higher than the annoyance criteria are presented in Table 6.2. Depending on the land use category, impact pile driving can affect up to 100 m distance.
- 4. Regarding Chennai Metro Rail Corridor C4 operation phase:
 - a. Induced vibration due to train pass-by in underground and elevated sections for both design and scheduled speeds as a function of distance between the centre of track and receptor has been assessed.
 - b. For underground sections, a maximum distance of 58 m will be affected if 80 kmph design speed and masonry building structure are considered. This distance will be reduced to 20 m if 32 kmph scheduled speed is considered.
 - c. For elevated sections, a maximum distance of 29 m will be affected if 80 kmph design speed and masonry building structure are considered. This distance will be reduced to 10 m if 32 kmph scheduled speed is considered

- 5. The assessment of the vibration level into thirteen (13) specific buildings carefully selected due to its sensitive use, leads to the following results:
 - a. Typical range impact pile driving during Chennai Metro Rail Corridor C4 construction will induce vibration levels higher than damage criteria in 2 out of 13 sensitive locations, a 15.4 %, while this equipment will cause vibration levels higher than annoyance criteria in 8 out of 13 sensitive locations, a 61.5 %.
 - b. No effective abatement solutions can be installed or applied to the construction phase, but a continuous vibration monitoring survey can be design and implemented to control the evolution of the vibration levels induced during the construction phase.

This continuous vibration monitoring survey will be complemented with in situ examination of all affected buildings prior the commencement, during and after the completion of the construction phase, to detect possible damages due to the construction phase.

- c. Chennai Metro Rail Corridor C4 operation phase will induce vibration levels higher than vibration limits into buildings in 2 out of 13 sensitive locations, a 15.4 %, if scheduled speed is considered. These 2 locations are Near Porur Lake location and Aashraya Hospital.
- d. There are two main possible and world-wide used vibration abatement solutions to reduce ground-borne vibration into the affected sensitive buildings: floating slabs and high-resilient fastening systems. These to solutions can reduce vibration levels up to 10 VdB and 5 VdB, respectively.

The authors of the project: Behshad Noori Joan Cardona

> CARDONA GONYALONS JOAN - 41501978L +02'00'

Firmado digitalmente por CARDONA GONYALONS JOAN 41501978L Fecha: 2021.04.30 10:40:09 +02'00'

Aimil Ltd.

St. Cugat del Vallès, Barcelona, Spain the 30th of April 2021

8.- References

- FTA VA-90-1003-06. Transit noise and vibration impact assessment, Federal Transit Administration, Office of Planning and Environment, Washington (USA), 2018.
- [2] Comprehensive Detailed Project Report for Chennai Metro Phase-II, December 2018.

Updated Environmental Impact Assessment

April 2024 Revision 1

India: Chennai Metro Rail Investment Project Corridor 4

Annexure 12-1

Prepared by the Chennai Metro Rail Limited (CMRL) for the Asian Development Bank.

Noise Modeling Report

Report on Noise Level Forecasting for Chennai Metro Rail - Phase II (Corridor 4)

Report Submitted to

M/s. Chennai Metro Rail Limited Admin Building,CMRL Depot, Poonamallee High Road,Koyambedu, Chennai – 600107, Tamil Nadu.

Prepared and Submitted by

M/s. Eco Services India Private Limited 1/134 Dhanakotiraja Street, Sundar Nagar, Ekkaduthangal, Guindy, Chennai- 600 032

T	ABLE	OF CONTENTS	
1	Intr	oduction	9
	1.1	Chennai Metro Network	10
	1.1.1	1 Phase 1	10
	1.2	Phase 2	11
	1.2.	1 Corridor 4	12
2	Proj	ject deatails	12
	2.1	Salient Features of the Metro rail	
	2.1.	8	
	2.2	SCOPE OF STUDY	
	2.3	Noise study methodology includes:	
	2.4	Definitions	
	2.5	Abbreviations	
	2.6	Reference, Codes and Standards	
3		ional Laws, Regulations, and Guidelines	
	1.1	Metro Rail Policy 2017,	
	3.1	India - Ambient Noise Standards	
	3.2	World Bank Group's Environmental, Health, and Safety Guidelines on I	
		gement	
	3.3	Vibration impact and risk to existing buildings	
4		bient Noise Levels	
	1.2	Selection of Site	
	1.3	Monitoring Schedule	
	1.4	Monitoring Results and Discussion	
		1 Noise Monitoring Locations	
	4.2	Traffic Impact on the noise monitoring and analysis	
5		se Prediction modelling	
	5.1	Construction Phase	
	5.1.		
	5.1.2		
	5.1.3	5	
	5.1.4		
	5.1.5		
	5.1.0	5	
	5.1.		
	5.1.8	1	
	5.1.9	1	
	1.4.		
	5.2	Construction phase mitigation measures	
	5.2.	8	
	5.2.2	2 Construction – Piling HR-3 to 6	66

5.2.3 Construction – Piling HR-7 & 8	9
5.3 Operation Phase Noise Impact Assessment	1
5.3.1 Methodology	2
5.4 Meteorology	7
5.5 evaluation of the impact: noise screening procedures	0
5.6 Sound Pressure Level Evaluation and Modelling assumptions	0
5.7 Assumptions	1
5.8 Noise Emission Sources	2
5.8.1 Train Noise	2
5.8.2 U-Girder Details	3
5.8.3 Existing Mitigation Measure	4
5.8.4 Noise Model	7
5.9 Assessment Findings	7
5.10 Operation phase- Sensitive receptors	9
5.10.1 Vijaya Hospital	
5.10.2 Narayanan E-Techno School9	1
5.10.3 The Holy Cross Matric Hr.Sec.School	2
5.10.4 Poonamallee Government Hospital9	5
5.10.5 Sri Ramachandra Dental Hospital9	6
5.11 Summary9	8
5.11.1 Operation Impact Analysis for HR-1 and HR-210	3
5.11.2 Operation Impact Analysis for HR-3, 4, 5 & 610	6
5.11.3 Operation Impact Analysis for HR-7 and HR-811	0
6 Operation phase mitigation measures	6
6.1 Source Treatment	7
6.1.1 Stringent Vehicle and Equipment Noise Specifications11	8
6.1.2 Operational Restrictions11	8
6.1.3 Wheel Treatments (Rail) –	8
6.2 Path Treatments –	9
6.2.1 Noise Barriers12	0
6.2.2 Ground Absorption – Ballast on Guideways – 12	0
7 24-hour - Monitoring data12	1

List of Tables	
Table 2-1: List of stations along the chainage	3
Table 2-2: Salient Features of the Chenai Metro Rail corridor 41	4
Table 3-1: India National Ambient Air Quality Standards (NAAQS)1	9
Table 4-1 Details of the monitoring locations in Corridor 42	2
Table 4-2: Monitoring Schedule for sensitive receptors along Corridor 4	3
Table 4-3 Ambient Noise level monitoring results (Sensitive Receptors)	6
Table 4-4: Noise Monitoring Locations 3	2
Table 4-5: Ambient Noise compared to NAAQS at the residential receptors	2
Table 4-6: Ambient Noise Level at Receptors at Corridor 4at each floor	3
Table 4-7: Compilation of sound level - time histories of the CMRL noise measurements	-
CR-4	4
Table 4-8: Traffic Data along the main stretch of Corridor 4	9
Table 4-9: Traffic Data along the main stretch of Corridor 4	0
Table 4-10: Traffic Noise modelled Vs Noise Monitoring data HR-1 to HR-3	
Table 4-11: Traffic Noise modelled Vs Noise Monitoring data HR-4 to HR-6	
Table 5-1: List of Cast-In-Situ Pile Construction Equipment	9
Table 5-2: List of footing construction Equipment 4	9
Table 5-3: List of Box Girder Erection Equipment	0
Table 5-4: List of Pier Construction Equipment 5	0
Table 5-5: List of Station Structure Construction Equipment	
Table 5-6: Summary of Noise level db(A) during Construction phase at sensitive receptors.5	8
Table 5-7: Noise level during Construction – Piling operation	0
Table 5-8: Noise level during Construction – Footing operation	0
Table 5-9: Construction Noise During Piling Operation 6	4
Table 5-10: Construction noise during Piling at HR 3 to 6	
Table 5-11: Levels of Impact	6
Table 5-12: Noise Levels Defining Impact for Transit Projects	8
Table 5-13: Land use Category and Metrics for Transit Noise Impact Criteria7	9
Table 5-14: Reference Sound Exposure Level from Tract (one vehicle) (Ref: Error! Reference	e
source not found.)	0
Table 5-15: Model settings	1
Table 5-16: FTA/Federal Railroad Administration Input Values for Noise Model	2
Table 5-17: noise reduction during source treatment	4
Table 5-18: Noise Mitigation Measures – Path Treatments	6
Table 5-19 Summary of Noise level db(A) during operation phase9	9
Table 5-20: Operation Noise - Daytime with and without mitigation measure of wall 10	0
Table 5-21: Operation Noise - Daytime with and without mitigation measure of wall 10	1
Table 5-22: Operation Noise- HR-1 and HR-2- Analysis – Daytime 10	3
Table 5-23: Operation Noise- HR-1 and HR-2- Analysis – Daytime 10	4
Table 5-24: Operation Noise- HR-3 and HR-4- Analysis – Daytime 10	6

Table 5-25: Operation Noise- HR-3 and HR-4- Analysis – Night	106
Table 5-26: Operation Noise- HR-5 and HR-6- Analysis – Day	107
Table 5-27: Operation Noise- HR-5 and HR-6- Analysis – Night	108
Table 6-1: Barrier wall height assessment – mitigation measure	116
Table 6-2: noise reduction during source treatment	118
Table 6-3: Noise Mitigation Measures – Path Treatments	119

List of Figures	
Figure 1-1: Rail Transport Network in Chennai (Source: CMRL website)	9
Figure 1-2: Metro Network Phase 1 (Source: CMRL website)	10
Figure 1-3: Metro Network Phase 2	11
Figure 2-1: Corridor 4 Map	12
Figure 2-2: Typical Elevated Station	15
Figure 4-1 Photograph of instrument used for baseline Noise monitoring	21
Figure 4-2 Field photographs of Baseline noise monitoring for Corridor 4	26
Figure 4-3 Hourly noise graph for St.Bede's Anglo Indian School	27
Figure 4-4 Hourly noise graph for Rosary Church	27
Figure 4-5 Hourly noise graph for LUZ Church	28
Figure 4-6 Hourly noise graph for SIET College	28
Figure 4-7 Hourly noise graph for Meenakshi College for Women	29
Figure 4-8 Hourly noise graph for Vijaya hospital	29
Figure 4-9 Hourly noise graph for Narayana E-Techno School	30
Figure 4-10 Hourly noise graph for The Holy Cross Matric Hr.Sec.School	
Figure 4-11 Hourly noise graph for Poonamallee GH	31
Figure 4-12 Hourly noise graph for Sri Ramachandra Dental College	31
Figure 4-13: Noise monitoring at HR-1	35
Figure 4-14: Noise monitoring at HR-2	35
Figure 4-15: Noise monitoring at HR -3	36
Figure 4-16: Noise monitoring at hr-4	36
Figure 4-17: Noise monitoring at hr-5	37
Figure 4-18: Noise monitoring at HR-6	37
Figure 4-19: Noise monitoring at HR-7	
Figure 4-20: Noise monitoring at HR-8	38
Figure 4-21: Traffic Data Locations	40
Figure 4-22: Traffic Data Locations	40
Figure 5-1: Noise contour map for construction phase (Vadapalani – Saligramam)	52
Figure 5-2: Vijaya Hospital - After Mitigation - Noise contour maps for Construction ph	lase.
Figure 5-3: Noise contour maps for Construction phase (Alwar Thirunagan	
Valasarwakkam)	
Figure 5-4: Narayanan E-Techno School- After Mitigation - Noise contour maps	
Construction phase	
Figure 5-5: Noise contour maps for Construction phase (Valasaravakkam - Karambakka	
Figure 5-6: The Holy Cross Matric Hr.Sec.School - After Mitigation - Noise contour maps	
Construction phase	
Figure 5-7: Noise contour maps for Construction phase (Mullai Thottam – Poonamallee	
Terminus).	55

Figure 5-8: Poonamallee Government Hospital - After Mitigation - Noise contour maps for
Construction phase
Figure 5-9: Noise contour maps for Construction phase (Chennai Bypass Crossing -
Ramchandra Hospital)
Figure 5-10: Sri Ramachandra Dental Hospital - After Mitigation - Noise contour maps for
Construction phase
Figure 5-11: Construction – Piling operations – Overall- Without Mitigation
Figure 5-12: Construction – Piling operations – Overall- with Mitigation (wall)
Figure 5-13: Construction – Footing operations – Overall- without Mitigation
Figure 5-14: Construction – Footing operations – Overall- With Mitigation (Wall)
Figure 5-15: Construction Phase-Piling at Receiver Location HR-1 and HR-2- Day Time - No
Mitigation
Figure 5-16: Construction Phase-Piling at Receiver Location HR-1 and HR-2- Day Time -
With Mitigation
Figure 5-17: Construction Phase-Piling at Receiver Location HR-3, 4, 5 & 6 – Day Time- No
Mitigation
Figure 5-18: Construction Phase-Piling at Receiver Location HR-3, 4, 5 & 6 - Day Time-
with Mitigation
Figure 5-19: Construction Phase-Piling at Receiver Location HR-7- Day Time- No
Mitigation
Figure 5-20: Construction Phase-Piling at Receiver Location HR-7- Day Time- with
Mitigation70
Figure 5-21: Construction Phase-Piling at Receiver Location HR-8- Day Time- No
Mitigation70
Figure 5-22: Construction Phase-Piling at Receiver Location HR-8- Day Time- with
Mitigation Wall
Figure 5-23: Procedure for General Noise Assessment as per FTA criteria74
Figure 5-24: Noise Impact Criteria for Transit Projects
Figure 5-25: Major transit rail noise sources
Figure 5-26: Details of the Pre-Cast U-Girders Highlighting the Height of the Parapet Wall
above the Railhead
Figure 5-27: Sound Plan with input of buildings and Roads
Figure 5-28: Day time Noise contour map for Operation phase (Vadapalani – Saligramam). 89
Figure 5-29: Night time Noise contour map for Operation phase (Vadapalani – Saligramam).
Figure 5-30: Vijaya Hospital- Day time - Noise contour map for Operation phase after
Mitigation
Figure 5-31: Vijaya Hospital- Night time - Noise contour map for Operation phase after
Mitigation
Figure 5-32: Day time Noise contour map for Operation phase (Alwar Thirunagar -
Valasarwakkam)

Figure 5-33: Night time Noise contour map for Operation phase (Alwar Thirunagar -
Valasarwakkam)
Figure 5-34: Narayanan E-Techno School- Day time - Noise contour map for Operation phase
after Mitigation
Figure 5-35: Narayanan E-Techno School- Night time- Noise contour map for Operation
phase after Mitigation
Figure 5-36: Day time Noise contour map for Operation phase (Valasaravakkam -
Karambakkam)
Figure 5-37: Night time Noise contour map for Operation phase (Valasaravakkam -
Karambakkam)
Figure 5-38: The Holy Cross Matric Hr.Sec.School- Day time - Noise contour map for
Operation phase after Mitigation
Figure 5-39: The Holy Cross Matric Hr.Sec.School- Night time- Noise contour map for
Operation phase after Mitigation
Figure 5-40: Day time Noise contour map for Operation phase (Mullai Thottam -
Poonamallee Bus Terminus)
Figure 5-41: Night time Noise contour map for Operation phase (Mullai Thottam -
Poonamallee Bus Terminus)
Figure 5-42: Poonamallee Government Hospital- Day time - Noise contour map for Operation
phase after Mitigation
Figure 5-43: Poonamallee Government Hospital- Night time- Noise contour map for
Operation phase after Mitigation
Figure 5-44: Day time Noise contour map for Operation phase (Chennai Bypass Crossing -
Ramchandra Hospital)
Figure 5-45: Day time Noise contour map for Operation phase (Chennai Bypass Crossing -
Ramchandra Hospital)
Figure 5-46: Sri Ramachandra Dental Hospital- Day time - Noise contour map for Operation
phase after Mitigation
Figure 5-47: Sri Ramachandra Dental Hospital - Day time - Noise contour map for Operation
phase after Mitigation
Figure 5-48: Operation Noise at overall - Day Time – No Mitigation
Figure 5-49: Operation Noise at overall – Night Time – No Mitigation
Figure 5-50: Operation Noise at overall - Day Time – With Mitigation Wall
Figure 5-51: Operation Noise at overall – Night Time – With Mitigation Wall
Figure 5-52: Operation Noise at Receiver Location HR-1 and HR-2- Day Time - No
Mitigation
Figure 5-53: Operation Noise at Receiver Location HR-1 and HR-2- Night Time- No
Mitigation
Figure 5-54: Operation Noise at Receiver Location HR-3, 4, 5 & 6 – Day Time- No
Mitigation

Figure 5-55: Operation Noise at Receiver Location HR-3, 4, 5 & 6 - Night Time- No
Mitigation109
Figure 5-56: Operation Noise at Receiver Location HR-7- Day Time- No Mitigation 110
Figure 5-57: Operation Noise at Receiver Location HR-7- Night Time- No Mitigation 110
Figure 5-58: Operation Noise at Receiver Location HR-8- Day Time- No Mitigation 111
Figure 5-59: Operation Noise at Receiver Location HR-8- Night Time- No Mitigation 111
Figure 5-60: Operation Noise at Receiver Location HR-1 and HR-2- Day Time - With
Mitigation Wall
Figure 5-61: Operation Noise at Receiver Location HR-1 and HR-2- Night Time- With
Mitigation Wall
Figure 5-62: Operation Noise at Receiver Location HR-3, 4, 5 & 6 - Day Time- With
Mitigation Wall
Figure 5-63: Operation Noise at Receiver Location HR-3, 4, 5 & 6 - Night Time- With
Mitigation Wall
Figure 5-64: Operation Noise at Receiver Location HR-7- Day Time- With Mitigation Wall
Figure 5-65: Operation Noise at Receiver Location HR-7- Night Time- With Mitigation Wall
Figure 5-66: Operation Noise at Receiver Location HR-8- Day Time- With Mitigation Wall
Figure 5-67: Operation Noise at Receiver Location HR-8- Night Time- With Mitigation Wall

INTRODUCTION

Chennai Metro Rail Limited (CMRL) a joint venture of the Government of India and Government of Tamil Nadu with equal equity ownership is responsible for implementing, operating, and maintaining the city's metro system. CMRL developed the Comprehensive Mobility Plan for Chennai Metropolitan Area (CMA) in 2015 to identify the present and future mobility patterns of CMA. The detailed study identified three corridors (corridors 3, 4, and 5) for the second phase of the Chennai Metro Rail to alleviate CMA's transportation capacity constraints.

The existing transportation system in CMA is marked by high traffic density, carbon emissions, and frequent road incidents. In addition to the high volume of vehicles and already congested roads, inadequate parking space and the encroachment of street space by vendors on major road have exacerbated the traffic congestion. Major roads along the proposed project alignments are forecast to function beyond respective design service volume in year 2035 in absence of the project lines. The accelerating use of private vehicles has put Chennai in the fifth rank in carbon emission from the transport sector among 54 South Asian cities.3

Inadequate transportation infrastructure and poor service have resulted in an unfavorable decrease in the share of public transport from 54 percent in 1970 to 28 percent in 2014.4 The Chennai Second Master Plan 2026 proposes to increase the public and private mode split to 70:30. The mass transit transportation, especially an integrated metro system will be essential to achieve this intended split.

The city has two mainline railway terminals. Urban Mass Rapid Transit System (MRTS) of 19.35 km from Chennai Beach to Velachery is in operation, land acquisition for balance MRTS section from Velachery to St Thomas Mount is in process. Chennai Metro Phase 1 of 45 kms is in operation, work on extension to Thiruvottiyur is in progress. Chennai suburban railway network supplements MRTS. Schematic diagram of urban mass rapid transit network is in Figure 1.1.

Figure 1-1: Rail Transport Network in Chennai (Source: CMRL website)

1.1 CHENNAI METRO NETWORK

1.1.1 PHASE 1

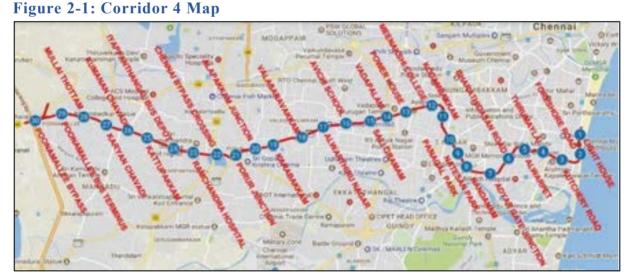
Phase 1 of Chennai metro as shown in Figure 1.2 covers 54.05 km in two corridors - Washermanpet to Airport (23.09 Km), Chennai Central to St. Thomas Mount (21.96 Km) via Koyambedu and extension from Washermanpet to Wimco Nagar (9.00 km) in Thiruvottiyur. As on February 2020, Phase 1 excluding the extension from Washermanpet to Thiruvottiyur is in commercial operation.

Figure 1-2: Metro Network Phase 1 (Source: CMRL website)

1.2 PHASE 2

Phase 2 includes Corridor 3, 4 and 5 as shown in Figure 3. The final alignments will be decided based on engineering designs

Corridor 4 Lighthouse to Poonamallee bypass, length of the corridor is 26.8 km comprising 12 underground stations (Lighthouse to Meenakshi College) and 18 elevated stations (Power House to Poonamallee bypass). Corridor 4 has 4 stations (the latest alignment of Corridor 5 shows the Porur Jn station will be avoided by Corridor 5) in common with Corridor 5, offers interchange with Corridor 3, Phase I Metro and MRTS; it connects with suburban railway system. Civil construction of the underground section from Lighthouse to Meenakshi College is scheduled to commence in December 2021 and completed by December 2025.System works are scheduled to be completed and the entire Corridor 4 is commissioned by December 2026.


1.2.1 CORRIDOR 4

Corridor 4 is being funded by MDBs AIIB and ADB. The MDB funding arrangement is as follows:

- Asian Development Bank (ADB): Alignment and formation/tunneling (10.3 km from Lighthouse to Meenakshi College), 10 underground stations structural civil cost.
- Asian Infrastructure Investment Bank (AIIB): Alignment and formation (16.5 km from Power House to Poonamallee bypass), 18 Elevated stations structural civil cost, General Consultancy.
- New Development Bank (NDB): P. way, station building components VAC and TVS, E&M, Lifts and Escalators, Architectural finishes and MMI.

2 PROJECT DEATAILS

Figure 1.4 shows the alignment and station plan of Corridor 4.

The first phase of the Chennai Metro Rail covers 54 km in two corridors, with 45 km currently already in operations since 2015 and another 9 km to be operational in 2020. GoI, GoTN, and the Japan International Cooperation Agency (JICA) funded the first phase that provides direct connection between northern and southern parts of Chennai.

The Chennai Metro Corridor 4 from Lighthouse to Poonamallee Bypass has a length of 26.8 km, of which 16.5 km is elevated, and 10.3 km is underground, with 18 and 12 stations,

respectively. Stations of Corridor 4 are depicted in Figure above and summarized in Table below.

	ole 2-1: List of stati	Chainage	Inter-station	Elevated		
No	Station Name	(m)	Distance(m)	/ Underground		
1	Lighthouse	20	-	UG	190x21.80)2L	
2	Foreshore Estate Road	806	786	UG	190x21.80)2L	
3	Kutchery Road	1,764	958	UG	190x21.80)2L	
4	Thirumayilai Metro	2,564	800	UG	190x21.80)2L	
5	Alwarpet	3,302	738	UG	190x21.80)2L	
6	Bharathidasan Road	4,141	839	UG	190x21.80)2L	
7	Adyar Gate Junction	5,177	1036	UG	150x21.40)3L	
8	Nandanam	6,188	1011	UG	150x21.40)ML	
9	Natesan Park	6,813	625	UG	150x21.40)3L	
10	Panagal Park	7,436	623	UG	150x21.40) 2L	
11	Kodambakkam Metro	8,453	1017	UG	150x21.40)ML	
12	Meenakshi College	9,275	822	UG	190x21.80)2L	
13	Power House	10,315	1040	Elevated	140x21.95)	
14	Vadapalani	11,064	763	Elevated	140x21.95)	
15	Saligramam	11,740	665	Elevated	140x21.95)	
16	Avichi School	12,666	948	Elevated	140x21.95)	
17	Alwarthiru Nagar	13,602	916	Elevated	140x21.95)	
18	Valasaravakkam	14,545	934	Elevated	140x21.95)	
19	Karabakkam	15,685	1124	Elevated	140x21.95)	
20	Alapakkam Junction	16,425	761	Elevated	140x21.95)	
21	Porur Junction	17,243	818	Elevated	140x21.95)	
22	Chennai Bypass Crossing	18,052	810	Elevated	140x21.95)	
23	Ramchandra Hospital	18,975	923	Elevated	140x21.95)	
24	Iyappanthangal Bus Depot	19,777	774	Elevated	140x21.95)	
25	Kattupakkam	20,859	1109	Elevated	140x21.95)	
26	Kumanan Chavadi	21,647	810	Elevated	140x21.95)	

Table 2-1: List of stations along the chainage

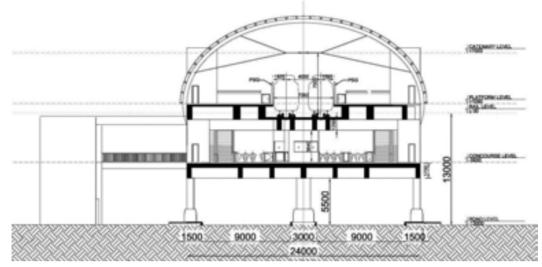
N	10	Station Name	Chainage (m)	Inter-station Distance(m)	Elevated / Underground	
2	27	Karyan Chavadi	22,529	880	Elevated	140x21.95)
2	28	Mullaithottam	23,517	947	Elevated	140x21.95)
2	.9	Poonamallee Bus Terminus	24,367	873	Elevated	140x21.95)
3	60	Poonamallee Bypass	25,785	1070	Elevated	140x21.95)

2.1 SALIENT FEATURES OF THE METRO RAIL

Table 2-2: Salient Features of the Chenai Metro Rail corridor 4

Corridor 4 Gauge	e(Nominal):		1435 MM			
Route Length:			26.8km (10.3 km Underground and 16.5			
			km Elevated	l)		
Number of Statio	ns:		30 (12 Unde	erground and 18 Ele	evated)	
Speed:						
1. Design Speed			80 kmph			
2. Maximum Des	ign Speed		90 kmph			
3. Schedule(Book	ed)Speed		32 kmph			
Train Operation P	lan:					
Particulars	2025		2035	2045	2055	
Trains/hour (3	13		13	14	15	
Car, 6 Car)	(13,0)		(6,7)	(3,11)	(0,15)	
Head Way	277		277	257	240	
(Second)	211		211	231	240	
Capacity	9,958;12,675	15.6	528.10 878	19,634;24,969	23,640;30,	060
(6p/m2;8p/m2)	9,958;12,675 15,628;19,878 19,634;24,969 23,640;30,0				,000	
Max. PHPDT	11,707	18,944		23,816	29,940	
Demand	11,707		10,77	23,010	27,940	
Total Coach	78		129	156	186	
Requirement	70		127	150	180	

Rolling Stock:


- 1. Rolling Stock with light weight Stainless Steel/Aluminum Body
- 2. Max. Axle Load 16 T
- 3. Dimensions L22.6 x W2.9m x H3.9m

2.1.1 STATION DESIGN

Elevated stations located at the median of existing roads will be 140 m long and 24 m wide. The stations will be constructed using the cantilever method. The typical elevated station consists of three levels: ground, concourse and platform. Passenger facilities, operational and commercial areas are provided at the concourse level. Platforms will be at a level of 13 m and

concourse floor at about 7 m above the road, with a minimum of 5.5 m of vertical clearance under the concourse. To reduce physical and visual impact, stations will be transparent with minimum walls on the sides. Figure 3.2 shows the typical elevated station

Figure 2-2: Typical Elevated Station

The typical underground station is a two- or three-level station with entrances at ground level, a concourse with ticketing and passenger area, and platforms at the lowest level. Platforms will 140 m long and 12 m wide with easy accessibility features including escalators and elevators. Universal accessibility and green building features will be considered in the design. Two end concourses have been proposed, one at each end. The concourse is divided into paid and unpaid area. Since very limited space is available on the ground at station, all the overground structures are therefore, planned as and where space is available and are not necessarily grouped at ground level. The stations will be constructed using the cut and cover method. Figure 3.3 shows the typical underground station.

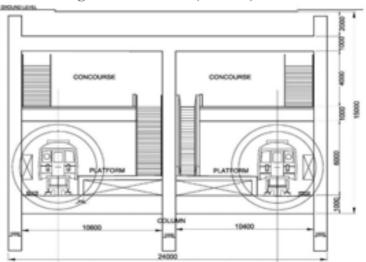


Figure 3-3: Typical Underground Station (2-level)

2.2 SCOPE OF STUDY

The major scope of the work is to,

- Record the baseline noise levels in the Sensitive receptors like Hospitals, Schools, Temples along the proposed CMRL corridors..
- Forecast the Noise levels during construction and operation phase of proposed CMRL corridor 3.
- Assess the impact due to Noise and Vibration that are to be generated during construction and operation phase of corridor 3.
- Propose safety recommendations to minimize the impact due to generated Noise and Vibration.

The baseline Noise study was carried out for the period of **September 2020 to October 2020**. The project shall ensure that designed project meets CPCB noise regulations and World Bank EHS Limits and recommend mitigation measures and to verify compliance with the project standards.

2.3 NOISE STUDY METHODOLOGY INCLUDES:

- Definition of noise limits and additional requirements
- Identification of the noise sources
- Development of a 3-D transit configuration including both obstacles and sources.
- Development of the numerical simulation
- Simulation results analysis and definition of potential critical areas.

2.4 DEFINITIONS

Ambient Noise	The composite of noise from all sources near and far. The normal or
Level	existing level of environmental noise at a given location.
	The sound pressure level in decibels as measured on a sound level meter using the A-weighting filter network. The A-weighting filter de-
A-Weighted	emphasizes the very low and very high frequency components of the
Sound Level, dBA	sound in a manner similar to the frequency response of the human ear
	and correlates well with subjective reactions to noise. All sound levels
	in this report are A-weighted, unless reported otherwise.
Background	The underlying level of noise present in the ambient noise, excluding
Noise	the noise source under investigation, when extraneous noise is removed.
INDISC	This is sometimes described using the L ₉₀ descriptor (see below).
Ballast	Granular material placed on the trackbed for the purpose of holding the
Dallast	track in line and at surface
Ballast mat	A 2-to 3-inch-thick elastomer mat placed under the normal track ballast
Danast mat	on top of a rigid slab or packed sub-grade.
Cantinuana Naisa	The level of continuous sound pressure at the workplace over a period
Continuous Noise	of 10 minutes minimum time in dB(A) with reference sound pressure of

	20 micro pascal.
	Unit used for 'A-weighted' sound pressure levels. A-weighting is an
dB (A) (decibel A)	adjustment made to sound-level measurement to approximate the
	response of the human ear.
	A unit for measuring the volume of normal sound pressure. Sound level
$d\mathbf{P}(\mathbf{A})$	in decibels read on the "A"-scale of a sound level meter. The "A"-scale
dB(A)	weighting best approximates the response of the human ear to sound
	A unit for measuring the volume of high sound pressure. 'C' Weighting
dB(C)	is a standard weighting of the audible frequencies commonly used for
	the measurement of Peak Sound Pressure level; with more emphasis to
	low frequency sounds.
Decibel (dB)	A unit for measuring the volume of sound pressure perceived by the
	human ear. Standard unit of sound level measurement.
Employee Daily	The level of eight-hour daily noise exposure of an employee,
Noise Exposure	considering the effect of ear protectors.
	The steady A-weighted sound level over any specified period (not
Equivalent Sound	necessarily 24 hours) that has the same acoustic energy as the
Level,	fluctuating noise during that period (with no consideration of night-time
	weighting). It is a measure of cumulative acoustical energy.
Frequency, Hz	The number of complete pressure fluctuations per second above and
rrequency, mz	below atmospheric pressure.
Guideway	Supporting structure to form a track for rolling or magnetically-levitated
Gulueway	vehicles
	The A-weighted noise levels that are exceeded 10%, 50%, and 90% of
L10, L50, L90	the time during the measurement time.
LAeq	Equivalent A weighted continuous sound pressure
T. A	Maximum A - weighted sound pressure level in decibels recorded over
LAmax	the period stated.
LEP,d	Daily personal noise exposure
	Sound, which is unwanted, either because of its effect on humans, its
Noise	effect on fatigue or malfunction of physical equipment, or its
	interference with the perception or detection of other sounds.
	Noise reduction. The ability of a material, substance or medium to
Noise Attenuation	reduce the noise level from one place to another or between one room
	and another. Noise attenuation is specified in decibels.
	Cumulative acoustic stimulation which reaches the ear of a person over
Noise Exposure	a specified time-period such as a work shift, a day, a working life, or a
	lifetime.
	The location at which noise levels are computed and analysed. Also
Receiver	referred to as the observer.
Sound Level	An instrument designed and calibrated to respond to sound and to give
Sound Level	An instrument designed and canorated to respond to sound and to give

Meter	objective, reproducible measurements of sound pressure level. It
	normally has several features that would enable its frequency response
	and average times to be changed to make it suitable to simulate the
	response of the human ear.
Sound Power	The quantity indicating the total emission of sound power in in all
Level (PWL)	directions.
Sound Pressure	The SPL is a function of the distance between the point of measurement
	and the considered noise source. The SPL decreases at the increasing of
Level (SPL)	the distance between the measurement point and the noise source.
25 ADDEVIA	TIONS

2.5 ABBREVIATIONS

dB	Decibels
dB(A)	A Weighted Decibels
LAeq	is the A-weighted equivalent continuous sound level in decibels measured over a
	stated period of time.
LEP,	Daily personal noise exposure
d	
LAma	is the maximum A - weighted sound pressure level in decibels recorded over the
X	period stated.
PWL	Sound Power Level (dB), decibel
SPL	Sound Pressure Level

2.6 REFERENCE, CODES AND STANDARDS

- 1. Transit Noise and Vibration Impact Assessment Manual, Federal Transit Administration (FTA), U.S. Department of Transportation, Report No. 0123, 2018.
- 2. International Financial Corporation (IFC) Environmental, Health, And Safety Guidelines-Noise management, April 2007
- ISO 9613 'Acoustics Attenuation of Sound during Propagation Outdoors Part 2: General Calculation Method' (ISO, 1996)
- 4. ISO 1996-2 2007 Acoustics Description, measurement and assessment of environmental noise
- 5. CPCB Noise guidelines, The Noise Pollution (Regulation and Control) Rules, 2000, http://cpcbenvis.nic.in/noisepollution/noise_rules_2000.pdf
- 6.
 Indian
 Factories
 Act
 (1948),

 http://dgfasli.nic.in/html/modelrules/modelrules1/sch_24.htm

3 NATIONAL LAWS, REGULATIONS, AND GUIDELINES

The project is designed to minimize and comply with statutory noise limits for both workplace and environment standards. The laws, regulations, policies and guidelines applicable to this project based on the location, design, construction and operation are summarized in the subsequent sections in following order.

- 1. National (India) Environmental Legislation and Legal Administrative Framework,
- 2. World Bank EHS Limits
- 3. ADB, AIIB and NDB environmental and social policies and standards, and
- 4. Summary of international treaties and applicability to the project.

1.1 METRO RAIL POLICY 2017,

GoI's Union Cabinet approved a new Metro Rail Policy in 2017 that aims to enable the development and implementation of metro projects in a comprehensive and sustainable manner from the social, economic, and environmental perspectives. The Policy improves the integrated management of Metro development in three main aspects, (i) The new policy proposes that every city should setup a Unified Metropolitan Transport Authority for planning and developing multimodal transportation, which enable the overall planning and development of all modes of transport under the strong lead institutions; (ii) The need to carry out an alternative analysis is a welcome addition in the policy to help in better system selection; and (iii) The requirement to look at the 5-km catchment area for providing feeder services through walking, cycling and para-transit modes is promising.

3.1 INDIA - AMBIENT NOISE STANDARDS

The Noise Pollution (Regulation and Control) Rules, 2000 (Amended 2002) provides for the prevention, control and abatement of noise pollution. The national ambient noise standards are provided in the following Table. Day and night times cover the hours between 6:00 AM to 10:00 PM, and 10:00PM to 6:00PM, respectively. While silent zones include at least 100 meter perimeter around hospitals, educational institutions, courts, religious places and similar area.

Table 3-1. India Mattonal Amblent Ant Quanty Standards (1011(QS)						
Area Code	Category of Area/Zone	Limits in d	lB(A)) Leq			
	Category of Area/Zone	Day Time	Night Time			
Α	Industrial	75	70			
В	Commercial	65	55			
С	Residential	55	45			
D	Silence	50	40			

Table 3-1: India National Ambient Air Quality Standards (NAAQS)

A deviation from the Ambient Noise Standards have been modified to be in accordance with the operation criteria of the rail operation timing.

- The daytime rail operation run times 7 AM to 10 PM
- Nighttime Operation 10 PM to 7 AM

3.2 WORLD BANK GROUP'S ENVIRONMENTAL, HEALTH, AND SAFETYGUIDELINES ON NOISE MANAGEMENT

As part of the ADB's harmonization of safeguard policies with other multilateral financial institutions, it has adopted the World Bank's International Finance Corporation's general environmental, health, and safety guidelines (WBG EHS Guidelines 2007). Covered under the environmental guideline is the prevention and control of noise mainly though the noise

level guideline as follows. The EHS Guidelines requires prevention and mitigation measures should the project related noise cause the exceedance of the guide values at the most sensitive point of reception. The WBG EHS Guidelines values are for noise levels measured out-of-doors or building façade and are based on Guidelines for Community Noise, World Health Organization (WHO), 1999. In addition, the IFC- EHS provides a 3 dB maximum increase from the background when the existing measure noise already exceeds the standards. A 3 dB noise increase represents a doubling of the existing noise level.

Table 2: WBG EHS (Noise Level) Guidelines

Receptor	One Hour Leq dB(A)		
	Daytime, 07:00-22:00	Nighttime, 22:00-07:00	
Residential; institutional; educational	55	45	
Industrial; commercial	70	70	

Note that the GoI and WBG EHS noise guide values are similar for day and nighttime residential.

3.3 VIBRATION IMPACT AND RISK TO EXISTING BUILDINGS

As per RDSO (Research Designs and Standards Organization) Guidelines 2015, vibration studies have to be conducted along the corridors to determine the extent of impacts. Pile driving for piers and tunnel driving generate vibrations. Vibration is pronounced in section of hard rock. Apart from distance from the alignment, age and condition of buildings adjacent to the alignment determines extent of damage to such buildings due to vibration. Continuous effect of vibration on the buildings can cause damage to buildings. Buildings subjected to the vibration of more than 150 VdB might be subjected to structural damage. Historic buildings are more susceptible to vibration effect due to type of building material and design. If significant impacts are expected, mitigation measures have to be implemented and building condition survey have to be conducted before and during construction. Cost of such building within likely corridor of impacts are identified.

4 AMBIENT NOISE LEVELS

The baseline Noise data was recorded using **Tenma 72-947 sound level meter for sensitive receptors and Lutron Class 1 sound level meter for residential receptors.** The instrument was mounted in a tripod stand (height 1.5 m), so that the instrument remains stable for the entire study period. The photograph of the instrument mounted in a tripod stand is shown in **Figure 4-1.** Turnkey power portal is used to record the data without any interruptions. The instrument records the sound level every second in a SD memory card in "**.txt** " format. The sound levels are recorded in "**dbA**" units. The study was performed for 24 hr in the sensitory receptors such as schools, colleges, temples, and residential receptors along the proposed CMRL corridors.

The residential receptors of the FTA guideline and receptors selected by CMRL includes residential and sensitive structures located nearest to the edge of the tracks and structures that

represent a cluster of receivers. During the site visit, all building heights were estimated by noting the number of structure floors/storeys assuming the ground and succeeding floor heights are 3.5m and 3.0m, respectively. The 24-hour monitoring was conducted in front of the building at a height of 1.5m and a minimum 7.5 m away from any obstacles to record unobstructed noise as per the noise monitoring standard ISO 9613-1.

Figure 4-1 Photograph of instrument used for baseline Noise monitoring

The noise data for sensitive receptors was collected at 8 noise monitoring stations at hourly interval during morning, afternoon and evening such that peak and off-peak hours are covered. Most of the stretch is along the existing road. Later in 2019, monitoring of noise was conducted at 30 sample locations with sensitive receptors which are located within 200 m on either side of the alignment of Corridor 4.

1.2 SELECTION OF SITE

The noise impact assessment methodology generally followed the guideline provided in the US Federal Transit Administration Guidance Manual (U.S. Department of Transportation, Federal Transportation Agency) following the steps outline below:

Identification of receivers. Noise receivers and land uses within the 300-meter corridor screening distance along the rail alignment were identified by CMRL to ensure the most recent developments are accounted. Noise receivers were separated into 2 categories (sensitive and residential). The sensitive receptors consist of hospitals, and places of worship and residential receptors consists of highrise residential buildings. The maximum height of the sensitive receptor building were 2 floors and therefore all the monitoring were carried out at the ground level. The residential receptors of varying height were monitored for 24-hour ambient noise at the ground level and spot readings of 15 minutes were taken at each floor facing the corridor.

The sensitive receptors along the alignment of Corridor 4 were chosen for noise study. The list of monitoring locations is summarized in **Table 4-1**.

Tak	Table 4-1 Details of the monitoring locations in Corridor 4						
SI. N O	Name of the Sensitive Receptors	Location	Corrido r	Type of Sensitive Recepto r	Latitude	Longitude	
1.	St. Bede's Anglo Indian Hr. Sec. School	Light House Station – Fore shore Estate Road	C4	School	13°02'04.6"N	80°16'41.6"E	
2.	Rosary Church	Foreshore Estate Road – Kutchery Road	C4	Church	13°02'02.6"N	80°16'31.7"E	
3.	Luz Church	Thirumayilai Metro – Alwarpet	C4	Church	13°02'17.6"N	80°15'44.7"E	
4.	SIET College	Adyar Gate Junction to Nandanam	C4	College	13°01'52.9"N	80°14'23.9"E	
5.	Meenakshi college for women	Meenakshi College to Power House	C4	College	13°03'18.7"N	80°13'37.6"E	
6.	Vijaya Hospital	Vadapalani to Saligramam	C4	Hospital	13°02'58.5"N	80°12'03.06" E	
7.	Narayanan E-Tecno School	Alwar Thirunagar to Valasarwakkam	C4	School	13°02'46.4"N	80°11'16.6''E	
8.	The Holy Cross Matric Hr. Sec. School	Valasaravakka m to Karambakkam	C4	School	13°02'23.4"N	80°10'19.9''E	
9.	Government Hospital	Mullai Thottam to Poonamalle Bus Terminus	C4	Hospital	13°3'1.71''N	80°5'57.74''E	
10.	Sri Ramachandr a Dental College	Chennai Bypass Crossing- Ramchandra Hospital	C4	College	13°2'17.93'' N	80°8'41.09"E	

Table 4-1 Details of the monitoring locations in Corridor 4

1.3 MONITORING SCHEDULE

The schedule for recording the ambient noise levels along in the sensitive receptors along the alignment of corridors is summarized in **Table 4-3**. The field photographs are attached in **Figure 4-2**.

Sl	Name of	Monitor	ing date	Durat	Location	Туре	8	Latitude	Longitud
· N o	the sensitive receptor s	From	То	ion of the study		of sensiti ve recept ors	Dista nce (m)		e
1.	St. Bede's anglo indian school	16/09/2 020	17/09/2 020	24 hrs	Light house station – Fore shore Estate road	school	125 – E	13°02'04. 6"N	80°16'41. 6"E
2.	Rosary church	29/09/2 020	30/09/2 020	24 hrs	Foreshore Estate Road – Kutchery Road	Churc h	85 -	13°02'02. 6"N	80°16'31. 7"E
3.	LUZ Church	17/09/2 020	18/09/2 020	24 hrs	Thirumayil ai Metro – Alwarpet	Churc h	35	13°02'17. 6"N	80°15'44. 7"E
4.	SIET college	19/09/2 020	20/09/2 020	24 hrs	Adyar Gate Junction – Nandanam	Colleg e	240	13°01'52. 9"N	80°14'23. 9"E
5.	Meenaks hi college for women	07/10/2 020	08/10/2 020	24 hrs	Meenakshi College – Power house	colleg e	16	13°03'18. 7"N	80°13'37. 6"E
6.	Vijaya hospital	19/09/2 020	20/09/2 020	24 hrs	Vadapalani – Saligrama m	Hospit al	200	13°02'58. 5"N	80°12'03. 06"E
7.	Narayana E-techno school	21/09/2 020	22/09/2 020	24 hrs	Alwar thirunagar – Valasarava kkam	School	82	13°02'46. 4"N	80°11'16. 6"E
8.	The holy cross mat. Hr	22/09/2 020	23/09/2 020	24 hrs	Valasarava kkam – Karambakk	School	17	13°02'23. 4"N	80°10'19. 9"E

Table 4-2: Monitorin	g Schedule for	sensitive receptors	along Corridor 4

SI	Name of	Monitor	ing date	Durat	Location	Туре		Latitude	Longitud
• N 0	the sensitive receptor s	From	То	ion of the study		of sensiti ve recept	Dista nce (m)		e
						ors			
	sec school				am				
9.	Poonama	22/09/2	23/09/2	24 hrs	Mullai	Hospit	18	13°3'1.71'	80°5'57.7
	llee GH	020	020		Thottam –	al		'N	4"E
					Poonamall				
					e Bus				
					Terminus				
10.	Sri	21/09/2	22/09/2	24 hrs	Chennai	colleg	132	13°02'17.	80°8'41.0
	Ramacha	020	020		Bypass	e		93"N	9"E
	ndra				Crossing –				
	dental				Ramchandr				
	college				a Hospital				

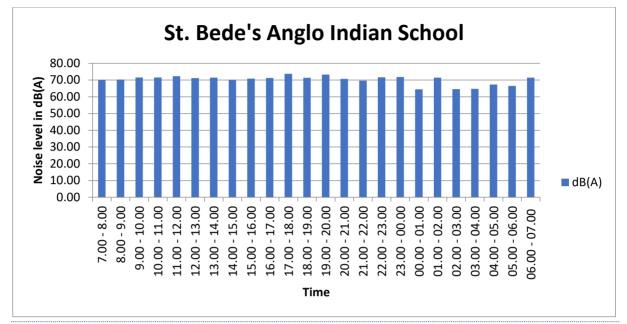
 Table 3: Residential receptors at corridor 4

Location ID	Building Name	monitoring date	Durati on	Location	Floo rs	Distan ce	Latitude	Longitud e
HR-1	Prestige Bellavista	30-Mar-21	24 & Spot	k Kattupakka m	16	89	13°2'25.3 1''N	80°7' 54.78"
HR-2	Prince High Land	30-Mar-21	24 & Spot	Iyyapanthan gal Bus Stop		20	13°2'17.1 1"N	80°8' 14.15"
HR-3	Pruva Jade	01-Apr-21	24 & Spot	Old Kesavardhin i Bus Stop	4	20	13°2'33.1 0"N	80°10'50. 10"
HR-4	Lancor Kiruba Cirrus	01-Apr-21	24 & Spot	Alwar thirunagar- Valasaravak kam	13	9	13°2'36.5 8"N	80°11'0.0 58"
HR-5	Ceebros	05-Apr-21	24 & Spot	Virugambak kam	7	43	13°2'46.2 9"N	80°11'23. 44"
HR-6	Cerus - Appaswamy	05-Apr-21	24 & Spot	Saligramam	16	33	13°2'52.6 2''N	80°11'47. 72"
HR-7	-	08-Apr-21	24 & Spot	Near to Kodambakk am Railway station		20	13°3'0.23 2"N	80°13'51. 82"
HR-8	Luz Golden Enclave	08-Apr-21	24 & Spot	Luz Corner	3	46	13°2'14.7 0"N	80°16'0.8 29"

Figure 4-2 Field photographs of Baseline noise monitoring for Corridor 4

1.4 MONITORING RESULTS AND DISCUSSION

The prevailing ambient noise level at a particular location is nothing but the resultant (total) of all kinds of noise sources existing at various distances around that location. The ambient noise level at a location varies continuously depending on the type of surrounding activities. The noise data was collected over 24 hrs in September 2020.


Based on the recorded hourly noise levels at each monitoring location, the day equivalent (Ld) and night equivalent (Ln) were calculated,

- Ld: Average noise levels between 7:00 hours to 22.00 hours.
- Ln: Average noise levels between 22:00 hours to 7.00 hours.

The comparison of day equivalent noise levels (Ld) and night equivalent noise levels (Ln) with the respective CPCB stipulated noise standards for various land use categories are shown in **Table 4-3**.

SI.	Name of the sensitive	Corridor Noise level		level	СР	CB	Environmental	
No	receptors		in dB(A) Leq		Stan	dard	setting	
			Day	Night	L	L		
					day	Night		
					(Ld)	(Ln)		
1.	St. Bede's Anglo Indian	C4	71.4	69.2	50	40	Silence zone	
	School							
2.	Rosary Church	C4	62.89	56.2	50	40	Silence zone	
3.	LUZ Church	C4	65.6	63.6	50	40	Silence zone	
4.	SIET College	C4	73.5	73.6	50	40	Silence zone	
5.	Meenakshi College for	C4	72.2	66.2	50	40	Silence zone	
	Women							
6.	Vijaya Hospital	C4	71.60	65.8	50	40	Silence zone	
7.	Narayana E-Techno	C4	74.3	55.4	50	40	Silence zone	
	School							
8.	The Holy Cross Matric	C4	57.6	51.5	50	40	Silence zone	

	Hr.Sec. School						
9.	Poonamallee GH	C4	63.3	56.93	50	40	Silence zone
10.	Sri Ramachandra Dental College	C4	69.4	64	50	40	Silence zone

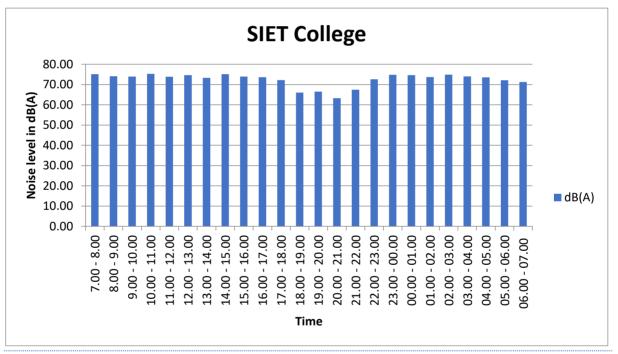


Figure 4-6 Hourly noise graph for SIET College

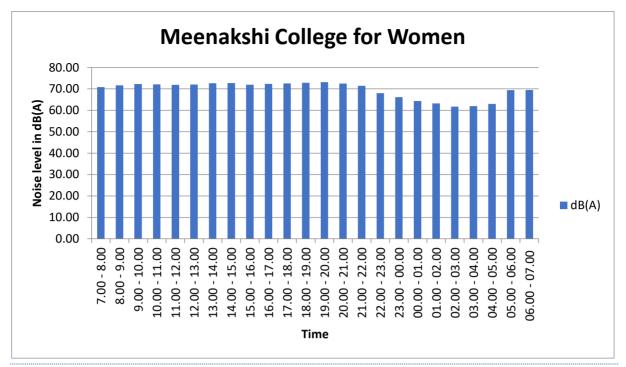


Figure 4-7 Hourly noise graph for Meenakshi College for Women

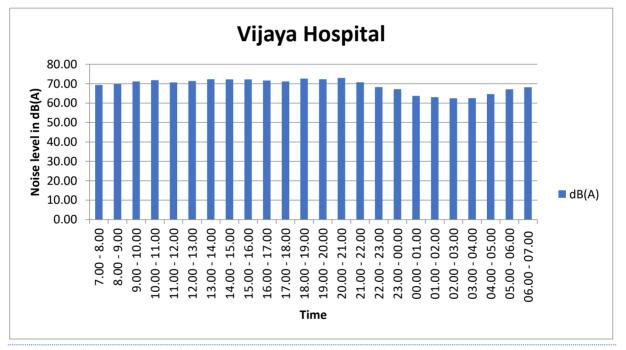


Figure 4-8 Hourly noise graph for Vijaya hospital

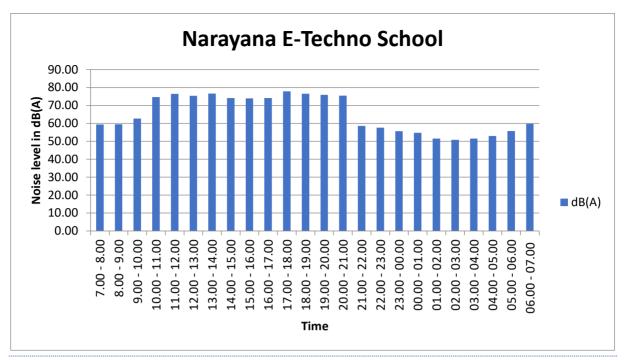


Figure 4-9 Hourly noise graph for Narayana E-Techno School

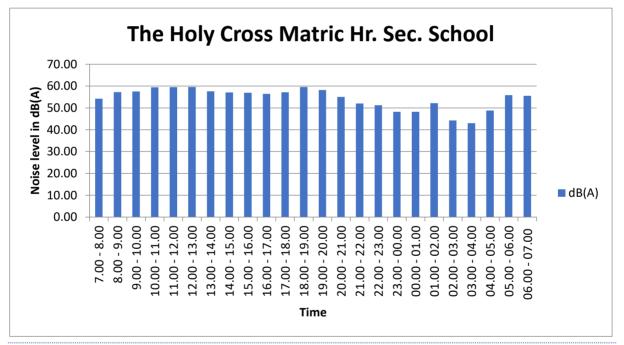


Figure 4-10 Hourly noise graph for The Holy Cross Matric Hr.Sec.School

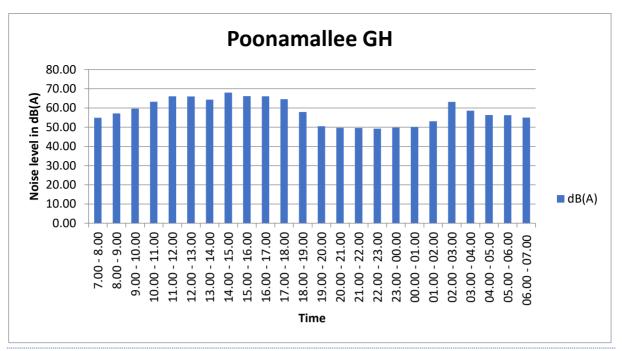
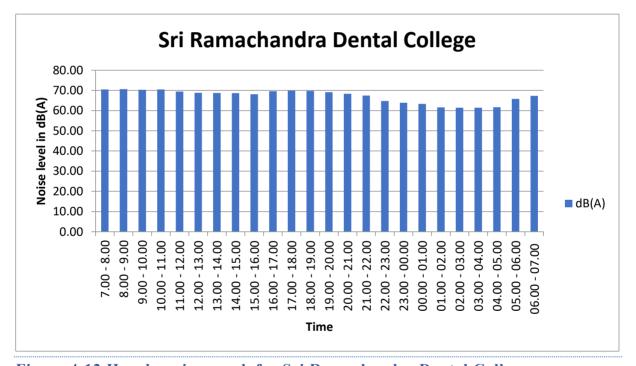



Figure 4-11 Hourly noise graph for Poonamallee GH

Figure 4-12 Hourly noise graph for Sri Ramachandra Dental College In order to assess the traffic noise contribution, the model was run using the guideline established by TNM Model 2.5 in SoundPlan version 8.2.

Location ID	Location	Building Name	Leq d	leq N			
	National Ambient Noise Quality Standards (N	National Ambient Noise Quality Standards (NAAQS)					
HR-1	Kattupakkam	Prestige Bellavista	63.4	59.7			
HR-2	Iyyapanthangal Bus Stop	Prince High Land	64.9	58.3			
HR-3	Old Kesavardhini Bus Stop	Pruva Jade	67.1	63.5			
HR-4	Alwar thirunagar- Valasaravakkam	Lancor Kiruba Cirrus	67.2	63.2			
HR-5	Virugambakkam	Ceebros	68.3	61.5			
HR-6	Saligramam	Cerus -Appaswamy	61.6	58			
HR-7	Near to Kodambakkam Railway station	-	62.7	54.3			
HR-8	Luz Corner	Luz Golden Enclave	64.2	55.6			

Table 3: Measures Noise Level at Residential Receptors at corridor 4

 Table 4-4: Noise Monitoring Locations

Table 4-5: Ambient Noise compared to NAAQS at the residential receptors

Table 4-6: Ambient	Table 4-6: Ambient Noise Level at Receptors at Corridor 4at each floor															
Date of Monitoring:	30/M	[ar/21	30/M	ar/21	1/A _I	or/21	1/Aj	or/21	5/Aj	or/21	5/Aj	or/21	8/A _I	or/21	8/A]	pr/21
ID	H	R1	H	R2	H	R3	H	R4	H	R5	HI	R-6	HI	R- 7	Н	R8
Ambient Noise Level	Leq d	Leq N	Leq d	Leq N	Leq d	Leq N	Leq d	Leq N	Leq d	Leq N	Leq d	Leq N	Leq d	Leq N	Leq d	Leq N
Measured Leq	63.4	59.7	64.9	58.3	67.1	63.5	67.2	63.2	68.3	61.5	61.6	58	62.7	54.3	64.2	55.6
NAAQS	55	45	55	45	55	45	55	45	55	45	55	45	55	45	55	45
		Floor w	vise Nois	e Monito	oring (Sp	oot readi	ng durin	ig peak l	nours- be	etween 9	am and	10:30 an	ı			
1st Floor	57.3	53.5	61.9	57.2	70.2	59.8	62.3	56.4	69.2	57.5	61.9	56.5	56.5	47.6	58.4	48
2st Floor	57	54.1	65.1	59.2	68.4	61.6	63.1	56.9	68.5	58.1	60.4	58.1	57.2	48.1	58.3	48.6
3rd Floor	56.7	54.9	66.2	61.2	69.1	61.3	62.7	57	67	58.9	59.6	57.1	57	47.4	56.3	47.7
4th Floor	56.8	51.6	68.5	64.1	70.3	60	64.2	57.7	67.5	57.6	59.4	56.8	56.8	47.9		
5th Floor	57.1	54.4	69.4	63			63.6	57.1	66.8	57.9	60	59.1				
6th Floor	56.9	50.7	69.4	62.8			62.1	58.4	66.4	58.1	60.7	59.9				
7th Floor	56.6	54.8	67.6	63.8			62.6	56.9	67.1	58.7	60.9	60.2				
8th Floor	56.1	54.4	69.7	63.1			63.7	57.8			59.5	59.7				
9th Floor	56.5	52.9	68	68.9			62.1	57.5			62.4	57.1				
10th Floor	56.9	54.9					62	56.2			64.7	56.3				
11th Floor	56.8	49.4					62.3	53			64.9	56.6				
12th Floor	56.8	55.4					61.5	55.9			65.6	59.1				
13th Floor	57.1	49.2					61.8	58			62.9	59.5				
14th Floor	56.6	48.6									66	56.9				
15th Floor	56.6	48.7									65.8	58.3				
16th Floor	56.9	48.7									64.1	57.5				

Note:

1. Observance: high noise was perceived at higher floors could be due to less obstacles along the path of noise.

2. The Leq values for day and night are the average values recorded for the day and night, while the spot readings recorded at each floor are the 15 min average value during peak hours of 9 am and 10:30 am.

Table 4-7: Compilation of sound level - time histories of the CMRL noise measurements- CR-4

No	Station Name	Elevated / Underground			
1	Lighthouse	UG			
2	Foreshore Estate Road	UG			
3	Kutchery Road	UG			
4	Thirumayilai Metro	UG			
5	Alwarpet	UG			
6	Bharathidasan Road	UG			
7	Adyar Gate Junction	UG			
8	Nandanam	UG			
9	Natesan Park	UG			
10	Panagal Park	UG			
11	Kodambakkam Metro	UG			
12	Meenakshi College	UG			
13	Power House	Elevated			
14	Vadapalani	Elevated			
15	Saligramam	Elevated			
16	Avichi School	Elevated			
17	Alwarthiru Nagar	Elevated			
18	Valasaravakkam	Elevated			
19	Karabakkam	Elevated			
20	Alapakkam Junction	Elevated			

21	Porur Junction	Elevated
22	Chennai Bypass Crossing	Elevated
23	Ramchandra Hospital	Elevated
24	Iyappanthangal Bus Depot	Elevated
25	Kattupakkam	Elevated
26	Kumanan Chavadi	Elevated
27	Karyan Chavadi	Elevated
28	Mullaithottam	Elevated
29	Poonamallee Bus Terminus	Elevated
30	Poonamallee Bypass	Elevated

4.1.1 NOISE MONITORING LOCATIONS

Figure 4-13: Noise monitoring at HR-1

Figure 4-14: Noise monitoring at HR-2

Figure 4-15: Noise monitoring at HR -3

Figure 4-16: Noise monitoring at hr-4

Figure 4-17: Noise monitoring at hr-5

Figure 4-18: Noise monitoring at HR-6

Eco Services India Pvt. Ltd., Chennai – 600032

Figure 4-19: Noise monitoring at HR-7

Figure 4-20: Noise monitoring at HR-8

Eco Services India Pvt. Ltd., Chennai – 600032

4.2 TRAFFIC IMPACT ON THE NOISE MONITORING AND ANALYSIS

- Noise level profiles at all 8 locations depicted continuous and fluctuating noise profiles which indicates the principal noise source is traffic along the main road along the noise monitoring site.
- In order to assess the traffic noise contribution, the model was run using the guideline established by TNM Model 2.5 in SoundPlan.

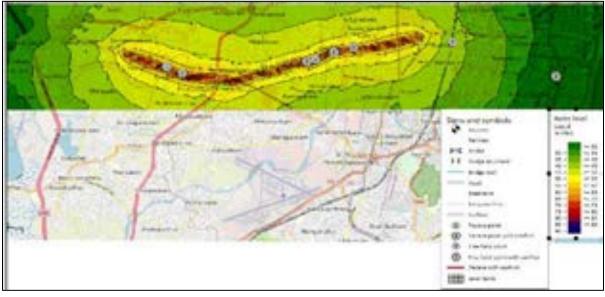

Loc.no	Corridor	Name of Location	Total Vehicles	Total PCU's
1	4	Vadaplani	110,666	122,497
2	4	Dr.Ambedkar Road	91,269	74,702
3	4	Alwarthirunagar	87,226	72,823
4	4	Nandanam Extn. Nr. Thevar Statue	125,407	127,435
5	4	Virugum Bakkam Junction (Container Depot)	74,097	75,355
6	4	Alapakkam Main Road Jn.	66,422	55,039
7	4,5	Porur Junction	127,338	110,583
8	4	Poonamallee High Road Jn.	72,808	64,838
9	4	Sennerkuppam Jn.	116,239	140,309
10	4	ORR At Grade Jn.	99,270	148,691

Table 4-8: Traffic Data along the main stretch of Corridor 4

Figure 4-21: Traffic Data Locations

Figure 4-22: Traffic Data Locations

Based on the traffic data, the noise predicted was modelled along with the noise monitoring data, any deviation from the traffic and noise monitoring was used to analyse if there is a significant difference from the noise monitoring to the noise modelled. It is to be noted that the traffic noise modelled was assuming the peak traffic flow recorded through the day.

In order to assess the traffic noise contribution, the model was run using the guideline established by TNM Model 2.5 in SoundPlan version 8.2.

Loc.no	Corridor	Name of Location	Total Vehicles		Predicted Noise level (dBA)	Monitored Value (dBA)
1	4	Vadaplani	110,666	122,497	68.2	69.4

Table 4-9: Traffic Data along the main stretch of Corridor 4

2 4		Dr.A	mbedka	r Road	91,2	269		74,702	77.	6	57.6	
3 4		Alwarthirunagar		gar	87,226 72		72,823	73.0		63.3	63.3	
Table 4-1	0: Tra	nffic N	loise m	odelle	d Vs No	oise N	Ionito	ring d	ata HR	-1 to H	[R-3	
Location ID	HR-1			Impa ct	HR-2			Imp act	HR-3			Impac t
Ambient Noise (leq dBA)	63.4		Ν	64.9			Ν	67.1			Ν	
Floor	Amb ient	Day	Night		Ambi ent	Da y	Night		Ambie nt	Day	Nig ht	
G	57.3	65.6	43.9	Ν	61.9	67. 2	45.5	N	70.2	64.7	35.2	Ν
F2	57	70.1	48.4	Ν	65.1	71. 6	49.9	Ν	68.4	69.8	40.3	Ν
F3	56.7	71	49.2	Ν	66.2	72. 5	50.8	Ν	69.1	70.2	40.8	Ν
F4	56.8	71.3	49.6	Ν	68.5	72. 9	51.2	Ν	70.3	70.3	40.9	N
F5	57.1	71.5	49.8	N	69.4	73	51.3	N				
F6	56.9	71.7	49.9	Ν	69.4	72. 9	51.2	Ν				
F7	56.6	71.7	49.9	Ν	67.6	72. 8	51	Ν				
F8	56.1	71.6	49.9	Ν	69.7	72. 7	51	Ν				
F9	56.5	71.7	49.9	Ν	68	72. 8	51.1	Ν				
F10	56.9	71.8	50.1	N								
F11	56.8	71.8	50.1	N								
F12	56.8	71.8	50.1	N								
F13	57.1	71.8	50.1	N								
F14	56.6	71.8	50.1	N								
F15	56.6	71.9	50.1	N								
F16	56.9	71.9	50.2	N								

Location	HR-4		ivoise m	Impa	HR-5			Impa	HR-6			Impa
ID				ct				ct				ct
Ambient Noise (leq dBA)	67.2			Y	68.3			Y 61.6				N
Floor	Amb ient	Da y	Night		Ambi ent	Day	Nigh t		Am bien t	Day	Nig ht	
G	62.3	77	47.4	Ν	69.2	77.6	48	Ν	61.9	60.7	31.1	N
F2	63.1	77	47.4	Ν	68.5	77.2	47.6	Ν	60.4	65.7	36.1	Ν
F3	62.7	76. 9	47.3	N	67	77.1	47.5	N	59.6	67.7	38.1	Ν
F4	64.2	76. 6	47.1	N	67.5	77.1	47.6	N	59.4	67.9	38.3	N
F5	63.6	76. 6	47	N	66.8	76.9	47.3	N	60	68	38.4	Ν
F6	62.1	76. 3	46.7	N	66.4	76.9	47.4	N	60.7	68.1	38.4	N
F7	62.6	76. 5	46.9	N	67.1	76.7	47.1	N	60.9	68.1	38.5	N
F8	63.7	76. 2	46.6	N					59.5	68.1	38.5	N
F9	62.1	76	46.4	Ν					62.4	68.2	38.5	Ν
F10	62	76	46.4	Ν					64.7	68.1	38.5	N
F11	62.3	76. 1	46.5	Ν					64.9	68	38.4	Ν
F12	61.5	76. 1	46.6	N					65.6	67.9	38.3	N
F13	61.8	76. 3	46.7	N					62.9	67.9	38.3	N
F14									66	67.9	38.2	N
F15									65.8	67.9	38.3	N
F16									64.1	68	38.3	Ν

Table 4-11: Traffic Noise modelled Vs Noise Monitoring data HR-4 to HR-6

Based on the analysis the HR- 4 and HR- 5 had a variation of 10 dBA, which could be due to the heavy traffic flow at Alwarthirunagar monitoring site, which recorded an maximum of 72,823 PCU's. Therefore the variation is considered to be moderate impacted.

Based on the traffic data, the noise predicted was modelled along with the noise monitoring data, any deviation from the traffic and noise monitoring was used to analyze if there is a significant difference from the noise monitoring to the noise modelled. It is to be noted that the traffic noise modelled was assuming the peak traffic flow recorded through the day.

It is therefore concluded that there would be no impact due to the operation of the metro rail with barrier wall in place.

5 NOISE PREDICTION MODELLING

The noise impact assessment methodology generally followed the guideline provided in the US Federal Transit Administration Guidance Manual (U.S. Department of Transportation, Federal Transportation Agency) following the steps outline below:

- **1.** Identification of receivers.
 - a. Noise receivers and land uses within the 300-meter corridor screening distance along the rail alignment were identified initially from Open Street Map (OSM) an open-source imagery and followed by site visits for confirmation to ensure the most recent developments are accounted. the noise receptors were provided by CMRL based on their experience in the area. For this assessment residential receptors were chosen. The building heights were estimated by noting the number of structure floors/storeys assuming the ground and succeeding floor heights are 2.8m and 3.0m, respectively.
- 2. Determine existing noise conditions.
 - a. Existing noise levels were measured throughout the project alignment as detailed in the previous section.
- **3.** Apply prediction models.
 - a. In this study SoundPlan 8.2 following the TNM 2.5/30 and FRA standards as detailed in the FTA Guidance Manual was used to predict the noise levels at the identified sensitive receivers from train operation. The prediction model takes into account the planned daily number of train operations both up and down bound tracks, train distribution operating throughout the day (daytime 7AM-10PM, and evening or 10PM-7AM), the distance of sensitive receivers from the tracks, operating speeds, and the presence of noise protection walls that provide acoustic shielding to the receivers.
 - b. The construction model was modelled using ISO 9613.
- 4. Evaluate receivers for predicted impact.
 - a. Predicted noise levels from the train operation were compared to the existing measured noise levels and evaluated based on the allowable 3 dB(A) increase as provided the

IFC EHS Guidelines and referred to in the ADB SPS (2009). The predicted noise levels during the Project construction phase were compared to the FTA impact thresholds while the operational noise was assessed based on the 3 dB(A) IFC threshold.

- **5.** Evaluate mitigation options.
 - a. Mitigation options, principally limited to the dimension, location, and shape of the noise protection walls were evaluated on sections where the predicted noise levels exceeded the 3dB(A) increase. Other mitigation measures were discussed but the quantitative impacts on noise reduction was limited to the noise protection walls.

In this study SoundPlan 8.2 following the TNM 2.5 and FRA standards as detailed in the FTA Guidance Manual was used to predict the noise levels at the identified sensitive receivers from train operation. The prediction model considers the planned daily number of train operations both up and down bound tracks, train distribution operating throughout the day (daytime 7AM-10PM, and evening or 10PM-7AM), the distance of sensitive receivers from the tracks, operating speeds, and the presence of noise protection walls that provide acoustic shielding to the receivers.

• Evaluate receivers for predicted impact.

Predicted noise levels from the train operation were compared to the existing measured noise levels and evaluated based on the allowable 3 dB(A) increase as provided the IFC EHS Guidelines and referred to in the ADB SPS (2009). The predicted noise levels during the Project construction phase were compared to the FTA impact thresholds while the operational noise was assessed based on the 3 dB(A) IFC threshold. As previously mentioned in the comparison between the GoI and IFC-EHS, the baseline noise levels in the project areas already exceeded national standards which offers no guide on how to assess noise impacts and therefore was not used in this study.

• Evaluate mitigation options.

Mitigation options, principally limited to the dimension, location, and shape of the noise protection walls were evaluated on sections where the predicted noise levels exceeded the 3dB(A) increase. Other mitigation measures were discussed but the quantitative impacts on noise reduction was limited to the noise protection walls.

The model allows calculating the sound levels due to various types of industrial sources and introduces its own algorithms for the calculation of the ground effect, the absorption and the other phenomena involved.

• Environmental noise

The environmental sounds and its divergence were estimated using ISO 9613 guideline. The equations used to estimate the propagation of the sound waves, for sources of industrial type (construction noise), are those described in the International Standard ISO 9613.

The sound pressure level at the receiver is the sum of all contributing frequencies, and the fundamental equation is the following:

$$SPL = PWL + D_{I} - (A_{d} + A_{a} + A_{g} + A_{b} + A_{n} + A_{v})$$

Where:

- SPL=Sound Pressure Level at the receiver
- PWL=Sound Power Level of noise source
- Di=directivity of the source
- Ad=attenuation of sound wave due to geometric divergence
- Aa=attenuation of sound wave due to air absorption
- Ag=attenuation of sound wave due to ground absorption and reflection
- Ab=attenuation of sound wave due to diffraction
- An=attenuation of sound wave due to variations of the vertical gradient of the temperature, of
- the wind speed and of the atmospheric turbulence
- Av=attenuation of sound wave due to vegetation

The directivity correction Di describes the extent by which the equivalent continuous Sound Pressure Level deviates from the point source in a specified direction from the level of an Omni directional point source.

The geometrical divergence Av accounts for spherical spreading in the free field from a point sound source, making attenuation in decibels.

The law of spreading is different for point, line, and area sources.

The attenuation due to atmospheric absorption Aa, in decibels, during the propagation through a distance "d", in meters, is equal to $Aa = \Box d/1000$, where \Box is the atmospheric attenuation coefficient for each octave band. It depends strongly on the frequency of the sound, the ambient temperature, and the relative humidity.

The attenuation of sound wave due to ground absorption and reflection "Ag" and that one due to the meteorological conditions "An" depend on the average height of the line of sight above the terrain and the distance from source to receiver. The absorption of sound waves by terrain is expressed by the model using a coefficient G (dimensionless), between 0 (hard ground, such as paving, water, ice and other surface having a low porosity) and 1 (porous ground, such as ground covered by grass, trees or other vegetation); for intermediate terrains (0<G<1), G represents the percentage of porous terrain.

5.1 CONSTRUCTION PHASE

The assessment criteria adopted for this project is the maximum allowable 3 dB(A) increase provided in the IFC World Bank Group's Environment, Health, and Safety Guidelines.

The assessment of construction noise was confined on a selected corridor of impact based on the following:

- a. construction period for each construction stage or activity on a specific stretch is short-term,
- b. the types of equipment used for the entire stretch of the corridor would be identical, and
- c. similar mitigation measure will be used by the contractor with slight variations based on noise monitoring and complaints received.

5.1.1 CONSTRUCTION METHODOLOGY

Main construction activities include demolition of structures and ground clearing; Excavation and fill; Tunneling; Transport of construction materials, muck and waste; Casting of concrete elements and preparation of concrete and their transportation; Pile driving where cast-in-situ is not feasible, blasting in rock etc.

Elevated Sections. Substructure - open foundation, pile, pile caps, columns; station structure; earth retaining structures shall be cast-in-situ. The structural elements for superstructure i.e. box segments, I-Girders, U-girders and sometimes pile caps are pre-cast. Pre-cast construction may be segmental or non-segmental type. In case of segmental method, structural segments are pre-casted in casting yards, pre-stressed and then transported to the location of use and launched by means of suitable launching arrangement. The construction yard has arrangement for casting beds, curing and stacking area, batching plant with storage facilities for aggregates and cement,

site testing laboratories, reinforcement steel yard and fabrication yard etc. An area of about 3 ha is required for each construction yard.

Underground Sections. Usually sections between underground stations are constructed by tunneling using Tunnel Boring Machine (TBM) while underground stations are built by cut-and-cover method. In the latter method, sidewalls of excavation at stations are supported in various ways. Between two stations tunnel is constructed by TBM. It will be launched from launching shaft. It is dragged in station area and continues from other side of station. Ground settlement analysis and monitoring is required during tunneling by TBM. Two separate tunnels are constructed by two different TBM. The initial plan is one to enter at Lighthouse Station, exit at Bharathidasan Road and the other one to enter at Natesan Park and exit at Bharathidasan Road and Meenakshi College. Depending upon the soil/rock strata, suitable type of TBM shall be used for tunneling. Locations where deployment of TBM is not possible (tunneling of short length, cross passages, underground stations which are not possible by cut and cover method etc.) are tackled by New Austrian Tunneling Method (NATM).

Construction of elevated, underground alignment involves following type of constructions: -

- Sub-structure Columns on Open/Pile foundations with pier cap at top of columns. Alternatively, Portal arrangement is provided at certain locations.
- Superstructure by segmental construction of whole unit construction. Box segments are most common type of segmental construction. I-Girder and U- girder are most common type of non-segmental construction methods where the structural element for whole span length is pre-cast and launched in position.
- Underground alignment by means of tunnels made through Tunnel Boring Machine / open cut and cover method/ NATM method.
- Underground stations by means of cut and cover method or NATM method.
- Earth retaining structures like diaphragm walls, sheet piles, secant piles etc.

5.1.1.1 CAST IN-SITU AND PRE-CAST CONSTRUCTION

A) Cast in-situ construction

In cast in-situ construction method, structure is cast at its final location of use. This involves erection of temporary shuttering, scaffolding and support system for casting the structure. The temporary supports and shuttering is removed when the concrete is set and structure attains the strength to bear its dead weight and other loads. This method involves longer construction time and interference to road users for longer period. This method is restricted to casting of

substructure - open foundation, pile, pile caps, columns; station structure; earth retaining structures.

B) Pre - cast construction

In this method, structural segments are pre-casted in casting yards, pre-stressed and then transported to the location of use and launched by means of suitable launching arrangement. The structural elements for superstructure i.e. box segments, I-Girders, U-girders and sometimes pile caps are casted by pre-cast technique. Pre-cast construction may be segmental or non-segmental type.

Casting yard is required for casting of precast structural segments and other precast units like Ugirder, I-Girder etc. The construction depot has arrangement for casting beds, curing and stacking area, batching plant with storage facilities for aggregates and cement, site testing laboratories, reinforcement steel yard and fabrication yard etc. An area of about 2.5 Ha to 3 Ha is required for each construction depot.

Pre-cast construction has following advantages: -

- Reduction in construction period due to concurrent working for substructure and superstructure.
- For segmental, pre-cast element (of generally 3.0m length), transportation from construction depot to site is easy and economical. For other type of construction i.e. I-Girder, U Girder etc. longer trailer and straighter roads are required but erection can be done by using road cranes in comparatively less time.
- As the pre-cast elements are cast on production line in a construction depot, better and uniform quality control can be exercised.
- This method reduces the interference to road users to minimum. For casting of segments, both long line and short line method can be adopted. However, the long line method is more suitable for spans curved in plan while short line method is good for straight spans. A high degree of accuracy is required for setting out the curves on long line method for which precalculation of offsets is necessary. Match casting of segments is required in either method. The cast segments are cured on the bed as well as in stacking yard. Ends of the segments are to be made rough through sand blasting so that gluing of segments can be effective.

The segmental construction has following advantages.

• Segmental construction is an efficient and economical method for a large range of span lengths and types of structures. Structures with sharp curves and variable super elevation can be easily accommodated.

- It is easy to incorporate last minute changes in span configuration if the site situation so warrants.
- Segmental construction permits a reduction of construction time as segments are manufactured in a casting yard while substructure work is in progress, and erected rapidly thereafter.
- Better quality control is possible in the casting yard.
- It is easier to transport smaller segments by road trailers on city roads.
- Interference to the traffic during construction is significantly reduced.

The entire construction stage of metro rail projects can be divided into several sub- activities that includes piling, footing, and piers construction, erection of box girder segment, and station building. This section describes these sub-activities by defining the individual equipment that will be used and their respective sound power levels and acoustical usage factor..

Table 5-1: List of Cast-In-Situ Pile Construction Equipment

Construction Equipment	Impact Device	Acoustical Usage Factor (%)	Sound Power Level, Lw dB(A)
Hydraulic Rig	N	20	92
Winch	Ν	20	81
Service Cranes	N	20	82.6
DG 125 KVA		50	113
DG 62.5 KVA	N	50	81
JCB	N	40	76
Displacement pump	N	50	69
Air compressor	Ν	40	74.9
		Overall	113
		50 & 40	113

Table 5-2: List of footing construction Equipment

Construction Equipment	Impact Device	Acoustical Usage Factor (%)	Sound Power Level, Lw dB(A)		
Vibro Hammers (Hydraulic)	Y	20	132		
Generators	Ν	50	81		
Backhoe (breaker)	Y	40	92.5		
Backhoe	Ν	40	62.2		
Drainage Pump	Ν	50	68.9		
Welding Machine	Ν	40	72.9		

Construction Equipment	Impact Device	Acoustical Usage Factor (%)	Sound Power Level, Lw dB(A)
Cranes	N	16	82.6
Concrete Bucket	Ν	15	83
Air Compressor	Ν	40	80
		Overall Sound Level	132 dBA or 121 dBA
		50 & 40	93.1

Table 5-3: List of Box Girder Erection Equipment

Construction	Impact	Acoustical Usage Factor	Sound Power Level,
Equipment	Device	(%)	Lw dB(A)
Erection Girders 1 /	N	16	82.6
Cranes	N	16	82.6
Tension Jack 2/	N	50	85
Air Compressors	N	40	80
Generators	N	50	81
Segment Carrier 1/	N	16	82.6
Overall			90.4
		50 & 40	87.3

Table 5-4: List of Pier Construction Equipment

Construction Equipment	Impact Device	Acoustical Usage Factor	Sound Power Level,
		(%)	Lw dB(A)
Air Compressors	N	40	80
Concrete Bucket	N	15	83
Steel Formworks	Ν	30	103.8
(column)			
Steel Formworks (Pier Head)	N	30	103.8
Total			106.9

Table 5-5: List of Station Structure Construction Equipment

Construction Equipment	Impact Device	Acoustical Usage Factor	Sound Power Level,
		(%)	Lw dB(A)
Crane	N	16	82.6
Truck (steel Materials	N	40	62.2
Air Compressors	N	40	80
Generators	N	50	81
Welding Machine	N	40	75.9

To assess the construction level noise, the maximum noise level was simulated as a line sources at the surface of the road. Based on the above data, the maximum noise level would be generated during the piliing construction, with an approximate sound power level of 113 dBA. Therefore, a line source replicating piling construction was accounted for the entire stretch of the coordior. The activities during the construction activities can be categorized based on the following:

5.1.2 IN-SITU PILING.

Piling construction starts with the survey works that involves the use of total stations and measuring tapes to establish pillars and coordinates for all pile points, foundations, including vertical controls. Bored cast in-situ piling starts with the initial boring for the installation of guide casing. Once the hydraulic rig is centered, a 4.0m bore is made to install a temporary guide casing. This guide casing will have a diameter equal to the pile and progressively driven to the desired depth by simultaneously boring and driving. Further boring done to hard rock level using a Kelly bar inside the casing. Once the pile boring reaches the termination level, the reinforcement caged is lowered into the bored hole using piling rigs and cranes with double sling ropes. Tremmie pipes with hoppers are thenlowered ready for concreting.

5.1.3 FOOTING.

Footing works includes excavation, pile head treatment and concrete work. The excavation requires placing sheet piles and temporary retaining walls. Pile head treatment is performed with a breaker attached to the backhoe and simultaneously handled by a manual breaker to prevent the rebar from being damaged. This operation creates the loudest noise during footing construction. Large steels formwork is used requiring a crane to stay in the work area. Concrete will be applied using bucket or concrete pump lorry.

5.1.4 PIER CONSTRUCTION.

Will be carried out using large steel formwork and reusable mobile scaffolding that will be used as a working platform for the rebar installation. There will be a resident crane for each construction gang. The formwork consists of two types, a column and pier head. The column formworks are fabricated in the different heights. Concrete is placed in the column and pier head through a bucket or pump lorry.

The noise levels during the construction phase during maximum noise generation stage of piling at each of the receiver was estimated. Noise mitigation is confined to the current practice by installing temporary 3-m noise enclosure around the active construction site to control, among others, noise impacts.

Also shown in the Tables are the existing noise measurements surround these receivers, identified as day and night times noise limits, which are the bases to assess if during the construction activities exceed the maximum allowable 3 dB(A).

Vijaya Hospital

The Noise contour map for the construction phase (Vadapalani – Saligramam) is shown in Figure 5-1.

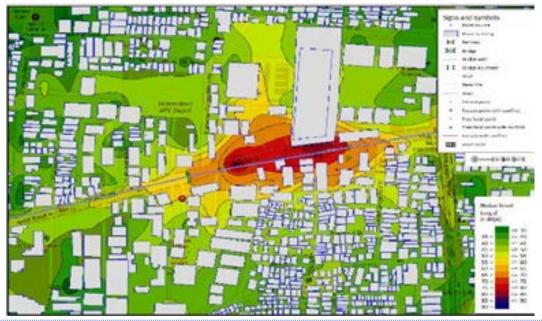


Figure 5-1: Noise contour map for construction phase (Vadapalani – Saligramam).

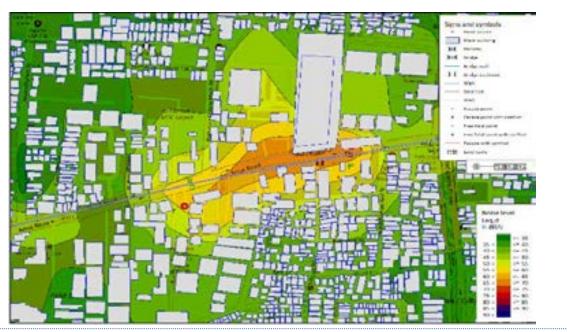


Figure 5-2: Vijaya Hospital - After Mitigation - Noise contour maps for Construction phase.

5.1.5 NARAYANAN E-TECHNO SCHOOL

The Noise contour map for the construction phase (Alwar Thirunagar – Valasarwakkam) is shown in Figure 5-3.

Figure 5-3: Noise contour maps for Construction phase (Alwar Thirunagar – Valasarwakkam).

Eco Services India Pvt. Ltd., Chennai – 600032

Figure 5-4: Narayanan E-Techno School- After Mitigation - Noise contour maps for Construction phase

5.1.6 THE HOLY CROSS MATRIC HR.SEC.SCHOOL

The Noise contour map for the construction phase (Valasaravakkam – Karambakkam) is shown in **Figure 5-5.**

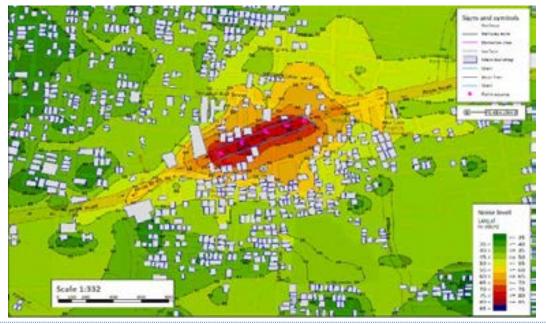


Figure 5-5: Noise contour maps for Construction phase (Valasaravakkam – Karambakkam).

Eco Services India Pvt. Ltd., Chennai – 600032

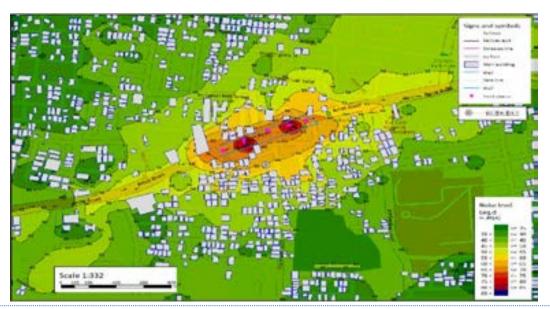


Figure 5-6: The Holy Cross Matric Hr.Sec.School - After Mitigation - Noise contour maps for Construction phase

5.1.7 POONAMALLEE GOVERNMENT HOSPITAL

The Noise contour map for the construction phase (Mullai Thottam – Poonamallee Bus Terminus) is shown in **Figure 5-7**.

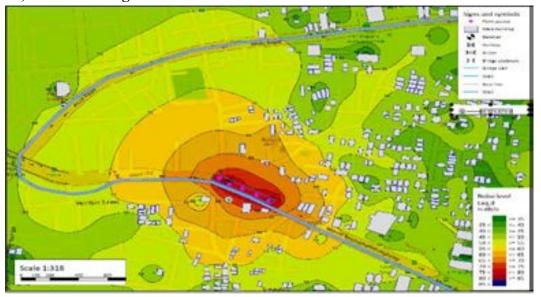


Figure 5-7: Noise contour maps for Construction phase (Mullai Thottam – Poonamallee Bus Terminus).

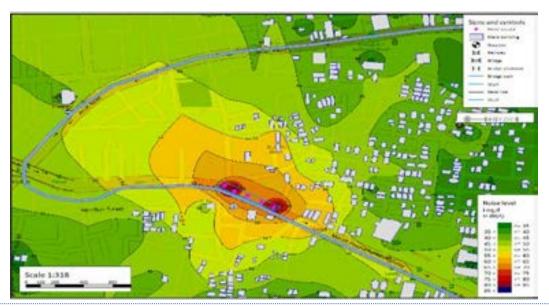


Figure 5-8: Poonamallee Government Hospital - After Mitigation - Noise contour maps for Construction phase

5.1.8 SRI RAMACHANDRA DENTAL HOSPITAL

The Noise contour map for the construction phase (Chennai Bypass Crossing – Ramachandra Hospital) is shown in **Figure 5-9**.

Figure 5-9: Noise contour maps for Construction phase (Chennai Bypass Crossing – Ramchandra Hospital).

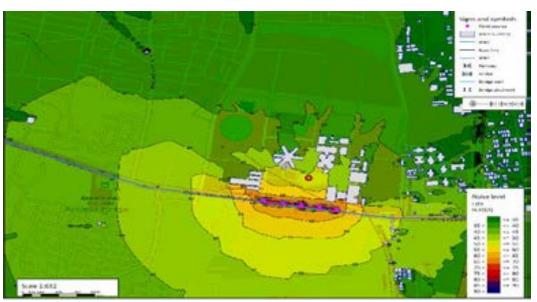


Figure 5-10: Sri Ramachandra Dental Hospital - After Mitigation - Noise contour maps for Construction phase

1.4.1 SUMMARY

The Sound to be generated during construction phase was predicted using SoundPLAN v8.2 and the predicted noise levels were compared with the baseline values and the results are given in below table.

Based on conservative estimate, during the piling operation, the maximum noise levels exceeds the allowable 3 dBA allowance, while the footing operation the levels, where within the 3 dBA allowance most of the occasions. The exceedance were predominately felt at the higher floors rather than the ground level. It is imperative based on the above data, noise wall has to be provided and receptor HR-7, would perceive the noise level higher than the allowable 3 dBA increase.

Table 5-6: Summary of Noise level db(A) during Construction phase at sensitive receptors

		Distance			0		-	C	Construction					
		(m)			W	ithout F	Barrier				١	With Ba	rrier	
Sl.No	Name of the Sensitive Receptors		Baseline Noise levels db(A)		Predicted Noise levels db(A)		Status - N	o Barrier	Mitigation - Model	Mitig	nal gated ise	Sta	tus	
			L _{eq} ,d	L _{eq} ,n	L _{eq} ,d	Leq,d	L _{eq} ,n	Leq,d Leq,n[1]		L _{eq} ,d & Leq,n	L _{eq} ,d	L _{eq} ,n	L _{eq} ,d	L _{eq} ,n
1	St. Bede's Anglo Indian Hr. Sec. School	125	71	69	61	72	70	No-Impact	No-Impact	48	71	69	No-Impact	No-Impact
2	Rosary Church	85	66	64	64	68	67	No-Impact	Impact	51	66	64	No-Impact	No-Impact
3	Luz Church	36	74	74	53	74	74	No-Impact	No-Impact	55	74	74	No-Impact	No-Impact
4	SIET College	240	72	66	55	72	66	No-Impact	No-Impact	42	72	66	No-Impact	No-Impact
5	Meenakshi college for women	16	74	55	79	80	79	Impact	Impact	66	75	66	No-Impact	Impact
6	Vijaya Hospital	200	69	64	70	73	71	Impact	Impact	64	71	67	No-Impact	Impact
7	Narayanan E- Tecno School	82	58	52	74	74	74	Impact	Impact	60	62	60	Impact	Impact

Eco Services India Pvt. Ltd., Chennai – 600032

8	The Holy Cross Matric Hr. Sec. School	17	63	57	64	67	65	Impact	Impact	59	65	61	No-Impact	Impact
9	Government Hospital	18	63	56	74	74	74	Impact	Impact	72	73	72	Impact	Impact
10	Sri Ramachandra Dental College	132	72	66	58	72	67	No-Impact	No-Impact	51	72	66	No-Impact	No-Impact

Note:

1. As per SHE Manual no construction work shall be carried out during nighttime near sensitive receptors

2. Kindly refer recommendations for noise attenuation given in Chapter 5.

3. Noise contours for underground stations cannot be made however prediction from modeling is given in the table.

4. All construction activity will be performed within the barrier wall of minimum 3 m.

5. As per SHE Manual no construction work shall be carried out during nighttime near sensitive receptors

At areas where impacted has been identified, appropriate managemental measures and mitigations measure such as operation duration shall be adopted.

Table 5-7:	Table 5-7: Noise level during Construction – Piling operation																					
Location ID	HR	-1	HR-	-2	HR-	-3	HR-	-4	HR-	-5	HR-	·6	HR-	-7	HR-	-8						
Ambient	63.4		64.9		67.1	67.1		67.1		67.2		68.3		68.3		61.6			62.7		64.2	
Noise																						
(leq dBA)																						
Floor	Ν	Y	Ν	Y	Ν	Y	Ν	Y	Ν	Y	Ν	Y	Ν	Y	Ν	Y						
G	85	82	87	85	95	89	89	87	88	85	86	79	96	89	85	82						
F2	86	83	88	86	96	91	90	88	89	86	86	80	97	91	85	82						
F3	86	83	89	87	97	94	91	89	90	87	87	80	98	94	85	83						
F4	86	84	89	87	96	95	92	90	90	87	87	80	97	94								
F5	87	84	90	88	96	96	92	91	91	88	88	80										
F6	87	85	90	89			92	91	91	89	88	81										
F7	87	85	91	89			92	91	92	90	88	81										
F8	88	85	91	90			92	91			89	81										
F9	88	86	91	91			92	92			88	81										
F10	88	87	91	92			92	92			89	81										
F11	88	87					92	92			89	82										
F12	89	87					92	90			89	82										
F13	88	87					92	88			89	82										
F14	88	87									89	82										
F15	88	87									89	83										
F16	88	87									89	83										
F17	88	88																				

Table Dili 41 5 7 Noi 1 JA . C 4 +1

Note:

- N- Without Mitigation
- Y- with Mitigation measure of wall •

Table 5-8: Noise level during Construction – Footing operation

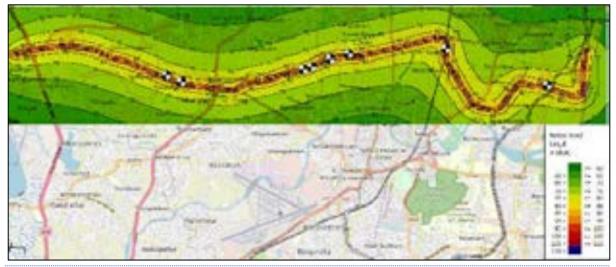
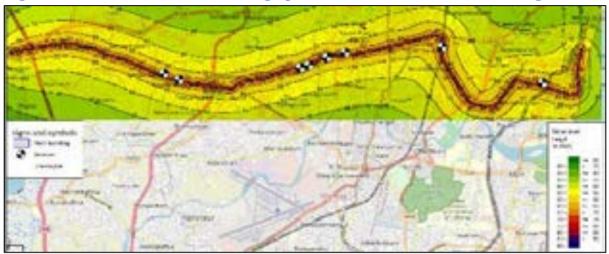
Location ID	HR-1		HI	R-2	H	R-3	H	R-4	HI	R-5	HI	R-6	HI	R- 7	HI	R-8
Ambient	63.4		64.9		67.1		67	67.2		68.3		.6	62	2.7	64.2	
Noise																
(Leq dBA)																
Floor	Ν	Y	Ν	Y	Ν	Y	Ν	Y	Ν	Y	Ν	Y	Ν	Y	Ν	Y
G	63	60	66	62	73	67	67	65	67	62	64	57	74	67	63	60
F2	64	60	66	63	75	69	68	66	67	63	65	57	76	69	63	60
F3	64	61	67	64	75	73	69	67	68	64	65	57	76	72	64	61
F4	64	61	68	65	75	73	70	68	69	65	65	57	76	73		
F5	65	62	68	66	74	74	70	70	69	66	66	58				
F6	65	62	69	67			71	70	70	66	66	58				
F7	66	63	69	67			71	70	70	68	67	58				
F8	66	63	69	67			71	69			67	58				
F 9	66	63	69	68			70	70			67	58				
F10	67	64	69	69			70	70			67	58				
F11	67	65					70	70			67	59				

Location ID	HR-1 H		H	R-2	HR-3		H	R-4	HI	R-5	HI	R-6	H	R- 7	HF	R-8
Ambient	63	3.4	64	64.9		67.1 6		7.2 68.		3.3	61.6		62	2.7	64.2	
Noise																
(Leq dBA)																
F12	67	65					70	70			67	59				
F13	67	65					70	70			67	59				
F14	67	65									67	59				
F15	67	65									67	60				
F16	67	65									67	60				

Note:

- N- Without Mitigation
- Y- with Mitigation measure of wall

Figure 5-11: Construction – Piling operations – Overall- Without Mitigation

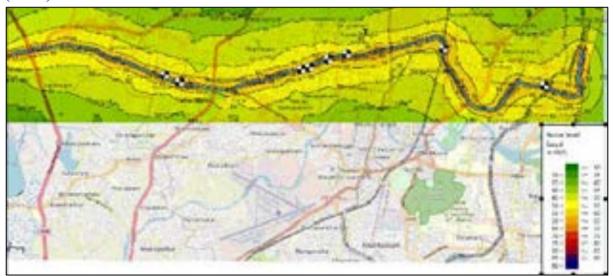

Figure 5-12: Construction – Piling operations – Overall- with Mitigation (wall)

Figure 5-13: Construction – Footing operations – Overall- without Mitigation

Figure 5-14: Construction – Footing operations – Overall- With Mitigation (Wall)

5.2 CONSTRUCTION PHASE MITIGATION MEASURES

In addition to the structural and engineer practice measures to control noise, good communication with affected communities is often the most effective way to manage potential construction noise impacts. Therefore, the Contractor should ensure the affected receivers well informed of the progress of the works, including when and where the noisiest activities will be taking place and how long they are expected to last. All noise complaints should be effectively recorded, investigated, and addressed. Account should be taken of the needs of residents near the project alignment in the choice of working hours and consider among others:

- Avoid nighttime and weekend working;
- Avoid working during prayer time; and to
- Carry out noisy works near offices during holiday periods

In addition, the Contractor will observe general good working practices including the following which are particularly relevant to road construction:

- Modern, silenced and well-maintained plant and construction equipment shouldbe used;
- All vehicles and plant should be fitted with effective exhaust silencers which should be maintained in good and efficient working order.
- Fitted acoustic covers should be kept in a good state of repair and should be kept closed when plant is in use.
- vehicles should not wait or queue on the road with engines running, shut down when not in use or where this is impracticable, throttled down to a minimum.
- Where activities, including delivery of material to site, cannot take place during normal working hours they should be carried out as close to normal working hours as is reasonably practicable.
- Concrete mixers should not be cleaned by hammering the drums.
- When handling materials, care should be taken not to drop materials from excessive heights
- Development of bypass roads to avoid road alignment
- Adoption of proper surface design and maintenance
- Provision of noise barriers. Specifications for installation of noise protection devices clearly indicating the location, design and material, and also provide for future maintenance requirements
- Provision of mandatory acoustic enclosure /acoustic treatment of room for stationary DG sets (5KVA and above). The acoustic enclosure/acoustic treatment of the room should be designed for minimum 25 dB (A) insertion loss for meeting the ambient noise standards, whichever is on the higher side. The DG set should be provided with proper exhaust muffler with insertion loss of minimum 25 dB (A)
- Building facade insulation, such as double window glazing, is an option usually adopted as a last resort in order to dampen noise in buildings. It is most likely to be needed in cases where noise impact result from an unforeseen expansion of traffic volume along existing roads
- Doubling the distance between the road and the receptor results in a decrease of 3 dB (A) in the noise level
- When traffic on road is doubled, the noise level increases 3 dB (A), all other factors being equal
- Doubling the speed results in an increase of 6 dB (A)
- Environmental specifications for contractors should cover the required safeguards during the design and construction stage

5.2.1 CONSTRUCTION – PILING HR-1 &2

Table 5-9: Construction Noise During Piling Operation

Table 5-9: Colls	ti detton	11010	· Du		, er acron			
Construction -								
During- Piling								
Location ID	Н	R-1		Final Noise	H	IR-2		Final Noise (BG
				(BG + Y)				+ Y)
Ambient Noise	6	3.4		82	(54.9		85
(leq dBA)								
Floor	Ambie	N	Y	Final Noise	Ambie	N	Y	Final Noise (BG
	nt			(BG + Y)	nt			+ Y)
G	57.3	85	82	82	61.9	87	85	85
F2	57	86	83	83	65.1	88	86	86
F3	56.7	86	83	83	66.2	89	87	87
F4	56.8	86	84	84	68.5	89	87	87
F5	57.1	87	84	84	69.4	90	88	88
F6	56.9	87	85	85	69.4	90	89	89
F7	56.6	87	85	85	67.6	91	89	89
F8	56.1	88	85	85	69.7	91	90	90
F9	56.5	88	86	86	68	91	91	91
F10	56.9	88	87	87				
F11	56.8	88	87	87				
F12	56.8	89	87	87				
F13	57.1	88	87	87				
F14	56.6	88	87	87				
F15	56.6	88	87	87				
F16	56.9	88	87	87				

There would be a significant increase during the construction Noise in particular to the piling operation. As per the DPR, the piling operation would be short term, few hours in a day and therefore the significant of the noise disturbance is not continuous. A conservative assessment of 110 dBA and in addition an allowance of 3 dBA was added to the final noise. The 3 meter wall was able to reduce the loudness factor but due to the location of the receiver below 50 m from the noise source, there is not a significant reduction in the noise level.

Updated Environmental Impact Assessment

April 2024 Revision 1

India: Chennai Metro Rail Investment Project Corridor 4

Annexure 12-2

Prepared by the Chennai Metro Rail Limited (CMRL) for the Asian Development Bank.

The succeeding Figures present the noise contour maps without and with the 3-meter noise walls during in-situ piling and footing.

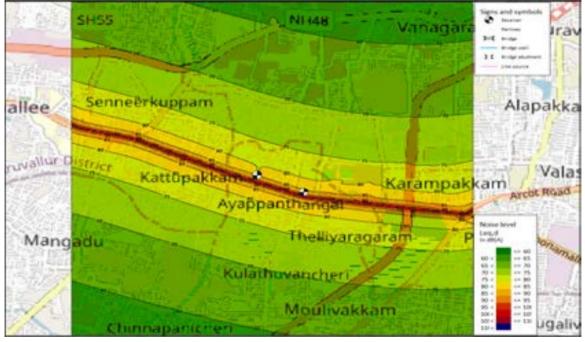
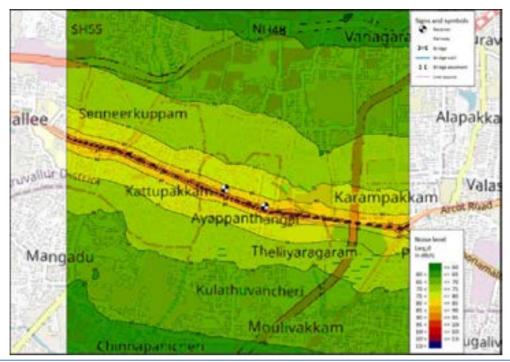



Figure 5-16: Construction Phase-Piling at Receiver Location HR-1 and HR-2-Day Time – With Mitigation

5.2.2 CONSTRUCTION – PILING HR-3 TO 6

There would be a significant increase during the construction Noise in particular to the piling operation. As per the DPR, the piling operation would be short term, few hours in a day and therefore the significant of the noise disturbance is not continuous. A conservative assessment of 110 dBA and in addition an allowance of 3 dBA was added to the final noise. The 3-meter wall was able to reduce the loudness factor but due to the location of the receiver below 50 m from the noise source, there is not a significant reduction in the noise level.

There would be a significant increase during the construction Noise in particular to the piling operation. As per the DPR, the piling operation would be short term, few hours in a day and therefore the significant of the noise disturbance is not continuous. A conservative assessment of 110 dBA and in addition an allowance of 3 dBA was added to the final noise. The 3 meter wall was able to reduce the loudness factor but due to the location of the receiver below 50 m from the noise source, there is not a significant reduction in the noise level.

The succeeding Figures present the noise contour maps without and with the 3-meter noise walls during in-situ piling and footing.

Table 5-10: Construction noise during Piling at HR 3 to 6

Construction -																
During- Piling																
Location ID	HR	-3		Final Noise	H	R-4		Final Noise	H	R-5		Final Noise	HI	R- 6		Final Noise (BG
				(BG + Y)				(BG + Y)				(BG + Y)				+ Y)
Ambient Noise	67.	.1		89	6	7.2		87	6	8.3		85	61	.6		79
(leq dBA)																
Floor	Ambient	Ν	Y	Final Noise	Ambie	Ν	Y	Final Noise	Ambie	Ν	Y	Final Noise	Ambie	Ν	Y	Final Noise (BG
				(BG + Y)	nt			(BG + Y)	nt			(BG + Y)	nt			+ Y)
G	70.2	95	89	89	62.3	89	87	87	69.2	88	85	85	61.9	86	79	79
F2	68.4	96	91	91	63.1	90	88	88	68.5	89	86	86	60.4	86	80	80
F3	69.1	97	94	94	62.7	91	89	89	67	90	87	87	59.6	87	80	80
F4	70.3	96	95	95	64.2	92	90	90	67.5	90	87	87	59.4	87	80	80
F5					63.6	92	91		66.8	91	88	88	60	88	80	80
F6					62.1	92	91		66.4	91	89	89	60.7	88	81	81
F7					62.6	92	91		67.1	92	90	90	60.9	88	81	81
F8					63.7	92	91						59.5	89	81	81
F9					62.1	92	92						62.4	88	81	81
F10					62	92	92						64.7	89	81	81
F11					62.3	92	92						64.9	89	82	82
F12					61.5	92	90						65.6	89	82	82
F13					61.8	92	88						62.9	89	82	82
F14													66	89	82	82
F15													65.8	89	83	83
F16													64.1	89	83	83

Eco Services India Pvt. Ltd., Chennai – 600032

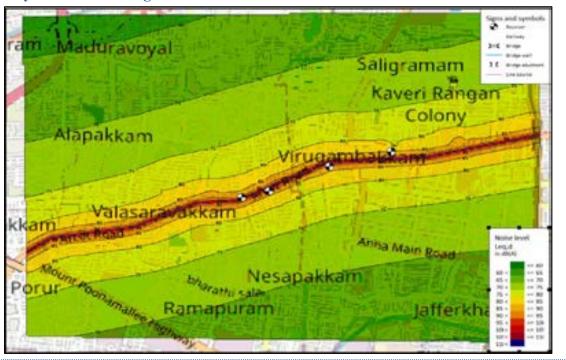
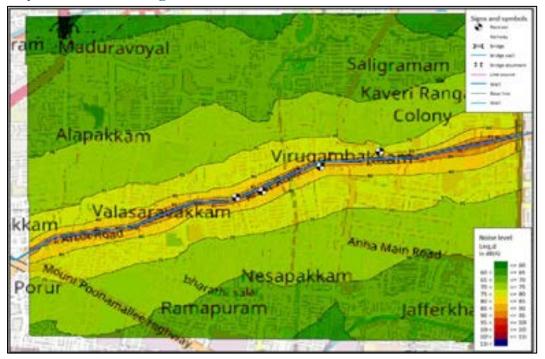
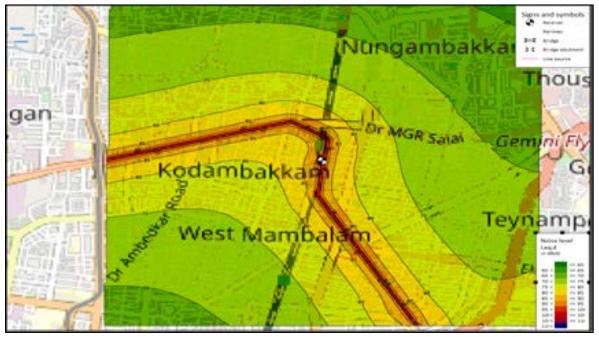



Figure 5-17: Construction Phase-Piling at Receiver Location HR-3, 4, 5 & 6 – Day Time- No Mitigation

Figure 5-18: Construction Phase-Piling at Receiver Location HR-3, 4, 5 & 6 – Day Time- with Mitigation


5.2.3 CONSTRUCTION – PILING HR-7 & 8

It is to be noted that piling operation would not be conducted near HR-7 and 8 as the metro line near the receivers are underground therefore only TBM would be conducted. If at all any operation would be conduction would be the regular construction operation. A conservative assessment of 90 dBA and in addition an allowance of 3 dBA was added to the final noise. The 3-meter wall was able to reduce the loudness factor but due to the location of the receiver below 50 m from the noise source, there is not a significant reduction in the noise level.

The succeeding Figures present the noise contour maps without and with the 3-meter noise walls during in-situ piling and footing.

Figure 5-19: Construction Phase-Piling at Receiver Location HR-7– Day Time-No Mitigation

Figure 5-20: Construction Phase-Piling at Receiver Location HR-7– Day Timewith Mitigation

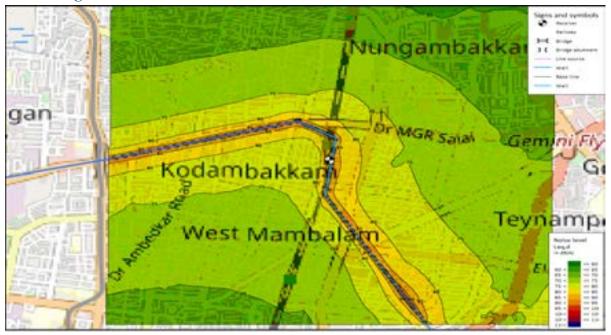
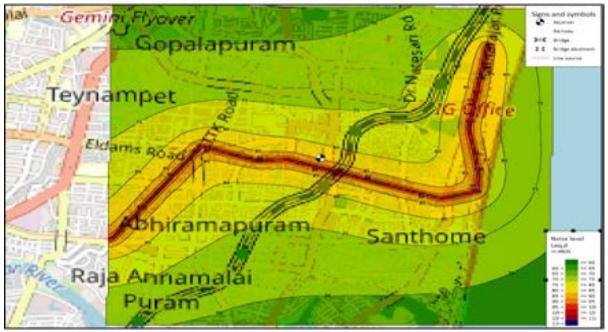



Figure 5-21: Construction Phase-Piling at Receiver Location HR-8– Day Time-No Mitigation

5.3 OPERATION PHASE NOISE IMPACT ASSESSMENT

To estimate the operational noise level, the internationally recognized noise modelling software 'SoundPLAN' version 8.2 has been utilized. The Environmental noise propagation methodology adopted, and the equations used within the SoundPLAN model are based on the ISO 9613 'Acoustics – Attenuation of Sound during Propagation Outdoors' (ISO, 1996) and Railway noise is using FTA/FRA- HSGT:2005.

SoundPLAN has been developed by Braunstein & Berndt GmbH in Germany, and belongs to the class of sophisticated provisional models, based the technique of the Ray Tracing Inverted (from the receivers), that allow to simulate the propagation of the noise in complex source situations and orography.

The model allows calculating the sound levels due to various types of industrial sources and introduces its own algorithms for the calculation of the ground effect, the absorption and the other phenomena involved.

The equations used to estimate the propagation of the sound waves, for sources of industrial type, are those described in the International Standard ISO 9613.

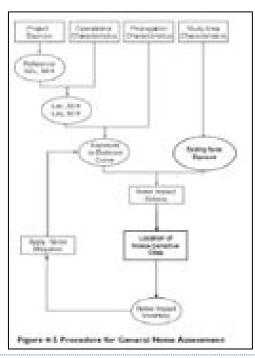
The sound pressure level at the receiver is the sum of all contributing frequencies, and the fundamental equation is the following:

$$SPL = PWL + D_I - (A_d + A_a + A_g + A_b + A_n + A_v)$$

Eco Services India Pvt. Ltd., Chennai – 600032

where:

- SPL=Sound Pressure Level at the receiver
- PWL=Sound Power Level of noise source
- Di=directivity of the source
- Ad=attenuation of sound wave due to geometric divergence
- Aa=attenuation of sound wave due to air absorption
- Ag=attenuation of sound wave due to ground absorption and reflection
- Ab=attenuation of sound wave due to diffraction
- An=attenuation of sound wave due to variations of the vertical gradient of the temperature, of
- the wind speed and of the atmospheric turbulence
- Av=attenuation of sound wave due to vegetation
- The directivity correction Di describes the extent by which the equivalent continuous Sound Pressure Level deviates from the point source in a specified direction from the level of an Omni directional point source.
- The geometrical divergence Av accounts for spherical spreading in the free field from a point sound source, making an attenuation in decibels.
- The law of spreading is different for point, line, and area sources.
- The attenuation due to atmospheric absorption Aa, in decibels, during the propagation through a distance "d", in meters, is equal to Aa = □d/1000, where □ is the atmospheric attenuation coefficient for each octave band. It depends strongly on the frequency of the sound, the ambient temperature, and the relative humidity.
- The attenuation of sound wave due to ground absorption and reflection "Ag" and that one due to the meteorological conditions "An" depend on the average height of the line of sight above the terrain and the distance from source to receiver. The absorption of sound waves by terrain is expressed by the model using a coefficient G (dimensionless), between 0 (hard ground, such as paving, water, ice and other surface having a low porosity) and 1 (porous ground, such as ground covered by grass, trees or other vegetation); for intermediate terrains (0<G<1), G represents the percentage of porous terrain.


5.3.1 METHODOLOGY

As per the FTA manual, The transit project category includes projects where the project noise is exclusively due to new transit sources, no changes are made to the highway or to existing noise barriers, and the existing noise levels generated by sources will not change because of the project.

As a part of the project a general screening assessment was performed by CMRL. The General Noise Assessment is used to examine potentially impacted areas identified in the screening step by examining the location and estimated severity of noise impacts. This procedure considers noise source and land use information likely to be available at an early stage in the project development process. Estimates are made of project noise levels and of existing noise conditions to model the location of a noise impact contour that defines the outer limit of an impact corridor or area. This modelling method uses transit-specific noise and adjustment data (in tabular and graphical form) for the noise computations.

Major steps in the General Noise Assessment procedure and recommended workflow are shown in Figure 4-5 and listed below.

- 1. Step 1: Identify Noise-Sensitive Receivers Identify noise-sensitive receivers and their proximity to the project and major noise sources.
- 2. Step 2: Determine Project Noise Source Reference Levels Determine the project noise sources and reference levels. Then, estimate the project noise exposure at the reference distance of 50 ft considering operational characteristics with preliminary estimations of the effect of mitigation.
- 3. Step 3: Estimate Project Noise Exposure by Distance Estimate project noise exposure at distances beyond 50 ft considering propagation characteristics using a simplified procedure.
- 4. Step 4: Combine Noise Exposure from All Sources Combine all sources associated with the project to predict the total project noise at the receivers.
- 5. **Step 5: Measure Existing Noise Exposure** Measure the existing noise or estimate the existing noise exposure using a simplified procedure.
- 6. Step 6: Inventory Impacts
 - b. **Option A:** Tabulate the change in noise (existing vs. estimated project noise) at each noise-sensitive receiver or cluster, identifying all moderate and severe impacts.
 - c. **Option B:** Take inventory of noise-sensitive receivers that fall within the moderate and severe noise contours.
- 7. **Step 7: Determine Noise Mitigation Needs** Evaluate the need for mitigation and repeat the General Noise Assessment with proposed mitigation.

Figure 5-23: Procedure for General Noise Assessment as per FTA criteria

At an early project stage, the information available for a General Noise Assessment includes:

- Candidate transit mode
- Guideway options design conditions
- Operational headways will be single or double
- Design speed maximum and average speed
- Alternative alignments

Conservative estimates (e.g., maximum (expected) design speeds and operations at design capacities) shall be used to estimate worst-case noise levels.

First choose the appropriate fixed-guideway transit source reference level and then predict the noise exposure at 15 m in terms of Leq(1hr) and Ldn.

Evaluate Path Treatments – When noise mitigation treatments cannot be applied at the noise source or additional mitigation is required after treating the source, the next preferred placement of noise mitigation is along the noise propagation path between the source and receiver

Noise Barriers – Noise barriers are effective in mitigating noise when they break the line-ofsight between source and receiver. The necessary height of a barrier depends on the source height and the distance from the source to the barrier.

• Noise barriers close to vehicles – Barriers located very close to a rapid transit train, for example, may only need to be approximately 2 to 3 m above the top of rail

to be effective. Standard barriers close to vehicles can provide noise reductions of 6 to 10 dB.

• Noise barriers at ROW line – Barriers on the ROW line or for trains on the far track, the height must be increased to provide equivalent effectiveness to barriers located close to the vehicles. Otherwise, the effectiveness can drop to 3 dB or less, even if the barrier breaks the line-of-sight.

All barrier effectiveness can be increased by as much as 5 dB by applying sound-absorbing material to the inner surface of the barrier. The length of the barrier wall is also important to its effectiveness. The barrier must be long enough to block noise from a moving train along most of its visible path. This is necessary so that train noise from beyond the ends of the barrier will not severely compromise noise-barrier performance at noise-sensitive locations. The barrier length can be refined in the engineering phase, closely examining the predicted sound level exceedances at specific receivers, site geometries, and the contribution of barrier flanking noise, then adjusting the length as appropriate.

The noise modelling simulation of the project requires noise input data for all significantly noisy equipment in the project area with following input

- Sound Pressure Level (SPL) of noise source at a distance of 1 m from the edge of the source ·
- Source type estimation of the wave-front of the source, modelled as either a point, line or area source.
- Other data types which improve source accuracy include operational duty cycles (as a conservative assessment, all equipment's are operating continuously at maximum operating conditions)

FTA criteria for noise impact were developed specifically for transit noise sources operating on fixed-guideways in urban areas. These criteria are based on well-documented research on human response to community noise and represent a reasonable balance between community benefit and project costs. These criteria do not reflect specific community attitudinal factors.

The levels of impact are described in Table 5-11: Levels of Impact. The criteria at which the levels of impact occur are presented in two ways depending on the relationship of project and existing noise sources.

If the project noise source is a new source of transit noise in the community, such as a new project in an area currently without transit, use the criteria as presented in analyzing the Project Noise Impact criteria presentation.

Level of	Description
Impact	
No	Project-generated noise is not likely to cause community annoyance. Noise projections in
Impact	this range are considered acceptable by FTA and mitigation is not required.
Moderate	Project-generated noise in this range is considered to cause impact at the threshold of
Impact	measurable annoyance.
	Moderate impacts serve as an alert to project planners for potential adverse impacts and
	complaints from the community. Mitigation should be considered at this level of impact
	based on project specifics and details concerning the affected properties.
Severe	Project-generated noise in this range is likely to cause a high level of community
Impact	annoyance. The project sponsor should first evaluate alternative locations/alignments to
	determine whether it is feasible to avoid severe impacts altogether. In densely populated
	urban areas, evaluation of alternative locations may reveal a trade-off of affected groups,
	particularly for surface rail alignments. Projects that are characterized as point sources
	rather than line sources often present greater opportunity for selecting alternative sites.
	This guidance manual and FTA's environmental impact regulations both encourage
	project sites which are compatible with surrounding development when possible. If it is
	not practical to avoid severe impacts by changing the location of the project, mitigation
	measures must be considered.

Table 5-11: Levels of Impact

Option A: Project Noise Impact Criteria Presentation – The impact criteria presentation for evaluating existing noise independently to project noise is presented in this option.

The noise levels at which impacts occur are presented in Figure 5-24: Noise Impact Criteria for Transit Projects and Table 5-11: Levels of Impact. If impact is determined, measures necessary to mitigate impacts are to be considered for incorporation into the project.

Figure 5-24 presents the existing noise exposure on the horizontal axis and project noise on the vertical axis. Category 1 and 2 land uses have the same criteria for project noise and are on the primary vertical axis. Category 3 land use criteria are presented on the secondary vertical axis. Note that project noise for category 1 and 3 land uses is expressed as Leq(1hr), whereas project noise for category 2 land use is expressed as Ldn. Also, note that project noise criteria are 5 dB higher for category 3 land uses in Figure 5-24 since these types of land use are less noise-sensitive than those in categories 1 and 2.

Note that for projects in locations with existing noise levels below 55 dBA, the project noise exposure is allowed some increase over the existing noise exposure before it is considered to cause impact. For category 1 and 2 land uses, the maximum project noise level to be considered to cause no impact is 65 dBA (Leq(1hr) or Ldn) regardless of the existing noise. Note that no impact at 65 dBA aligns with other Federal agencies in that a Ldn of 65 dBA is a standard limit for an acceptable living environment among some Federal agencies. Project

noise levels above the top curve are considered to cause severe impact. The upper limit of the severe impact range is 75 dBA for category 1 and 2 land uses. The upper limit of 75 dBA is associated with an unacceptable living environment. Project noise between the two curves is considered to have moderate impact on the community.

The criteria are also tabulated in Table 5-11: Levels of Impact. The values in Table 5-11: Levels of Impact can be used for illustrative purposes and should only be used if all numbers are rounded up to the nearest decibel.

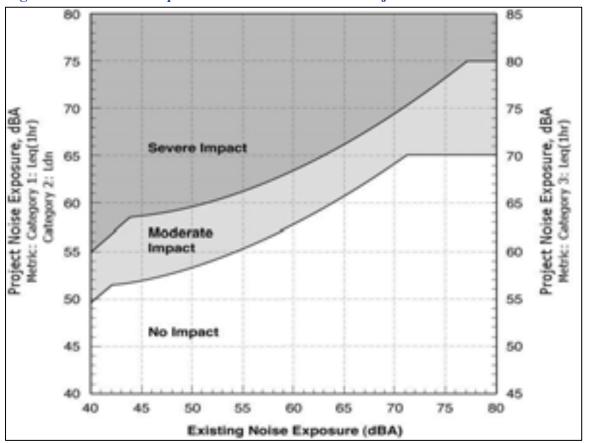


Figure 5-24: Noise Impact Criteria for Transit Projects

5.4 METEOROLOGY

Meteorological factors, such as temperature, humidity, wind speed and direction, affect sound propagation. Effects of wind on outdoor sound propagation during various weather conditions can cause large variations in project-related sound levels measured at a residence. If the residence is upwind of the facility, the wind could cause greater than normal outdoor sound attenuation and lower sound levels at the residence than would occur with no wind. However, if the residence is downwind of the facility, the opposite effect could occur, resulting in higher sound levels than normal at the residence. Crosswinds do not affect outdoor sound propagation and would result in sound levels at the residence that are essentially the same as

those during calm conditions. The ISO 9613 algorithms used in this assessment simulate downwind propagation under a mildly developed temperature inversion (both of which enhance sound propagation) and provide a reasonable conservative assessment of potential effects.

The following meteorological parameters consistent with ISO 9613 requirements were applied in the noise model:

- Max Temperature = $34^{\circ}C$
- Average Relative humidity = 45%
- wind direction = downwind (i.e., wind blowing from the facility to the receptor)

Based on the predicted wind class frequency distribution for the Project site, a wind speed of 3 m/s typical of representative prevailing site condition was assumed in the noise model. These meteorological parameters and modelling approach are considered conservative assumptions during the month of Feb- march when the boiler blowing scenario is expected to occur.

Table 5-12: Noise Levels Demning Impact for Transit Projects									
Existing	Project Noise	Project Noise Impact Exposure, dBA							
Noise	Category 1 (I	Leq(1hr)) or 2	2 (Ldn) Sites	Category 3 Sites (Leq(1hr))					
Exposure,									
dBA									
Leq(1hr)	No	Moderate	Severe	No	Moderate	Severe			
or Ldn	Impact	Impact	Impact	Impact	Impact	Impact			
<43	<	Ambient	>	<	Ambient	>			
	Ambient+10	+10 to 15	Ambient+15	Ambient+15	+15 to 20	Ambient+20			
55	<56	56-61	>61	<61	61-66	>66			
56	<56	56-62	>62	<61	61-67	>67			
57	<57	57-62	>62	<62	62-67	>67			
58	<57	57-62	>62	<62	62-67	>67			
59	<58	58-63	>63	<63	63-68	>68			
60	<58	58-63	>63	<63	63-68	>68			
61	<59	59-64	>64	<64	64-69	>69			
62	<59	59-64	>64	<64	64-69	>69			
63	<60	60-65	>65	<65	65-70	>70			
64	<61	61-65	>65	<66	66-70	>70			
65 ¹	<61	61-66	>66	<66	66-71	>71			
66	<62	62-67	>67	<67	67-72	>72			

¹ As per CPCB Criteria **Error! Reference source not found.**, daytime noise levels were assumed to be 65 dBA a nd below

Existing	Project Noise Impact Exposure, dBA							
Noise Exposure, dBA	Category 1 (Leq(1hr)) or 2 (Ldn) Sites			Category 3 Sites (Leq(1hr))				
67	<63	63-67	>67	<68	68-72	>72		
68	<63	63-68	>68	<68	68-73	>73		
69	<64	64-69	>69	<69	69-74	>74		
70	<65	65-69	>69	<70	70-74	>74		
71	<66	66-70	>70	<71	71-75	>75		
72	<66	66-71	>71	<71	71-76	>76		
73	<66	66-71	>71	<71	71-76	>76		
74	<66	66-72	>72	<71	71-77	>77		
75	<66	66-73	>73	<71	71-78	>78		
76	<66	66-74	>74	<71	71-79	>79		
77	<66	66-74	>74	<71	71-79	>79		
>77	<66	66-75	>75	<71	71-80	>80		

Table 5-13: Land use Category and Metrics for Transit Noise Impact Criteria

Land Use	Land Use	Noise	Description of Land Use Category
Category	Туре	Metric, dBA	
			Land where quiet is an essential element of its intended
1	High	Outdoor	purpose. Example land uses include preserved land for
	Sensitivity	Leq(1hr)*	serenity and quiet, outdoor amphitheaters and concert
			pavilions, and national historic landmarks with
			considerable outdoor use. Recording studios and
			concert halls are also included in this category.
			This category is applicable all residential land use and
2	Residential	Outdoor Ldn	buildings where people normally sleep, such as hotels
			and hospitals.
			This category is applicable to institutional land uses
3	Institutional	Outdoor	with
		Leq(1hr)*	primarily daytime and evening use. Example land uses
			include schools, libraries, theaters, and places of
			worship where it is important to avoid interference with
			such activities as speech, meditation, and concentration
			on reading material. Places for meditation or study
			associated with cemeteries, monuments, museums,
			campgrounds, and recreational facilities are also
			included in this category.

* Leq(1hr) for the loudest hour of project-related activity during hours of noise sensitivity.

5.5 EVALUATION OF THE IMPACT: NOISE SCREENING PROCEDURES

The noise screening procedure is intended to be conservative to broadly capture the potential for impact with minimal effort. To make the procedure conservative, the project system must be assumed to be operating under relatively high-capacity conditions, which would produce more noise than normal operating conditions.

 Table 5-14: Reference Sound Exposure Level from Tract (one vehicle) (Ref:

 Error! Reference source not found.)

Source	Туре	Reference Conditions	Reference SEL (SELref), dBA
Rail Transit ar	nd Streetcars at 80 kph	At-grade, ballast, welded rail	82
Rail Transit ar	nd Streetcars at 40 kph	At-grade, ballast, welded rail	76
Transit whistle	es / warning devices	Within 1/8 mile of grade crossing	93

5.6 SOUND PRESSURE LEVEL EVALUATION AND MODELLING ASSUMPTIONS

To evaluate the project SPLs a grid 10 x 10 meters has been used.

- This calculation grid provided with little clearances (1 m) between calculation points has been chosen to obtain a more detailed noise map.
- The calculation has been carried out at 1.5 meters (average height of human ear) above ground level and to determine the height of taller buildings appropriate height of the floors were used,.
- The calculation is based on the international ISO 9613 standard "Attenuation of sound during propagation outdoors"
- The calculation has been carried out considering a wind condition favourable to the propagation of acoustic sound wave (in case any wind statistics data are defined, ISO 9613 conservatively considers a downwind situation for every direction).

• For the numerical simulation, a normal/steady operation of the sources has been assumed. In detail, the calculations consider:

- SPL of equipment at 1 m distance or otherwise specified
- Geometrical lay-out of the viaduct with the rail
- Geometrical characteristics of the sources
- Atmospheric absorption, reflection, and diffraction.

The modelled noise sources are listed in tables referenced under different scenario studies together with expected Power Level and spectrum if available.

All values are expressed in dB(A) scale. Equipment dimensional characteristics and relevant heights above ground are also reported.

Small sources, e.g. pumps and motors, have been considered as point, linear or area sources, depending on their geometrical characteristics. In a different way, large units have been simulated as radiating buildings.

Table	Fable 5-15: Model settings						
S.No	Model settings	Parameter setting/standard					
1	Calculation Standard	ISO 9613 'Acoustics – Attenuation of Sound during Propagation Outdoors – Part 2: General Calculation Method' (ISO, 1996) [6]					
2	Ground Absorption Coefficient	1: Paved Area					
3	Maximum Order of Reflection	3					
4	Reflection Loss by Obstacles and Barriers	Default: 1 dB					
5	Meteorological Data	Humidity: 70% Air Pressure: 1033 mbar Monthly Mean Temperature: 30°C					
6	Calculation Grid Size	Site-wide calculations: 1 m resolution					

5.7 ASSUMPTIONS

The following assumptions have been made for the modelling assessment:

- Equipment elevations have been based on the viaduct Layout Plot Plans and site elevation sections provided
- The noise contour plots have been calculated at height of 1.5 m.
- Ground absorption has been modelled as concrete surfaces for via duct and road surface for the ground level surface
- Calculations are as per a steady-state operation with continuous duty cycles;
- The noise prediction calculations are as per meteorological modelling Category D (neutral) classification. Class Modelling with ISO 9613 Part 2 does not consider metrological conditions such as wind and temperature inversion, however temperature and relative humidity are incorporated into the calculations.
- The environmental conditions applied in the noise model: Humidity 70%, Air Pressure 1033 mbar and Temperature 30°C which is represents the annual average climatic conditions for the Chennai area.

5.8 NOISE EMISSION SOURCES

Noise radiated from train operations and track structures generally constitute the major noise sources. Airborne noise is radiated from at-grade and elevated structures, while ground-borne noise and vibration are of primary concern in underground operations. Basic sources of wayside airborne noise are:

- Wheel / Rail Noise: Due to wheel /rail roughness
- Propulsion Equipment: Traction motors, cooling fans for TM, reduction gears etc.
- Auxiliary Equipment: Compressors, motor generators, brakes, ventilation systems, other car mounted equipment

Predicted noise levels for the project area were modelled in accordance with the Federal Transit Administration (FTA) guidelines. Predicted future noise levels in the project area were based on existing measured sound levels and future daily transit operations.

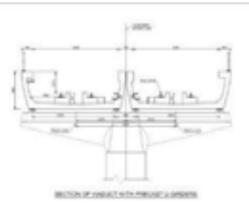
Figure 5-25: Major transit rail noise sources

5.8.1 TRAIN NOISE

The reference noise level of the proposed trains were taken from the bidding documents for the Chennai Metro Rail Project that requires suppliers of the rolling stock should comply with the following specification for the exterior noise level for elevated and at-grade (free field):

- When measured at 7.5m from the center of the track along the train, the equivalent continuous noise level (LpAeq20sec) measured over an observation period of 5 sec I free field conditions as specified in ISO 3095 while a train is stationary all auxiliary equipment operating simultaneously at maximum capacity will not exceed 67 dBA at 1.2 meters above the rail
- When measured at 7.5m from the center of the track, the equivalent continuous noise level (LpAeq20sec) measured while a train running in the free field conditions, specifies in the ISO3095, is passing will not exceed 82 dB(A), at a stabilized speed of 75 kmph

Table 5-16: FTA/Federal Railroad Administration Input Values for Noise Model


Detail	Train
Reference SEL at 15m	
Propulsion, dB(A)	86
Wheel Rail, dB(A)	95

Aerodynamic dB(A) 2/	0
Speed Coefficient, K for Power Units	0
Speed Coefficient, K forRail Cars	20
Reference heightsPropulsion Wheel-	0.61
Rail (m)	0.30
Train Speed (km/h)	34-60
Number of Propulsion	2
Number of Cars per train	6
Total Length (m)	126.3 (6 x 21.05)

5.8.2 U-GIRDER DETAILS

The Figure below provides the typical cross-section of the precast U-girder designed for the project. The height of the parapet walls above the railhead is considered in this study that defines the initial noise wall design scenario and taken at 1.072m.

Figure 5-26: Details of the Pre-Cast U-Girders Highlighting the Height of the Parapet Wallabove the Railhead

5.8.2.1 GROUND ELEVATION AND DIGITAL GROUND MODEL

The study team was not able to secure more detailed ground elevation data within the 2500 meter screening distance and defaulted to use the Open Street Map elevation data and building input. The use of the OSM elevation data is a sufficient characterization of the general flat terrain of Chennai, however, it does not capture the elevated roads that runs along the proposed metro.

5.8.2.2 RAIL ELEVATION

The rail elevations from the engineering vertical profiles were used to establish the absolute and relative height of the railway every 20 meters.

5.8.2.3 BUILDING LOCATION AND HEIGHTS

Building locations were taken from Open Street Map and Google Maps while the building heights were extrapolated from the number of floors as observed from field survey.

5.8.2.4 NOISE MODEL

Using SoundPlan 8.2, the calculation options that were selected for this project provided a balance between accuracy of noise assessment and time to complete the computation. As mentioned earlier, in addition to the FTA/FRA-HSGT (2005) standards that were applied, the following options were adopted:

- Assessment: Day, Night, Ldn
- Emission time slices: 7-22, 22-7
- Reflection order: 3
- Maximum Search Radius: 1,500 km
- Maximum reflection distance: 200m
- Grid noise map spacing: 10 m

5.8.3 EXISTING MITIGATION MEASURE

5.8.3.1 SOURCE TREATMENT:

The most effective noise mitigation treatments are applied at the noise source. This is the preferred approach to mitigation when possible. Common source treatments and their estimated acoustical effectiveness. Due to insufficient data on the type of rail and its specification, the listed items were not verified against the train specifications.

Table 5-17: noise reduction during source treatment					
Mitigation Measure	Effectiveness				
Stringent Vehicle & Equipment	Stringent Vehicle & Equipment Noise Specifications				
Operational Restrictions		Varied			
Resilient or Damped Wheels	For rolling noise on tangent	2 dB			
	track:				
	For wheel squeal on curved	10-20 dB			
	track:				
Vehicle Skirts		6-10 dB			
Undercar Absorption		5 dB			
Quiet Fan Design and Fan Place	ement	Varied			
Preventative Maintenance on R	ail Systems	Varied			
Turn Radii Greater than 1000 f	Avoids Squeal				
Rail Lubrication on Sharp Curv	Reduces Squeal				
Movable-Point Frogs (reduce ra	Reduces Impact Noise				
Engine Compartment Treatmen	nts	6-10 dB			

5.8.3.2 STRINGENT VEHICLE AND EQUIPMENT NOISE SPECIFICATIONS

noise control during the specification and design of the metro rail based on the site conditions. By developing and enforcing stringent but achievable noise specifications.

5.8.3.3 OPERATIONAL RESTRICTIONS

lowering of speed, the reduction of nighttime (10 p.m. to 7 a.m.) operations, and reduction of warning horns and signals.

Speed reduction – Because noise from most transit vehicles is dependent on speed, a reduction of speed results in lower noise levels. The effect can be considerable.

Reduction of nighttime operations – Complete elimination of nighttime operations has a strong effect on reducing the nighttime values.

Reduction of warning horns and signals – Minimizing or eliminating horns and other warning signals at gate crossings can reduce noise impact

5.8.3.4 WHEEL TREATMENTS (RAIL) -

A major source of noise from steel-wheel and steel-rail systems is the wheel/rail interaction that can produce three distinctive sounds: roar, impact, and squeal.

Roar is the rolling noise caused by small-scale roughness on the wheel tread and rail running surface.

Impacts are caused by discontinuities in the running surface of the rail or by a flat spot on the wheels.

Squeal occurs when a steel-wheel tread or its flange rubs across the rail, resulting in resonant vibrations in the wheel that creates a screeching sound. Various wheel designs and other mitigation measures exist to reduce the noise from each of these three mechanisms.

Resilient wheels – Resilient wheels are effective in eliminating wheel squeal on tight turns with reductions of 10 to 20 dB in the high- frequency range where squeal noise occurs.

Damped wheels – Damped wheels, like resilient wheels, are effective in eliminating wheel squeal on tight turns with reductions of 5 to 15 dB in the high-frequency range where squeal occurs. Rolling noise is also slightly reduced by approximately 2 dB on tangent track. This treatment involves attaching vibration absorbers to standard steel wheels.

Preventative Maintenance (Rail) – Preventative maintenance is the best strategy to minimize rail and wheel deterioration.

Spin-slide control systems – Similar to anti-locking brake systems(ABS) on automobiles, spin-slide control systems reduce the incidence of wheel flats, a major contributor of impact noise. Trains with smooth wheel treads can be up to 20 dB quieter than those with wheel flats. To be effective, the anti-locking feature should be in operation during all braking phases, including emergency braking. Wheel flats are more likely to occur during emergency braking than during dynamic braking.

Maintenance program – Clearly defined maintenance specifications should be developed during design phase of the project. The specifications should define rail and wheel profiles, include detailed guidance for grinding, rail-wheel interface, periodic monitoring of wheel and rail condition and compliance verification.

5.8.3.5 PATH TREATMENTS -

When noise mitigation treatments cannot be applied at the noise source or additional mitigation is required after treating the source, the next preferred placement of noise mitigation is along the noise propagation path between the source and receiver. Common path treatments and their estimated acoustical effectiveness are included in Table below.

Table 5-16. Noise Miligation Measures – Latin Treatments					
Mitigation Measure	Effectiveness				
Noise barriers close to vehicles	6-15 dB				
Noise barriers at row line	3-15 dB				
Alteration of horizontal & vertical alignments	Varied				
Wayside horns	Varied				
Acquisition of buffer zones	Varied				
Ballast on at-grade guideway	3 dB				
Ballast on aerial guideway	5 dB				
Resilient track support on aerial guideway	Varied				
Vegetation and trees	Varied				

Table 5-18: Noise Mitigation Measures – Path Treatments

1.4.1.1 NOISE BARRIERS

All barrier effectiveness can be increased by as much as 5 dB by applying sound-absorbing material to the inner surface of the barrier. The length of the barrier wall is also important to its effectiveness. The barrier must be long enough to block noise from a moving train along most of its visible path. This is necessary so that train noise from beyond the ends of the barrier will not severely compromise noise-barrier performance at noise-sensitive locations. The barrier length can be refined in the engineering phase, closely examining the predicted sound level exceedances at specific receivers, site geometries, and the contribution of barrier flanking noise, then adjusting the length as appropriate.

Noise barriers can be made of any outdoor weather-resistant solid material that meets the minimum sound transmission loss required by the project. Materials that are commonly used for noise barriers include 16-gauge steel, 1-inch thick plywood, and any reasonable thickness of concrete. Typically, a surface density of 0.3 kg/cm2 shall be applied. Areas with strong winds may require more stringent structural requirements. It is critical to seal any gaps between barrier panels and between the barrier and the ground or elevated guideway deck for maximum performance.

It is to be noted that if the barriers are not designed and sited carefully, they can reduce visibility of trains for pedestrians and motorists, which causes safety concerns. It is important to consult with safety experts in choosing and siting a noise barrier.

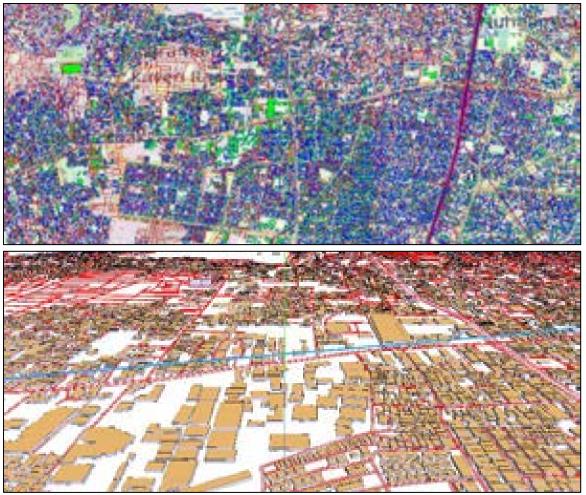
1.4.1.2 GROUND ABSORPTION - BALLAST ON GUIDEWAYS -

Propagation of noise over ground is affected by whether the ground surface is absorptive or reflective. Noise from vehicles on the surface is strongly affected by the character of the ground in the immediate vicinity of the vehicle. Ground at the side of the rail has a substantial effect on the propagation of noise to greater distance. Guideways for rail systems can be either reflective or absorptive, depending on whether they are concrete or ballast. Ballast on a guideway can reduce train noise 3 dB at-grade and up to 5 dB on an aerial structure.

5.8.4 NOISE MODEL

SoundPlan 8.2, the calculation options that were selected for this project provided a balance between accuracy of noise assessment and time to complete the computation. As mentioned earlier, in addition to the FTA/FRA-HSGT (2005) standards that were applied, the following options were adopted:

5.9 ASSESSMENT FINDINGS


The summary of the single point noise calculations for Phase 2 for operating years 2024, 2031, and 2041 are provided in the succeeding Tables. Similar in the construction noise assessment, The key findings and recommendations are as follow:

• For the CR-4, the project rail noise was predominantly less than the GOI noise Standards and was identified to be less than the ambient noise. The designed noise mitigation wall height is adequate to ensure noise level increase is kept within the 3 dB(A). No residual noise impacts are anticipated, and no further mitigation is required.

• The noise assessment was carried out with the following Particulars

Corridor 4 Gauge(Nominal)	:	1435 MM								
Route Length:		26.8km								
		• 10.3 km Underground – HR 7 & 8								
		• 16.5 km Elevated – HR 1, 2, 3, 4, 5 & 6								
Speed:										
Design Speed		80 kmph								
Train Operation Plan:										
Particulars	2055 (Max)									
Trains/hour (3 Car, 6 Car)	15									
Head Way (Second)	240									

Figure 5-27: Sound Plan with input of buildings and Roads

5.10 OPERATION PHASE- SENSITIVE RECEPTORS

5.10.1 VIJAYA HOSPITAL

The Day (7.00 A.M - 10 P.M) and Night (10.00 P.M - 7.00 A.M) Noise contour map for the operation phase (Vadapalani – Saligramam) is shown in below figures.

Figure 5-28: Day time Noise contour map for Operation phase (Vadapalani – Saligramam).

Figure 5-29: Night time Noise contour map for Operation phase (Vadapalani – Saligramam).

Eco Services India Pvt. Ltd., Chennai – 600032

Figure 5-30: Vijaya Hospital- Day time - Noise contour map for Operation phase after Mitigation

Figure 5-31: Vijaya Hospital- Night time - Noise contour map for Operation phase after Mitigation

5.10.2 NARAYANAN E-TECHNO SCHOOL

The Day (7.00 A.M – 10 P.M) and Night (10.00 P.M – 7.00 A.M) Noise contour map for the operation phase (Alwar Thirunagar – Valasarwakkam) is shown in **Figure 5-32** and **Figure 5-33** respectively.

Figure 5-32: Day time Noise contour map for Operation phase (Alwar Thirunagar – Valasarwakkam).

Figure 5-33: Night time Noise contour map for Operation phase (Alwar Thirunagar – Valasarwakkam).

Figure 5-34: Narayanan E-Techno School- Day time - Noise contour map for Operation phase after Mitigation

Figure 5-35: Narayanan E-Techno School- Night time- Noise contour map for Operation phase after Mitigation

5.10.3 THE HOLY CROSS MATRIC HR.SEC.SCHOOL

The Day (7.00 A.M – 10 P.M) and Night (10.00 P.M – 7.00 A.M) Noise contour map for the operation phase (Valasaravakkam – Karambakkam) is shown in **Figure 5-36** and **Figure 5-37** respectively.

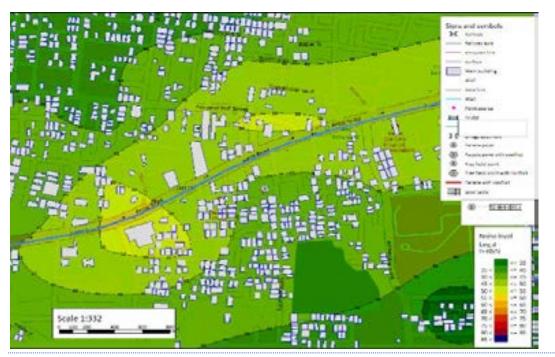


Figure 5-36: Day time Noise contour map for Operation phase (Valasaravakkam – Karambakkam).

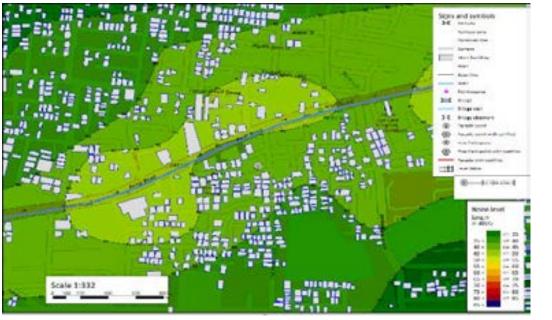


Figure 5-37: Night time Noise contour map for Operation phase (Valasaravakkam – Karambakkam).

Figure 5-38: The Holy Cross Matric Hr.Sec.School- Day time - Noise contour map for Operation phase after Mitigation

Figure 5-39: The Holy Cross Matric Hr.Sec.School- Night time- Noise contour map for Operation phase after Mitigation

5.10.4 POONAMALLEE GOVERNMENT HOSPITAL

The Day (7.00 A.M - 10 P.M) and Night (10.00 P.M - 7.00 A.M) Noise contour map for the operation phase (Mullai Thottam - Poonamallee Bus Terminus) is shown in **Figure 5-40** and **Figure 5-41** respectively.

Figure 5-40: Day time Noise contour map for Operation phase (Mullai Thottam – Poonamallee Bus Terminus).

Figure 5-41: Night time Noise contour map for Operation phase (Mullai Thottam – Poonamallee Bus Terminus).

Figure 5-42: Poonamallee Government Hospital- Day time - Noise contour map for Operation phase after Mitigation

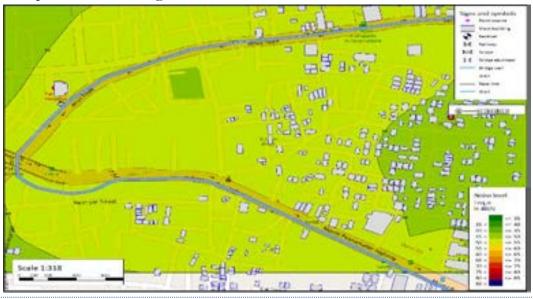


Figure 5-43: Poonamallee Government Hospital- Night time- Noise contour map for Operation phase after Mitigation

5.10.5 SRI RAMACHANDRA DENTAL HOSPITAL

The Day (7.00 A.M - 10 P.M) and Night (10.00 P.M - 7.00 A.M) Noise contour map for the operation phase (Chennai Bypass Crossing - Ramachandra Hospital) is shown in **Figure 5-44** and **Figure 5-45** respectively.

Figure 5-44: Day time Noise contour map for Operation phase (Chennai Bypass Crossing – Ramchandra Hospital).

Figure 5-45: Day time Noise contour map for Operation phase (Chennai Bypass Crossing – Ramchandra Hospital).

Figure 5-46: Sri Ramachandra Dental Hospital- Day time - Noise contour map for Operation phase after Mitigation

Figure 5-47: Sri Ramachandra Dental Hospital - Day time - Noise contour map for Operation phase after Mitigation

5.11 SUMMARY

The Sound to be generated during operation phase was predicted using SoundPLAN v8.2and the predicted noise levels were compared with the baseline values and the results are summarized in **Table 5-19**.

	Name of the Sensitive Receptors	Distance (m)	Operation										
SI.N o			Baseline		Without Barrier					With Barrier			
			Noise levels db(A)		Predicted Noise levels db(A)		Final Noise		Remarks	Leq,d	L _{eq} ,n	Final Noise Level	Status
			L _{eq} ,d	L _{eq} ,n	L _{eq} ,d	L _{eq} ,n	Leq,d	Leq,n					
1	St. Bede's Anglo Indian Hr. Sec. School	125	71	69	Note 1	Note 1	71	69	No-Impact	Note 1	Note 1	71	No-Impact
2	Rosary Church	85	66	64	Note 1	Note 1	66	64	No-Impact	Note 1	Note 1	66	No-Impact
3	Luz Church	36	74	74	Note 1	Note 1	74	74	No-Impact	Note 1	Note 1	74	No-Impact
4	SIET College	240	72	66	Note 1	Note 1	72	66	No-Impact	Note 1	Note 1	72	No-Impact
5	Meenakshi college for women	16	74	55	Note 1	Note 1	74	55	No-Impact	Note 1	Note 1	74	No-Impact
6	Vijaya Hospital	200	69	64	60	59	70	65	No-Impact	56	55	70	No-Impact
7	Narayanan E-Tecno School	82	58	52	51	50	58	54	No-Impact	36	35	58	No-Impact
8	The Holy Cross Matric Hr. Sec. School	17	63	57	49	46	63	57	No-Impact	35	34	63	No-Impact
9	Government Hospital	18	63	56	67	66	59	58	No-Impact	51	51	63	No-Impact
10	Sri Ramachandra Dental College	132	72	66	56	54	72	66	No-Impact	52	51	72	No-Impact

Table 5-19 Summary of Noise level db(A) during operation phase

Note:

1. Underground rail line, therefore, no operational impact is expected

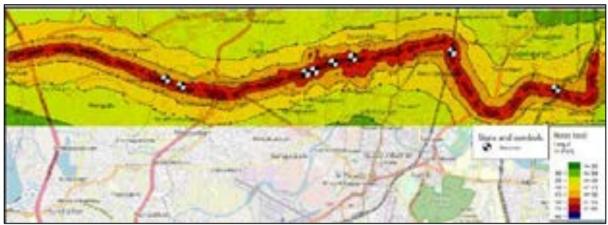
2. Kindly refer recommendations for noise attenuation given in Chapter 5.

3. Noise contours for underground stations cannot be made however prediction from modeling is given in the table.

Table 5-20: Operation	Noise	– Dayt	ime wit	th and	withou	t mitig	ation n	leasure	e of wa							
Location ID	HI	R-1	HR	R-2	H	R-3	HI	R-4	HI	R-5	HF	R-6	HI	R- 7	HF	R-8
Ambient Noise - day	63	5.4	64	.9	67	7.1	67	.2	68	3.3	61	.6	62	2.7	64	.2
(leq – Day, dBA)																
Floor	Ν	Y	Ν	Y	Ν	Y	Ν	Y	Ν	Y	Ν	Y	Ν	Y	Ν	Y
G	53.9	44.1	56.2	45.6	58.9	47.4	59.4	47.9	57.2	46.3	54.7	44.3	56.3	49.3	53.1	44.2
F2	54.7	43.2	56.9	44.9	59.5	46.9	60.2	47.5	57.9	45.6	55.6	43.4	58	49.2	54	43.2
F3	55.6	42.2	57.6	44.2	60	46.3	60.7	47	58.6	44.9	56.4	42.5	61.2	49.1	54.8	42.3
F4	56.4	41.4	58.3	43.5	60.6	45.8	61.2	46.6	59.3	44.2	57.2	41.6	64	49		
F5	56.5	41.2	58.4	43.4	60.8	45.6	61.5	46.4	59.4	44.1	57.3	41.4				
F6	56.6	41.2	58.4	43.4			61.5	46.4	59.4	44.1	57.3	41.5				
F7	56.6	41.2	58.4	43.4			61.4	46.4	59.4	44.1	57.4	41.5				
F8	56.5	41.2	58.4	43.4			61.4	46.3			56.9	41.5				
F9	56.5	41.2	58.3	43.4			61.3	46.2			56.7	41.5				
F10	56.5	41.2	58.3	43.3			61.1	46.1			56.7	41.5				
F11	56.5	41.2					61	45.9			56.7	41.5				
F12	56.2	41.2					60.8	46.4			56.7	41.5				
F13	56.2	41.1					60.6	47.3			56.6	41.5				
F14	56.1	41.1									56.6	41.4				
F15	56.1	41.1									56.6	41.4				
F16	56.1	41.1									56.6	41.4				

Table 5-20. O	neration Noise	– Davtime with	and without	mitigation	measure of wall
1 able 5-20. O	peration noise	- Daytime with	i and without	miligation	measure or wall

• N- without mitigation measure


• Y- with mitigation measure of wall

Location ID	HI	R-1	HI	R-2	HI	R-3	HI	R-4	HI	R-5	HI	R- 6	HI	R- 7	HI	R-8
Ambient Noise - Night	59	.7	58	3.3	63	3.5	63	.2	61	.5	5	8	54	.3	55	5.6
(leq – Night, dBA)																
Floor	Ν	Y	Ν	Y	Ν	Y	Ν	Y	Ν	Y	Ν	Y	Ν	Y	Ν	Y
G	44.3	34.5	46.6	36.1	49.3	37.9	49.8	38.4	47.7	36.8	45.2	34.8	46.8	39.8	43.6	34.6
F2	45.2	33.6	47.3	35.3	49.9	37.4	50.6	37.9	48.4	36	46	33.9	48.5	39.7	44.4	33.7
F3	46	32.7	48.1	34.6	50.5	36.8	51.2	37.5	49.1	35.3	46.9	32.9	51.6	39.6	45.3	32.7
F4	46.9	31.8	48.7	33.9	51.1	36.3	51.7	37	49.7	34.7	47.7	32	54.4	39.5		
F5	47	31.7	48.8	33.8	51.2	36.1	51.9	36.8	49.8	34.6	47.8	31.9				
F6	47	31.7	48.8	33.8			51.9	36.9	49.9	34.6	47.8	32				
F7	47	31.7	48.8	33.8			51.9	36.9	49.9	34.6	47.8	32				
F8	47	31.7	48.8	33.8			51.8	36.8			47.4	32				
F9	47	31.7	48.8	33.8			51.7	36.7			47.2	32				
F10	47	31.7	48.8	33.8			51.6	36.6			47.2	32				
F11	46.9	31.6					51.5	36.4			47.1	32				
F12	46.7	31.6					51.3	36.9			47.1	31.9				
F13	46.6	31.6					51.1	37.8			47.1	31.9				
F14	46.6	31.6									47.1	31.9				
F15	46.6	31.6									47.1	31.8				
F16	46.5	31.5									47	31.8				

Table 5-21: Operation Noise – Daytime with and without mitigation measure of wall

• N- without mitigation measure

• Y- with mitigation measure of wall

Figure 5-48: Operation Noise at overall - Day Time – No Mitigation

Figure 5-49: Operation Noise at overall – Night Time – No Mitigation

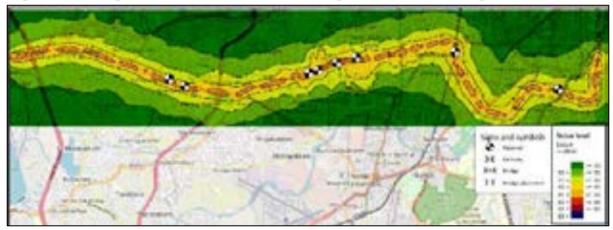
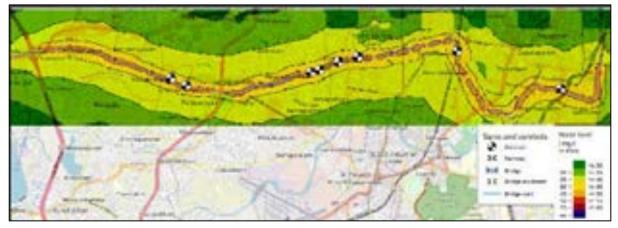



Figure 5-50: Operation Noise at overall - Day Time – With Mitigation Wall

Updated Environmental Impact Assessment

April 2024 Revision 1

India: Chennai Metro Rail Investment Project Corridor 4

Annexure 12-3

Prepared by the Chennai Metro Rail Limited (CMRL) for the Asian Development Bank.

Figure 5-51: Operation Noise at overall – Night Time – With Mitigation Wall

5.11.1 OPERATION IMPACT ANALYSIS FOR HR-1 AND HR-2

Table 5-22: Operation Noise- HR-1 and HR-2- Analysis – Daytime

Location ID	H	[R-1		Final Noise (BG + Y)	Impa ct	Н	[R-2		Final Noise (BG + Y)	Impa ct
Ambient Noise - day (leq dBA)	6	53.4		63	Ν	6	64.9		65	Ν
Floor	Ambient	N	Y	Final Noise (BG + Y)		Ambient	N	Y	Final Noise (BG + Y)	
G	57.3	53.9	44.1	58	N	61.9	56.2	45.6	62	N
F2	57	54.7	43.2	57	N	65.1	56.9	44.9	62	N
F3	56.7	55.6	42.2	57	N	66.2	57.6	44.2	65	N
F4	56.8	56.4	41.4	57	N	68.5	58.3	43.5	66	N
F5	57.1	56.5	41.2	57	N	69.4	58.4	43.4	69	N
F6	56.9	56.6	41.2	57	Ν	69.4	58.4	43.4	69	N
F7	56.6	56.6	41.2	57	N	67.6	58.4	43.4	69	N
F8	56.1	56.5	41.2	56	Ν	69.7	58.4	43.4	68	N
F9	56.5	56.5	41.2	57	Ν	68	58.3	43.4	70	N
F10	56.9	56.5	41.2	57	Ν					
F11	56.8	56.5	41.2	57	N					
F12	56.8	56.2	41.2	57	N					
F13	57.1	56.2	41.1	57	N					
F14	56.6	56.1	41.1	57	N					
F15	56.6	56.1	41.1	57	N					
F16	56.9	56.1	41.1	57	N					

Table 5-23: Operation Noise- HR-1 and HR-2- Analysis – Daytime

Location ID Ambient Noise - Night	Η	IR-1 53.4		Final Noise (BG + Y) 63	Impact N	Н	IR-2		Final Noise (BG + Y) 65	Impact N
(leq dBA) Floor	Ambient	N	Y	Final Noise (BG + Y)		Ambient	N	Y	Final Noise (BG + Y)	
G	57.3	44.3	34.5	57	N	61.9	46.6	36.1	#REF!	#REF!
F2	57	45.2	33.6	57	N	65.1	47.3	35.3	62	Ν
F3	56.7	46	32.7	57	Ν	66.2	48.1	34.6	65	Ν
F 4	56.8	46.9	31.8	57	Ν	68.5	48.7	33.9	66	Ν
F5	57.1	47	31.7	57	N	69.4	48.8	33.8	69	Ν
F6	56.9	47	31.7	57	Ν	69.4	48.8	33.8	69	Ν
F 7	56.6	47	31.7	57	Ν	67.6	48.8	33.8	69	Ν
F8	56.1	47	31.7	56	Ν	69.7	48.8	33.8	68	Ν
F9	56.5	47	31.7	57	N	68	48.8	33.8	70	Ν
F10	56.9	47	31.7	57	Ν					
F11	56.8	46.9	31.6	57	Ν					
F12	56.8	46.7	31.6	57	Ν					
F13	57.1	46.6	31.6	57	Ν					
F14	56.6	46.6	31.6	57	Ν					
F15	56.6	46.6	31.6	57	N					
F16	56.9	46.5	31.5	57	N					

Note:

• N- without mitigation measure

• Y- with mitigation measure of wall

HR- 1 and HR-2 showed no Impact as per the criteria specified in Table 5-12: Noise Levels Defining Impact for Transit Projects

Figure 5-52: Operation Noise at Receiver Location HR-1 and HR-2- Day Time – No Mitigation

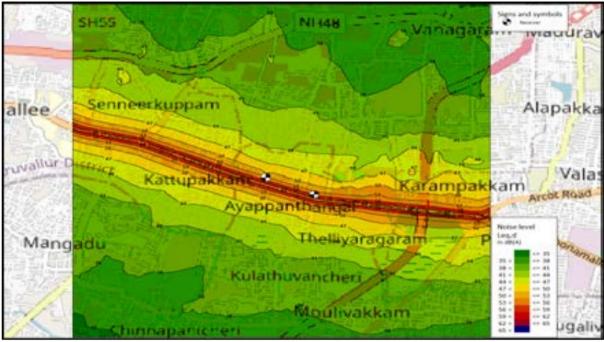
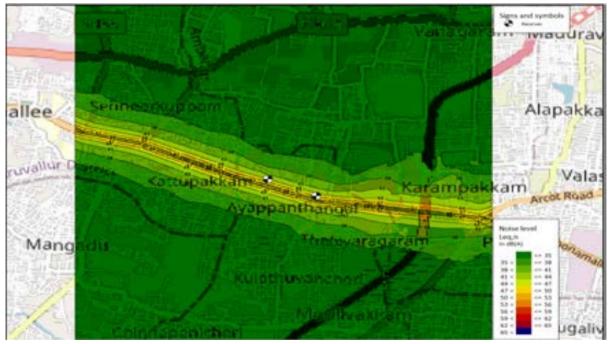



Figure 5-53: Operation Noise at Receiver Location HR-1 and HR-2- Night Time- No Mitigation

5.11.2 OPERATION IMPACT ANALYSIS FOR HR-3, 4, 5 & 6 Table 5-24: Operation Noise- HR-3 and HR-4- Analysis – Daytime

1 able 5-24: C	4: Operation Noise- HR-3 and HR-4- Analysis – Daytime Final									
Location ID	Н	[R-3		Final Noise (BG + Y)	Impact	Н	[R-4		Final Noise (BG + Y)	Impact
Ambient Noise - day (leq dBA)	6	57.1		67	Ν	6	57.2		67	Ν
Floor	Ambient	N	Y	Final Noise (BG + Y)		Ambient	N	Y	Final Noise (BG + Y)	
G	70.2	58.9	47.4	70	N	62.3	59.4	47.9	62	Ν
F2	68.4	59.5	46.9	68	N	63.1	60.2	47.5	63	Ν
F3	69.1	60	46.3	69	N	62.7	60.7	47	63	Ν
F 4	70.3	60.6	45.8	70	N	64.2	61.2	46.6	64	Ν
F5						63.6	61.5	46.4	64	Ν
F6						62.1	61.5	46.4	62	Ν
F7						62.6	61.4	46.4	63	Ν
F8						63.7	61.4	46.3	64	Ν
F9						62.1	61.3	46.2	62	Ν
F10						62	61.1	46.1	62	N
F11						62.3	61	45.9	62	Ν
F12						61.5	60.8	46.4	62	Ν
F13						61.8	60.6	47.3	62	Ν

 Table 5-25: Operation Noise- HR-3 and HR-4- Analysis – Night

Location ID	Н	[R-3		Final Noise (BG + Y)	Imp act		HR-4		Final Noise (BG + Y)	Impact
Ambient Noise - Night (leq dBA)	e	53.5		64	N		63.2		63	Ν
Floor	Ambient	N	Y	Final Noise (BG + Y)		Ambi ent	N	Y	Final Noise (BG + Y)	
G	70.2	49.3	37.9	70	N	62.3	49.8	38.4	62	Ν
F2	68.4	49.9	37.4	68	N	63.1	50.6	37.9	63	Ν
F3	69.1	50.5	36.8	69	N	62.7	51.2	37.5	63	Ν
F4	70.3	51.1	36.3	70	Ν	64.2	51.7	37	64	Ν
F5						63.6	51.9	36.8	64	N
F6						62.1	51.9	36.9	62	N
F 7						62.6	51.9	36.9	63	N

Eco Services India Pvt. Ltd., Chennai – 600032

F8			63.7	51.8	36.8	64	Ν
F9			62.1	51.7	36.7	62	Ν
F10			62	51.6	36.6	62	Ν
F11			62.3	51.5	36.4	62	Ν
F12			61.5	51.3	36.9	62	Ν
F13			61.8	51.1	37.8	62	N

Table 5-26: Operation Noise- HR-5 and HR-6- Analysis – Day

Location ID	н	R-5		Final Noise (BG + Y)	Impact	н	R-6		Final Noise (BG + Y)	Impact
Ambient Noise - day (leq dBA)	6	8.3		68	Ν	6	51.6		62	Ν
Floor	Ambient	N	Y	Final Noise (BG + Y)		Ambient	N	Y	Final Noise (BG + Y)	
G	69.2	57.2	46.3	69	N	61.9	54.7	44.3	62	N
F2	68.5	57.9	45.6	69	N	60.4	55.6	43.4	60	N
F3	67	58.6	44.9	67	Ν	59.6	56.4	42.5	60	N
F4	67.5	59.3	44.2	68	Ν	59.4	57.2	41.6	59	N
F5	66.8	59.4	44.1	67	Ν	60	57.3	41.4	60	Ν
F6	66.4	59.4	44.1	66	Ν	60.7	57.3	41.5	61	Ν
F7	67.1	59.4	44.1	67	Ν	60.9	57.4	41.5	61	Ν
F8						59.5	56.9	41.5	60	Ν
F9						62.4	56.7	41.5	62	Ν
F10						64.7	56.7	41.5	65	Ν
F11						64.9	56.7	41.5	65	Ν
F12						65.6	56.7	41.5	66	Ν
F13						62.9	56.6	41.5	63	Ν
F14						66	56.6	41.4	66	N
F15						65.8	56.6	41.4	66	Ν
F16						64.1	56.6	41.4	64	N

Table 5-27: 0	Jperatio	on Noise	- HK-:	and HR-6	- Ana	$\frac{1}{1}$	ght			
Location ID		HR-5		Final Noise (BG + Y)	Imp act	Η	IR-6		Final Noise (BG + Y)	Impact
Ambient Noise - Night (leq dBA)		61.5		62	N		58		58	Ν
Floor	Ambie nt	Ν	Y	Final Noise (BG + Y)		Ambient	N	Y	Final Noise (BG + Y)	
G	69.2	47.7	36.8	69	Ν	61.9	45.2	34.8	62	Ν
F2	68.5	48.4	36	69	Ν	60.4	46	33.9	60	Ν
F3	67	49.1	35.3	67	N	59.6	46.9	32.9	60	Ν
F4	67.5	49.7	34.7	68	N	59.4	47.7	32	59	Ν
F5	66.8	49.8	34.6	67	Ν	60	47.8	31.9	60	Ν
F6	66.4	49.9	34.6	66	Ν	60.7	47.8	32	61	Ν
F7	67.1	49.9	34.6	67	N	60.9	47.8	32	61	N
F8						59.5	47.4	32	60	Ν
F9						62.4	47.2	32	62	Ν
F10						64.7	47.2	32	65	Ν
F11						64.9	47.1	32	65	Ν
F12						65.6	47.1	31.9	66	Ν
F13						62.9	47.1	31.9	63	N
F14						66	47.1	31.9	66	Ν
F15						65.8	47.1	31.8	66	Ν
F16						64.1	47	31.8	64	Ν

Table 5-27: Operation Noise- HR-5 and HR-6- Analysis – Night

Note:

• N- without mitigation measure

• Y- with mitigation measure of wall

HR- 3 4, 5 and 6 showed no Impact as per the criteria specified in Table 5-12: Noise Levels Defining Impact for Transit Projects

Figure 5-54: Operation Noise at Receiver Location HR-3, 4, 5 & 6 – Day Time-No Mitigation

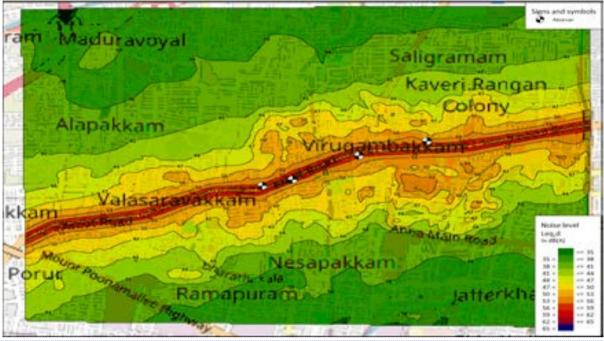


Figure 5-55: Operation Noise at Receiver Location HR-3, 4, 5 & 6 – Night Time-No Mitigation

5.11.3 OPERATION IMPACT ANALYSIS FOR HR-7 AND HR-8

There would be no operational impact on HR-7 and 8 as the line would be underground.

Figure 5-56: Operation Noise at Receiver Location HR-7– Day Time- No Mitigation

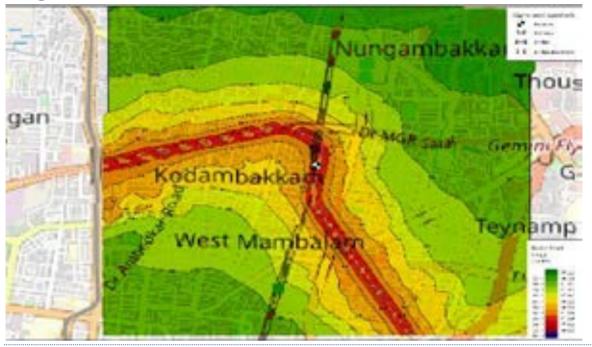


Figure 5-57: Operation Noise at Receiver Location HR-7– Night Time- No Mitigation

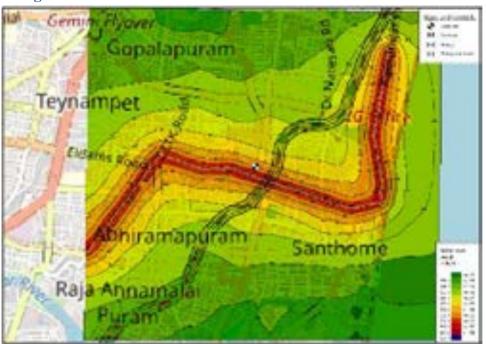
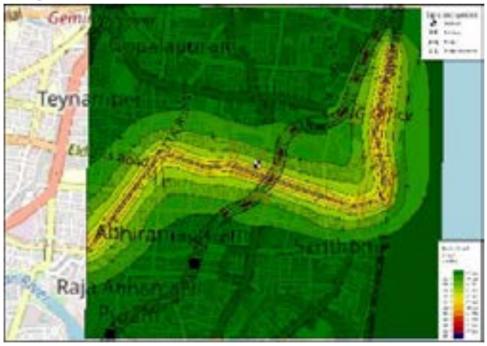
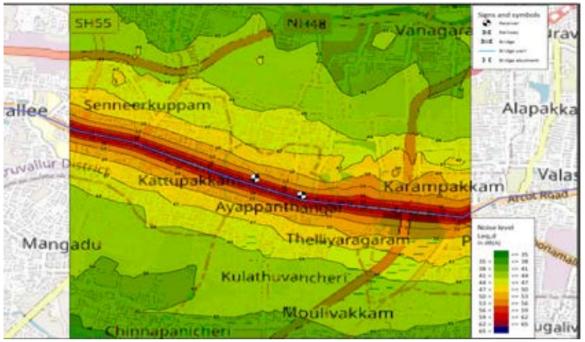




Figure 5-58: Operation Noise at Receiver Location HR-8– Day Time- No Mitigation

Figure 5-59: Operation Noise at Receiver Location HR-8– Night Time- No Mitigation

Figure 5-60: Operation Noise at Receiver Location HR-1 and HR-2- Day Time – With Mitigation Wall

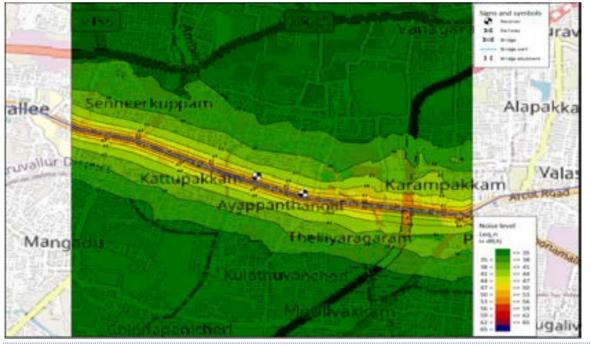
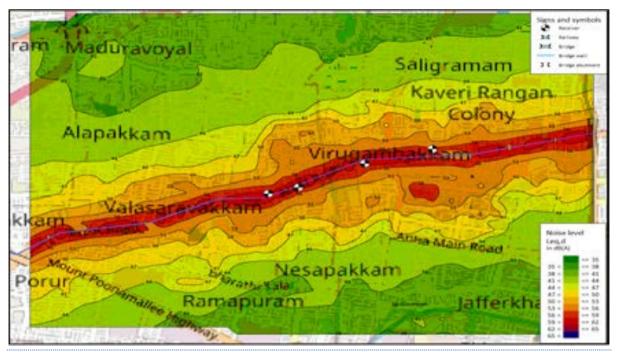
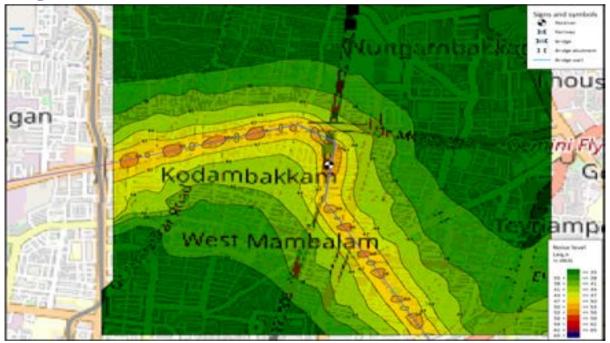


Figure 5-62: Operation Noise at Receiver Location HR-3, 4, 5 & 6 – Day Time-With Mitigation Wall




Figure 5-63: Operation Noise at Receiver Location HR-3, 4, 5 & 6 – Night Time-With Mitigation Wall

gan Kodambakkan West Mambalan West Mambalan

Figure 5-64: Operation Noise at Receiver Location HR-7– Day Time- With Mitigation Wall

Figure 5-65: Operation Noise at Receiver Location HR-7– Night Time- With Mitigation Wall

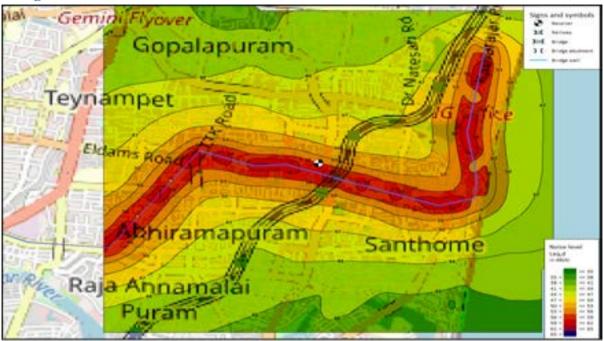
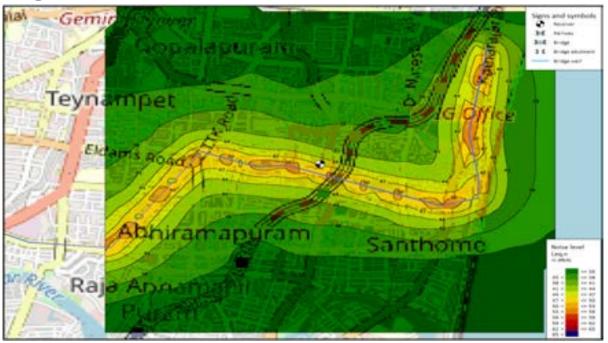



Figure 5-66: Operation Noise at Receiver Location HR-8– Day Time- With Mitigation Wall

Figure 5-67: Operation Noise at Receiver Location HR-8– Night Time- With Mitigation Wall

6 OPERATION PHASE MITIGATION MEASURES

In addition to the structural and engineer practice measures to control noise, good communication with affected communities is often the most effective way to manage potential operational noise impacts. All noise complaints should be effectively recorded, investigated, and addressed.

In addition, the Contractor will observe general good working practices including the following which are particularly relevant to rail operation:

- Provision of noise barriers. Specifications for installation of noise protection devices clearly indicating the location, design and material, and also provide for future maintenance requirements
- Environmental specifications for contractors should cover the required safeguards during the design and construction stage

Note that noise barriers are the only form of mitigation available in a General Noise Assessment. The other mitigation measures are available for a Detailed Noise Analysis with details on the actual structural and complete site assessment studies during the finalization of the design stage. The approximate noise barrier lengths and locations based on the FTA guideline is provided below. It was identified that the barrier of 3m is found to be appropriate and would reduce the impact. In order to identify the height of the common barrier, the maximum ambient noise recorded at HR- 4 which recorded 67.2 dBA and 63.2 dBA during daytime and night respectively.

 Table 6-1: Barrier wall height assessment – mitigation measure

				Noise As	sessme	nt Mode				
Data Insert	E E	Day	Night				Results			
1.Noise Criteria		(6-22)	(22-6)			Nois	e at Rec	-		
Existing Noise Exposure Leg(day/nigth		67	64	Measure	Or	ne Type Tra			Data I	nsert
Project Track Status:	f					day	night	day	night	
Project Noise Level Criter	ria,dBA:	65	61.2	DB Tab-1	Without	Barrier		55.0	45.0	55.0
2.Reference SEL at 50 feet/50mph				•	L _{eq(Total)}	74.7	64.3	55.0	45.0	55.0
Users Value: dBase V	/alue:				Impact:	Impact!		55.0	45.0	55.0
Locomotive 96 Locomotive	3	90		DB Tab-2	L _{dn:}	74.6				
Vehicles 86 Vehicles	no			DB Tab-2		Barrier				
Horn 100 Horn	no			DB Tab-2	L _{eq(Total)}	61.0	50.6			
3.Computation of Legand L dn at 50	0 feet					No Impact				
V-average volume of day(7-22)	99				L _{dn:}	60.9				
train(per hour): night(22-7)	9					otal Proje	ct Noise:	59.8	49.8	59.8
3.1 Locomotives L _{eaL} (h)		82.2	71.7			ject Noise			o Impa	
N _{loc} -average number per train:	6					Noise with		67.8	64.2	71.0
T - average throttle setting of								••	•	
diesel-electric locomotive:	3			1		Data Inser	t		Equa	l to
3.2 Rail Vehicles L _{eaC} (h)					S-t	rain speed,		80		mph
N _{cars} -average number of car/train:	6					tance to rec		85	278.9	•
Track adjustments:	3	4	4	DB Tab-3	Heigr	t of Receive	er H _r , m:	1	3.3	feet
Track curving adjustments:	no									
users adjustment:	0									
3.3 Warning horns L _{eqH} (h) 3.4 COMBINED at 50 feet	_									
	L _{eq} (h)=	82.2	71.7							
4 Propagation Characteristics	L _{eq} (II)-	02.2	/ 1./							
Buildings Reflection: Situation:	no									
Build.H.m:	20									
Street Width:	30									
Barrier: Barrier Type:	3									
Track-Barrier Distance,m:	1.5									
Barrier Height,m:	3.50									
Ground factor: Soft ground?	no									
Net Diesel&Horn Barrier Atter	nuation:	13.7								
Net Cars Barrier Atter		15.0								
<u>5 Noise at Receiver</u>	N		Barrier		Barrier					
from Locomotives	LeqLrec	74.7	64.3	61.0	50.6					
	L _{eqCrec}									
	L _{eqHrec}									
Total Noise at Receiver	L _{eq(Total)}	74.7	64.3	61.0	50.6					
	L _{dn}	74.6		60.9						

Mitigation of noise impact from metro rail may involve treatments at the three fundamental components noise problem:

- noise source treatment,
- source-to-receiver propagation path, and
- receiver.

Generally Receiver treatment shall be considered as a last resort for applying mitigation measure.

6.1 SOURCE TREATMENT

The most effective noise mitigation treatments are applied at the noise source. This is the preferred approach to mitigation when possible. Common source treatments and their estimated acoustical effectiveness. Due to insufficient data on the type of rail and its specification, the listed items were not verified against the train specifications.

Table 0-2: noise reduction						
Mitigation Measure		Effectiveness				
Stringent Vehicle & Equipment	Stringent Vehicle & Equipment Noise Specifications					
Operational Restrictions	Varied					
Resilient or Damped Wheels	2 dB					
Resilent of Daniped Witces	For wheel squeal on curved track:	10-20 dB				
Vehicle Skirts		6-10 dB				
Undercar Absorption		5 dB				
Quiet Fan Design and Fan Place	ement	Varied				
Preventative Maintenance on R	ail Systems	Varied				
Turn Radii Greater than 1000 f	ť	Avoids Squeal				
Rail Lubrication on Sharp Cur	Reduces Squeal					
Movable-Point Frogs (reduce ra	Reduces Impact Noise					
Engine Compartment Treatmen	6-10 dB					

Table 6-2: noise reduction during source treatment

6.1.1 STRINGENT VEHICLE AND EQUIPMENT NOISE SPECIFICATIONS

noise control during the specification and design of the metro rail based on the site conditions. By developing and enforcing stringent but achievable noise specifications.

6.1.2 OPERATIONAL RESTRICTIONS

- lowering of speed, the reduction of nighttime (10 p.m. to 7 a.m.) operations, and reduction of warning horns and signals.
- **Speed reduction** Because noise from most transit vehicles is dependent on speed, a reduction of speed results in lower noise levels. The effect can be considerable.
- **Reduction of nighttime operations** Complete elimination of nighttime operations has a strong effect on reducing the nighttime values.
- **Reduction of warning horns and signals** Minimizing or eliminating horns and other warning signals at gate crossings can reduce noise impact

6.1.3 WHEEL TREATMENTS (RAIL) -

A major source of noise from steel-wheel and steel-rail systems is the wheel/rail interaction that can produce three distinctive sounds: roar, impact, and squeal.

- Roar is the rolling noise caused by small-scale roughness on the wheel tread and rail running surface.
- Impacts are caused by discontinuities in the running surface of the rail or by a flat spot on the wheels.
- Squeal occurs when a steel-wheel tread or its flange rubs across the rail, resulting in resonant vibrations in the wheel that creates a screeching sound. Various wheel designs

and other mitigation measures exist to reduce the noise from each of these three mechanisms.

Resilient wheels – Resilient wheels are effective in eliminating wheel squeal on tight turns with reductions of 10 to 20 dB in the high- frequency range where squeal noise occurs.

Damped wheels – Damped wheels, like resilient wheels, are effective in eliminating wheel squeal on tight turns with reductions of 5 to 15 dB in the high-frequency range where squeal occurs. Rolling noise is also slightly reduced by approximately 2 dB on tangent track. This treatment involves attaching vibration absorbers to standard steel wheels.

Preventative Maintenance (Rail) – Preventative maintenance is the best strategy to minimize rail and wheel deterioration.

Spin-slide control systems – Similar to anti-locking brake systems(ABS) on automobiles, spin-slide control systems reduce the incidence of wheel flats, a major contributor of impact noise. Trains with smooth wheel treads can be up to 20 dB quieter than those with wheel flats. To be effective, the anti-locking feature should be in operation during all braking phases, including emergency braking. Wheel flats are more likely to occur during emergency braking than during dynamic braking.

Maintenance program – Clearly defined maintenance specifications should be developed during design phase of the project. The specifications should define rail and wheel profiles, include detailed guidance for grinding, rail-wheel interface, periodic monitoring of wheel and rail condition and compliance verification.

6.2 PATH TREATMENTS –

When noise mitigation treatments cannot be applied at the noise source or additional mitigation is required after treating the source, the next preferred placement of noise mitigation is along the noise propagation path between the source and receiver. Common path treatments and their estimated acoustical effectiveness are included in Table below.

Mitigation Measure	Effectiveness
Noise barriers close to vehicles	6-15 dB
Noise barriers at row line	3-15 dB
Alteration of horizontal & vertical alignments	Varied
Wayside horns	Varied
Acquisition of buffer zones	Varied
Ballast on at-grade guideway	3 dB
Ballast on aerial guideway	5 dB
Resilient track support on aerial guideway	Varied
Vegetation and trees	Varied

Table 6-3: Noise Mitigation Measures – Path Treatments

Eco Services India Pvt. Ltd., Chennai – 600032

6.2.1 NOISE BARRIERS

All barrier effectiveness can be increased by as much as 5 dB by applying sound-absorbing material to the inner surface of the barrier. The length of the barrier wall is also important to its effectiveness. The barrier must be long enough to block noise from a moving train along most of its visible path. This is necessary so that train noise from beyond the ends of the barrier will not severely compromise noise-barrier performance at noise-sensitive locations. The barrier length can be refined in the engineering phase, closely examining the predicted sound level exceedances at specific receivers, site geometries, and the contribution of barrier flanking noise, then adjusting the length as appropriate.

Noise barriers can be made of any outdoor weather-resistant solid material that meets the minimum sound transmission loss required by the project. Materials that are commonly used for noise barriers include 16-gauge steel, 1-inch thick plywood, and any reasonable thickness of concrete. Typically, a surface density of 0.3 kg/cm2 shall be applied. Areas with strong winds may require more stringent structural requirements. It is critical to seal any gaps between barrier panels and between the barrier and the ground or elevated guideway deck for maximum performance.

It is to be noted that if the barriers are not designed and sited carefully, they can reduce visibility of trains for pedestrians and motorists, which causes safety concerns. It is important to consult with safety experts in choosing and siting a noise barrier.

6.2.2 GROUND ABSORPTION – BALLAST ON GUIDEWAYS –

Propagation of noise over ground is affected by whether the ground surface is absorptive or reflective. Noise from vehicles on the surface is strongly affected by the character of the ground in the immediate vicinity of the vehicle. Ground at the side of the rail has a substantial effect on the propagation of noise to greater distance. Guideways for rail systems can be either reflective or absorptive, depending on whether they are concrete or ballast. Ballast on a guideway can reduce train noise 3 dB at-grade and up to 5 dB on an aerial structure.

7 24-HOUR - MONITORING DATA							
Report No.	: ESIPL/EMS/2021/07/242	23		Date of	:	30.06.2021	_
Customer N	: M/s. CHENNAI METR	0	RAIL	Monitoring	:	01.07.2021	
& Address	LIMITED			Date of	:	01.07.2021	
	: CMRL Depot, Admin B	uil	lding,	Registration	:	E-3323	
	Poonamalle High Road			Sample Code		05.07.2021	
	Koyambedu, Chennai –	60	0	Report Issuing			
	107.			Date			
Project Site	: Chennai Metro Phase-II	[1		1	
	Corridor 3 – 45.8 km (M	lac	lhavar	am – SIPCOT)			
Sample Des	cription	:	Amb	Ambient Noise (in dB (A) Leq)			
Category of	Category of Area/Zone : Resid		Residential Area				
Sampling P	Sampling Plan/Procedure : IS		IS:9989:2014				
Sample Loc	cation	:	Radia	Radiance Ivy Terrace - (HR-1)			

Time of Monitoring (Hrs)	Noise Level in dB (A) Leq
6.00-7.00	64.8
7.00-8.00	62.2
8.00-9.00	63.7
9.00-10.00	63.2
10.00-11.00	62.8
11.00-12.00	64.8
12.00-13.00	62.9
13.00-14.00	65.2
14.00-15.00	66.0
15.00-16.00	64.3
16.00-17.00	64.2
17.00-18.00	67.9
18.00-19.00	64.0
19.00-20.00	64.0
20.00-21.00	63.7
21.00-22.00	63.6
22.00-23.00	61.2
23.00-24.00	59.9
24.00-1.00	58.1
1.00-2.00	56.0
2.00-3.00	53.2

Eco Services India Pvt. Ltd., Chennai – 600032

3.00-4.00	58.5
4.00-5.00	55.9
5.00-6.00	54.2
Day Lequivalent (6.00 AM- 10.00 PM)	64.4
Night Lequivalent (10.00 PM – 6.00 AM)	58.2

The Noise Pollution (Regulation and Control) Rules 2000-Ambient Air Quality Standards in Respect of Noise.Leq is an energy mean of the noise level at Residential area over a specified period of day time = 55 dB(A) Leq and Night time = 45 dB(A) Leq.

Report No.	: ESIPL/EMS/2021/07/2424	Date of	:	30.06.2021	_	
Customer Name	: M/s. CHENNAI METRO	Sampling	:	01.07.2021		
& Address	RAIL LIMITED	Date of	:	01.07.2021		
	: CMRL Depot, Admin	Registration	:	E-3323		
	Building,	Sample Code		05.07.2021		
	Poonamalle High Road	Report				
	Koyambedu, Chennai – 600	Issuing Date				
	107.					
Project Site :	: Chennai Metro Phase-II					
	Corridor 4 – 26.1 km (Light House – Poonamalle Bypass)					
Sample Description	: Ambient Noise (in dB (A) Leq)					
Category	:	Residential Are	ea			
Area/Zone	:	IS : 9989 : 2014				
Sampling	: RSK Orchid Garden - (HR-2)					
Plan/Procedure						
Sample Location						

Time of Monitoring (Hrs)	Noise Level in dB (A) Leq
6.00-7.00	64.2
7.00-8.00	68.9
8.00-9.00	65.5
9.00-10.00	61.9
10.00-11.00	61.1
11.00-12.00	63.4
12.00-13.00	63.5
13.00-14.00	59.2
14.00-15.00	57.5
15.00-16.00	56.6
16.00-17.00	57.8
17.00-18.00	58.6
18.00-19.00	59.2
19.00-20.00	59.1
20.00-21.00	58.1
21.00-22.00	58.3
22.00-23.00	64.2
23.00-24.00	57.9
24.00-1.00	55.3

1.00-2.00	54.6
2.00-3.00	53.5
3.00-4.00	54.7
4.00-5.00	55.2
5.00-6.00	56.4
Day Lequivalent (6.00 AM- 10.00 PM)	62.3
Night Lequivalent (10.00 PM – 6.00 AM)	55.8

The Noise Pollution (Regulation and Control) Rules 2000-Ambient Air Quality Standards in Respect of Noise.Leq is an energy mean of the noise level at Residential area over a specified period of day time = 55 dB(A) Leq and Night time = 45 dB(A) Leq.

Report No.	. : ESIPL/EMS/2021/07/244			Date of	:	02.07.2021 –
Customer N	N : M/s. CHENNAI METRO			Sampling	:	03.07.2021
& Address	RAIL LIMITED			Date of	:	03.07.2021
	: CMRL Depot, Admin Bu	iil	ding,	Registration	:	E-3353
	Poonamalle High Road			Sample Code		05.07.2021
	Koyambedu, Chennai – 600) 107.	Report Issuing		
			Date			
Project Site : Chennai Metro Phase-II			1			
Corridor 4 – 26.1 km (Light Hou		se – Poonamalle H	Byp	ass)		
Sample Des	cription	:	Ambi	ient Noise (in dB	(A)	Leq)
Category of Area/Zone : R		Residential Area				
Sampling Plan/Procedure : IS		: IS : 9989 : 2014				
Sample Loc	Sample Location :		Greenville Appaswamy - (HR-3)			(HR-3)

Time of Monitoring (Hrs)	Noise Level in dB (A) Leq
6.00-7.00	62.7
7.00-8.00	63.4
8.00-9.00	63.1
9.00-10.00	62.0
10.00-11.00	60.6
11.00-12.00	60.6
12.00-13.00	61.4
13.00-14.00	62.5
14.00-15.00	63.4
15.00-16.00	64.1
16.00-17.00	64.4
17.00-18.00	64.0
18.00-19.00	68.4
19.00-20.00	71.1
20.00-21.00	67.1
21.00-22.00	62.6
22.00-23.00	58.6
23.00-24.00	56.2
24.00-1.00	54.3
1.00-2.00	52.0
2.00-3.00	52.0
3.00-4.00	54.1

4.00-5.00	57.0
5.00-6.00	62.9
Day Lequivalent (6.00 AM- 10.00 PM)	64.9
Night Lequivalent (10.00 PM – 6.00	57.4
AM)	

The Noise Pollution (Regulation and Control) Rules 2000-Ambient Air Quality Standards in Respect of Noise.Leq is an energy mean of the noise level at Residential area over a specified period of day time = 55 dB(A) Leq and Night time = 45 dB(A) Leq.

Report No.	. : ESIPL/EMS/2021/07/244			Date of	:	02.07.2021 –
Customer N	r N : M/s. CHENNAI METRO			Sampling	:	03.07.2021
& Address	RAIL LIMITED			Date of	:	03.07.2021
	: CMRL Depot, Admin Bu	iil	ding,	Registration	:	E-3353
	Poonamalle High Road			Sample Code		05.07.2021
	Koyambedu, Chennai – 600		0 107.	Report Issuing		
				Date		
Project Site	Project Site : Chennai Metro Phase-II					·
Corridor 4 – 26.1 km (Light Hou		nt Hou	se – Poonamalle H	Byp	ass)	
Sample Des	cription	:	Ambi	ent Noise (in dB	(A)) Leq)
Category of Area/Zone : Resid		Residential Area				
Sampling Plan/Procedure : IS :		IS : 9989 : 2014				
Sample Loc	cation	:	Radiance Mandarin Apartment - (HR-4)			tment - (HR-4)

Time of Monitoring (Hrs)	Noise Level in dB (A) Leq
6.00-7.00	62.9
7.00-8.00	66.3
8.00-9.00	69.5
9.00-10.00	68.3
10.00-11.00	68.7
11.00-12.00	68.1
12.00-13.00	67.2
13.00-14.00	67.6
14.00-15.00	67.5
15.00-16.00	66.5
16.00-17.00	67.3
17.00-18.00	68.2
18.00-19.00	68.9
19.00-20.00	68.5
20.00-21.00	68.8
21.00-22.00	67.0
22.00-23.00	62.9
23.00-24.00	61.9
24.00-1.00	59.8
1.00-2.00	55.8
2.00-3.00	54.0
3.00-4.00	57.0

4.00-5.00	59.1
5.00-6.00	60.5
Day Lequivalent (6.00 AM- 10.00 PM)	67.8
Night Lequivalent (10.00 PM – 6.00	59.8
AM)	

The Noise Pollution (Regulation and Control) Rules 2000-Ambient Air Quality Standards in Respect of Noise.Leq is an energy mean of the noise level at Residential area over a specified period of day time = 55 dB(A) Leq and Night time = 45 dB(A) Leq.

Report No.	. : ESIPL/EMS/2021/07/244			Date of	:	02.07.2021 –
Customer N	N: M/s. CHENNAI METRO			Sampling	:	03.07.2021
& Address	RAIL LIMITED			Date of	:	03.07.2021
	: CMRL Depot, Admin Bu	il	ding,	Registration	:	E-3353
	Poonamalle High Road		Sample Code		05.07.2021	
	Koyambedu, Chennai – 600) 107.	Report Issuing		
				Date		
Project Site : Chennai Metro Phase-II						
Corridor 4 – 26.1 km (Light Hou		nt Hou	se – Poonamalle H	Byp	ass)	
Sample Description : Amb		Ambient Noise (in dB (A) Leq)				
Category of Area/Zone :		:	Residential Area			
Sampling Plan/Procedure :		IS : 9989 : 2014				
Sample Location : Ci		City Square Appaswamy - (HR-5)				

Time of Monitoring (Hrs)	Noise Level in dB (A) Leq
6.00-7.00	66.0
7.00-8.00	67.1
8.00-9.00	69.6
9.00-10.00	69.8
10.00-11.00	70.3
11.00-12.00	69.6
12.00-13.00	69.3
13.00-14.00	70.0
14.00-15.00	69.7
15.00-16.00	69.1
16.00-17.00	69.4
17.00-18.00	69.5
18.00-19.00	70.5
19.00-20.00	69.2
20.00-21.00	68.0
21.00-22.00	66.2
22.00-23.00	66.0
23.00-24.00	64.8
24.00-1.00	64.8
1.00-2.00	62.5
2.00-3.00	61.6

3.00-4.00	61.8
4.00-5.00	61.3
5.00-6.00	61.9
Day Lequivalent (6.00 AM- 10.00 PM)	69.1
Night Lequivalent (10.00 PM – 6.00	63.2
AM)	

The Noise Pollution (Regulation and Control) Rules 2000-Ambient Air Quality Standards in Respect of Noise.Leq is an energy mean of the noise level at Residential area over a specified period of day time = 55 dB(A) Leq and Night time = 45 dB(A) Leq.

Report No.	. : ESIPL/EMS/2021/07/244			Date of	:	07.07.2021 –
Customer N	r N: M/s. CHENNAI METRO			Sampling	:	08.07.2021
& Address	RAIL LIMITED			Date of	:	08.07.2021
	: CMRL Depot, Admin Bu	il	ding,	Registration	:	E-3353
	Poonamalle High Road			Sample Code		14.07.2021
	Koyambedu, Chennai – 60) 107.	Report Issuing		
				Date		
Project Site : Chennai Metro Phase-II					·	
Corridor 4 – 26.1 km (Light Hou			se – Poonamalle H	3yp	ass)	
Sample Description : Amb		Ambient Noise (in dB (A) Leq)				
Category of Area/Zone :		Residential Area				
Sampling Plan/Procedure : IS		IS: 9989: 2014				
Sample Location :		Shanti Gulmohar Apartments - (HR-6)				

Time of Monitoring (Hrs)	Noise Level in dB (A) Leq
6.00-7.00	61.0
7.00-8.00	63.0
8.00-9.00	64.6
9.00-10.00	61.9
10.00-11.00	62.3
11.00-12.00	64.0
12.00-13.00	62.4
13.00-14.00	61.0
14.00-15.00	61.0
15.00-16.00	63.0
16.00-17.00	63.4
17.00-18.00	62.9
18.00-19.00	65.7
19.00-20.00	67.8
20.00-21.00	67.5
21.00-22.00	62.7
22.00-23.00	61.0
23.00-24.00	61.9
24.00-1.00	60.4
1.00-2.00	53.9
2.00-3.00	57.8
3.00-4.00	57.3

4.00-5.00	54.7
5.00-6.00	57.6
Day Lequivalent (6.00 AM- 10.00 PM)	63.9
Night Lequivalent (10.00 PM – 6.00	58.6
AM)	

The Noise Pollution (Regulation and Control) Rules 2000-Ambient Air Quality Standards in Respect of Noise.Leq is an energy mean of the noise level at Residential area over a specified period of day time = 55 dB(A) Leq and Night time = 45 dB(A) Leq.

Report No.	. : ESIPL/EMS/2021/07/244			Date of	:	09.07.2021 –
Customer N	N : M/s. CHENNAI METRO			Sampling	:	10.07.2021
& Address	RAIL LIMITED			Date of	:	10.07.2021
	: CMRL Depot, Admin Bu	iil	ding,	Registration	:	E-3353
	Poonamalle High Road		Sample Code		14.07.2021	
	Koyambedu, Chennai – 600		0 107.	Report Issuing		
			Date			
Project Site : Chennai Metro Phase-II			1			
Corridor 4 – 26.1 km (Light Hou			nt Hou	se – Poonamalle H	3yp	ass)
Sample Description : Amb		Ambient Noise (in dB (A) Leq)				
Category of Area/Zone : Re		Resid	Residential Area			
Sampling Plan/Procedure : IS :		IS : 9	IS : 9989 : 2014			
Sample Location : Win		Wind	Windsor Palace - (HR-7)			

Time of Monitoring (Hrs)	Noise Level in dB (A) Leq
6.00-7.00	64.4
7.00-8.00	69.4
8.00-9.00	70.5
9.00-10.00	71.4
10.00-11.00	72.1
11.00-12.00	69.5
12.00-13.00	69.8
13.00-14.00	69.8
14.00-15.00	69.4
15.00-16.00	69.3
16.00-17.00	69.5
17.00-18.00	69.5
18.00-19.00	72.0
19.00-20.00	70.6
20.00-21.00	70.7
21.00-22.00	68.2
22.00-23.00	66.7
23.00-24.00	63.9
24.00-1.00	60.2
1.00-2.00	57.8
2.00-3.00	72.2

3.00-4.00	59.3
4.00-5.00	63.4
5.00-6.00	63.3
Day Lequivalent (6.00 AM- 10.00 PM)	70.0
Night Lequivalent (10.00 PM – 6.00	65.5
AM)	

The Noise Pollution (Regulation and Control) Rules 2000-Ambient Air Quality Standards in Respect of Noise.Leq is an energy mean of the noise level at Residential area over a specified period of day time = 55 dB(A) Leq and Night time = 45 dB(A) Leq.

Report No.	: ESIPL/EMS/2021/07/244	47		Date of	:	09.07.2021 –	
Customer N	: M/s. CHENNAI METRO	0		Sampling	:	10.07.2021	
& Address	RAIL LIMITED			Date of	:	10.07.2021	
	: CMRL Depot, Admin Bu	iil	ding,	Registration	:	E-3353	
	Poonamalle High Road			Sample Code		14.07.2021	
	Koyambedu, Chennai – 6	50() 107.	Report Issuing			
				Date			
Project Site	ect Site : Chennai Metro Phase-II						
	Corridor 4 – 26.1 km (Light Hou		nt Hou	se – Poonamalle H	Byp	ass)	
Sample Des	cription	:	Ambi	ent Noise (in dB	(A)) Leq)	
Category of	f Area/Zone	:	Resid	ential Area			
Sampling P	ampling Plan/Procedure : IS : 998		IS:9989:2014				
Sample Loc	cation	:	Ariha	Arihanth Vaikunth Apartments - (HR-8)			

Time of Monitoring (Hrs)	Noise Level in dB (A) Leq
6.00-7.00	59.0
7.00-8.00	61.5
8.00-9.00	63.7
9.00-10.00	66.0
10.00-11.00	67.7
11.00-12.00	64.7
12.00-13.00	65.4
13.00-14.00	65.9
14.00-15.00	65.2
15.00-16.00	65.0
16.00-17.00	65.9
17.00-18.00	64.4
18.00-19.00	64.6
19.00-20.00	64.8
20.00-21.00	61.9
21.00-22.00	61.6
22.00-23.00	60.0
23.00-24.00	51.4
24.00-1.00	52.0
1.00-2.00	49.8
2.00-3.00	50.6
3.00-4.00	54.4

4.00-5.00	57.8
5.00-6.00	58.7
Day Lequivalent (6.00 AM- 10.00 PM)	64.7
Night Lequivalent (10.00 PM – 6.00	55.9
AM)	

Note:

The Noise Pollution (Regulation and Control) Rules 2000-Ambient Air Quality Standards in Respect of Noise.Leq is an energy mean of the noise level at Residential area over a specified period of day time = 55 dB(A) Leq and Night time = 45 dB(A) Leq.

.....End of Report.....

Report No.	: ESIPL/EMS/2021/07/24	79		Date of	:	05.07.2021 –	
Customer N	N: M/s. CHENNAI METRO			Sampling	:	06.07.2021	
& Address	RAIL LIMITED			Date of	:	06.07.2021	
	: CMRL Depot, Admin Bu	iil	ding,	Registration	:	E-3386	
	Poonamalle High Road			Sample Code		07.07.2021	
	Koyambedu, Chennai – 6	50() 107.	Report Issuing			
				Date			
Project Site	oject Site : Chennai Metro Phase-II						
	Corridor 4 – 26.1 km (Li	igł	nt Hou	se – Poonamalle H	Byp	ass)	
Sample Des	cription	:	Ambi	ent Noise (in dB	(A)) Leq)	
Category of	Area/Zone	:	Resid	ential Area			
Sampling P	Sampling Plan/Procedure : IS : 9		IS : 9989 : 2014				
Sample Location : RC C		RC Queens Park Apartment - (HR-9)					

Time of Monitoring (Hrs)	Noise Level in dB (A) Leq
6.00-7.00	64.1
7.00-8.00	66.0
8.00-9.00	66.8
9.00-10.00	66.6
10.00-11.00	67.3
11.00-12.00	64.9
12.00-13.00	65.0
13.00-14.00	64.8
14.00-15.00	65.2
15.00-16.00	65.3
16.00-17.00	66.5
17.00-18.00	67.2
18.00-19.00	67.0
19.00-20.00	65.9
20.00-21.00	66.5
21.00-22.00	64.4
22.00-23.00	64.1
23.00-24.00	61.3
24.00-1.00	56.3
1.00-2.00	58.1
2.00-3.00	55.6

3.00-4.00	54.3
4.00-5.00	59.3
5.00-6.00	58.5
Day Lequivalent (6.00 AM- 10.00 PM)	66.0
Night Lequivalent (10.00 PM – 6.00	59.2
AM)	

Note:

The Noise Pollution (Regulation and Control) Rules 2000-Ambient Air Quality Standards in Respect of Noise.Leq is an energy mean of the noise level at Residential area over a specified period of day time = 55 dB(A) Leq and Night time = 45 dB(A) Leq.

.....End of Report.....

Report No.	: ESIPL/EMS/2021/07/24	79		Date of	:	12.07.2021 –	
Customer N	: M/s. CHENNAI METRO	0		Sampling	:	13.07.2021	
& Address	RAIL LIMITED			Date of	:	13.07.2021	
	: CMRL Depot, Admin Bu	iil	ding,	Registration	:	E-3386	
	Poonamalle High Road			Sample Code		14.07.2021	
	Koyambedu, Chennai – 6) 107.	Report Issuing			
				Date			
Project Site	oject Site : Chennai Metro Phase-II						
	Corridor 4 – 26.1 km (Li	igł	nt Hou	se – Poonamalle H	Byp	ass)	
Sample Des	cription	:	Ambi	ient Noise (in dB	(A)) Leq)	
Category of	f Area/Zone	:	Resid	ential Area			
Sampling P	ng Plan/Procedure : IS : 9989 : 2014						
Sample Loc	eation	:	VGN	VGN Notting Hill - (HR-10)			

Time of Monitoring (Hrs)	Noise Level in dB (A) Leq
6.00-7.00	62.8
7.00-8.00	62.3
8.00-9.00	65.0
9.00-10.00	67.6
10.00-11.00	65.4
11.00-12.00	64.3
12.00-13.00	64.0
13.00-14.00	67.7
14.00-15.00	66.1
15.00-16.00	69.2
16.00-17.00	67.4
17.00-18.00	68.5
18.00-19.00	66.6
19.00-20.00	67.9
20.00-21.00	65.7
21.00-22.00	65.8
22.00-23.00	62.8
23.00-24.00	64.4
24.00-1.00	60.2
1.00-2.00	62.1
2.00-3.00	61.4
3.00-4.00	53.4

4.00-5.00	61.3
5.00-6.00	57.9
Day Lequivalent (6.00 AM- 10.00 PM)	66.4
Night Lequivalent (10.00 PM – 6.00	61.5
AM)	

Note:

The Noise Pollution (Regulation and Control) Rules 2000-Ambient Air Quality Standards in Respect of Noise.Leq is an energy mean of the noise level at Residential area over a specified period of day time = 55 dB(A) Leq and Night time = 45 dB(A) Leq.

.....End of Report.....

Updated Environmental Impact Assessment

April 2024 Revision 1

India: Chennai Metro Rail Investment Project Corridor 4

Annexure 13

Prepared by the Chennai Metro Rail Limited (CMRL) for the Asian Development Bank.

F.No.11-13/2022-IA.III Government of India Ministry of Environment, Forest and Climate Change IA-III Section (CRZ)

Indira Paryavaran Bhawan Jor Bagh Road, New Delhi- 110003 Dated: 22nd April 2022

То

The Manager Chennai Metro Rail Limited HIG 6152, TNHB Phase I & II, Kamarajar Road, Ayapakkam-600077 Tamil Nadu

Subject: CRZ clearance for Construction of extended-4 of Chennai Metro Rail Project-Phase II from the lighthouse to Poonamallee bypass by M/s Chennai Metro Rail Limited, Chennai-CRZ Clearance regarding.

Sir,

This has reference to your online proposal No. IA/TN/CRZ/255190/2022, dated 18/03/2022, received in this Ministry on the above-mentioned project proposal for CRZ Clearance, by the provisions of the Coastal Regulation Zone (CRZ) Notification, 2011 issued under the Environment (Protection) Act, 1986.

 The Ministry of Environment, Forest and Climate Change has examined the proposal for CRZ clearance to the project for the 'Construction of Extended-4 of Chennai Metro Rail Project-Phase II from Lighthouse to Poonamallee bypass by M/s Chennai Metro Rail Limited.

3. The proposal was considered by the Expert Appraisal Committee (EAC) for Infrastructure Development, Coastal Regulation Zone, Building / Construction and Miscellaneous projects, in its meeting held on 23/03/2022 through video conferencing. The project proponent and their consultant made a detailed presentation and informed as under:

- (i). The proposal is for CRZ clearance to the project to construct Extended-Corridor 4 of Chennai Metro Rail Project-Phase II from the lighthouse to Poonamallee bypass M/s Chennai Metro Rail Limited, Chennai.
- (ii). The Proposed Lighthouse station falls under CRZ-II and the proposed associated alignment falls in CRZ II & CRZ IV B at the Buckingham Canal crossing area.

Description		Zonati	Permissibility as per CRZ Notification 2011	
Proposed Metro (Phase II) (Under		CRZ	Para 3 (iv) (a) & Para 8 II.CRZ-II(i)	
Proposed	From	To		Construction of the State of th
Alignment	Up Ch: 0	Up Ch: 1+500	CRZ II	Para 3 (iv) (a)

(iii). The CRZ details on the project site are as:

Page 1 of 6

(phase II) (Under ground)	Up Ch: 1+501	Up Ch: 2+285	Outside of CRZ	
	Up Ch: 2+286	Up Ch: 2+305	CRZ II	Para 3 (iv) (a)
	Up Ch: 2+306	Up Ch: 2+324	CRZ-IVB	Para 3 (iv) (a)
	Up Ch: 2+325	Up Ch: 1+343	CRZ-II	Para 3 (iv) (a)
	Up Ch: 2+344	Up Ch: 1+400	Outside of CRZ	-
	Down Ch:0	Down Ch:1+500	CRZ-II	Para 3 (iv) (a)
	Down Ch: 1+500	Down Ch:1+938	Outside of CRZ	-
	Down Ch: 1+939	Down Ch:1+961	CRZ-II	Para 3 (iv) (a)
	Down Ch: 1+962	Down Ch:1+984	CRZ-IVB	Para 3 (iv) (a)
	Down Ch: 1+985	Down Ch:1+007	CRZ-II	Para 3 (iv) (a)
	Down Ch: 2+007	Down Ch:1+050	Outside of CRZ	-

- (iv). In the Lighthouse to Poonamallee bypass, the Revenue length of the corridor is 26.8 km comprising an underground length of 10.3 km and 9 underground stations (Lighthouse to Kodambakkam Flyover) and an elevated length of 16.5 km and 18 elevated stations (Power House to Poonamallee bypass).
- (v). The total length of the CRZ (II and IV) area is 1.56 km. The proposed project lighthouse station and rail line Alignment fall under CRZ II and IV areas.
- (vi). The total manpower requirement for the construction phase is 100 people and for the operational phase are 316 persons.
- (vii). Total water requirement for the project in the construction phase is 10KLD and the operation phase is 14.5KLD, which will be sourced from Chennai Metropolitan Water Supply and Sewerage Board (CMWSSB).
- (viii). During the construction phase approximately 3KLD sewage waste will be generated and treated by a mobile septic tank with a soak pit and a total of 1.9 KLD sewage will be generated during the phase and it will be treated through the proposed STP of 15KLD capacity. Treated sewage water will be disposed to gardening. 4.2KLD treated water will be used for flushing; 5.0KLD treated water will be used for floor washing and 2KLD treated water will be used for green belt development.
- (ix). Total of 30kg/day and 42kg/day of solid organic waste will be generated during the construction and operation phase, which will be disposed to Greater Chennai Corporation. 20kg/day and 28.2kg/day Inorganic waste will be generated during the construction and operation phase, which will be given to TNPCB Authorized Vendors for treatment.

Page 2 of 6

- (x). The tree cutting will be carried out during the construction activity will be around 133 trees (non-mangrove). In compensation for those 12 times trees will be planted (1596 trees) at the CMRL pond area located next to the CMRL Admin building, Ponnamalle high road, Koyambedu, Chennai and submitted native species of Neem, Pungam, Magizham, Poovarasu etc. will be planted.
- (xi). The total cost of the project is ₹12,669.78 crores and out of the total project in the CRZ area cost is ₹583.33 crores and the cost of the Environmental Management Plan is ₹22.33 crores.
- (xii). The project cost in the CRZ area is ₹583.33 crores, as per OM F. No. 22-65/2017-IA.III dated 01/5/2018 CER is 0.25 % of the project cost i.e ₹1.46 crores.
- (xiii). The Tamil Nadu Coastal Zone Management Authority has recommended the proposal for clearance vide its Letter No. RC No P1/2503/2021 Dated 19/01/2022.

4. The Committee made a detailed deliberation on the proposal. The Committee noted that around 133 trees (non-mangrove) will be cut during the construction phase of the project and PP committed in compensation 12 times of trees will be planted (1596 trees) need to submit a plan with a consultation to Forest Department.

The Committee also noted that the PP proposed ₹1.46 crores as CER cost and since MoEFCC has dropped the CER policy and suggested the same fund be proposed for CER and would be included under EMP cost.

The Committee noted that the project facilities are essential for the public and permissible activity in the CRZ area as per the provisions contained in para 3 (iv) (a) of the CRZ Notification, 2011 requiring prior permission from the Ministry and the CRZ map of the 1:4000 scale was prepared by the Institute of Remote Sensing, Anna University, Chennai.

5. Based on the recommendation of the Tamil Nadu Coastal Zone Management Authority vide its Letter No. RC No P1/2503/2021. Dated 19/01/2022 and considering the submissions made by the project proponent the Ministry of Environment, Forest and Climate Change, hereby accords CRZ clearance to the project for 'Construction of extended-4 of Chennai Metro Rail Project-Phase II from the lighthouse to Poonamallee bypass by M/s Chennai Metro Rail Limited, Chennai', under the provision of CRZ Notification, 2011 and amendments thereto, subject to the compliance of the following specific and general conditions mentioned as under:

PART A - SPECIFIC CONDITIONS:

- All construction shall be strictly by the provisions of CRZ Notification, 2011 and as amended from time to time.
- (ii). The PP as committed should submit a Tree Plantation Management Plan that around 133 trees will be cut during the construction phase of the project with a consultation with the Forest Department before the commencement of the project or activity.
- (iii). No groundwater shall be extracted within the CRZ area to meet water requirements during the construction and/or operational phase of the project.
- (iv). The project proponent shall ensure the natural flow of the Creek water at the project site.

Horall

Page 3 of 6

- (v). No excavated material during the construction shall be dumped in water bodies or adjacent areas. The site shall be restored to its near original condition after completion of construction.
- (vi). Permanent labour camp, machinery and material storage shall not be set up in the CRZ area.
- (vii). Any temporary physical infrastructure set up during the construction period shall be removed simultaneously with the completion of laying of each segment of the project.
- (viii). All the conditions stipulated by the Tamil Nadu Coastal Zone Management Authority for CRZ clearance vide its letter No. Letter No. RC No P1/2503/2021. Dated 19/01/2022, and commitments made by the PP before the CZMA and EAC shall be followed in letter and spirit.
- (ix). All necessary clearance from the concerned authority, as may be applicable should be obtained before commencement of the project or activity.

PART B - GENERAL CONDITIONS:

- Management of solid waste by the Solid Waste Management Rules, 2016 shall be strictly implemented.
- (ii). 'Consent to Establish' and / or 'Consent to Operate' shall be obtained from State Pollution Control Board under the provisions of the Air (Prevention and Control of Pollution) Act, 1981 and/or the Water (Prevention and Control of Pollution) Act, 1974, as may be applicable.
- (iii). Disposal of muck during the construction phase should not create any adverse effect on the neighbouring communities and be disposed of taking the necessary precautions for general safety and health aspects of people, only in approved sites with the approval of Competent Authority.
- (iv). All liquid waste arising from the proposed development will be disposed of as per the norms prescribed by the Central / State Pollution Control Board. There shall not be any disposal of untreated effluent into the sea / coastal water bodies. It shall be ensured that the wastewater generated is treated in the STP as committed by the project proponent. The treated waste water shall be reused for landscaping, flushing and/or HVAC cooling purposes etc. within the development. The project proponent should also make alternate arrangements for situations arising due to malfunctioning STP. There shall be regular monitoring of standard parameters of the effluent discharge from STP under intimation to the SPCB.
- (v). Any hazardous waste generated during the construction phase, shall be disposed off as per applicable rules and norms with the necessary approvals of the State Pollution Control Board.
- (vi). A copy of the clearance letter shall be uploaded on the website of the concerned State Coastal Zone Management Authority / State Pollution Control Board. The Clearance letter shall also be displayed at the Regional Office, District Industries Centre and Collector's Office / Tehsildar's Office for 30 days.
- (vii). A Six-monthly monitoring report shall need to be submitted by the project proponent to the concerned Regional Office of this Ministry regarding the implementation of the stipulated conditions.

H-WA WIL

Page 4 of 6

- (viii). The Ministry of Environment, Forest & Climate Change or any other Competent Authority may stipulate any additional conditions or modify the existing ones, if necessary in the interest of the environment and the same shall be complied with.
- (ix). Full co-operation shall be extended to the officials from the Regional Office of MoEF&CC, during monitoring of the implementation of environmental safeguards stipulated. It shall be ensured that documents/data sought pertinent is made available to the monitoring team. A complete set of all the documents submitted to MoEF&CC shall be forwarded to the concerned Regional Office of MoEF&CC.
- (x). In the case of any change(s) in the scope of the project, the project would require a fresh appraisal by this Ministry.
- (xi). The Ministry reserves the right to add additional safeguard measures subsequently, if considered necessary, and to take action to ensure effective implementation of the suggested safeguard measures in a time-bound and satisfactory manner, including revoking the environment clearance under the provisions of the Environmental (Protection) Act, 1986, for non-compliance.
- (xii). All other statutory clearances such as the approvals for storage of diesel from Chief Controller of Explosives, Fire Department, Civil Aviation Department, Forest Conservation Act, 1980 and Wildlife (Protection) Act, 1972 etc. shall be obtained, as applicable by project proponent from the respective Competent Authorities.
- (xiii). The project proponent should advertise in at least two local newspapers widely circulated in the region, one of which shall be in the vernacular language informing that the project has been accorded CRZ Clearance and copies of clearance letters are available with the State Pollution Control Board (SPCB) and may also be seen on the website of the Ministry of Environment, Forest and Climate Change at https://parivesh.nic.in/. The advertisement should be made within seven days from the date of receipt of the Clearance letter and a copy of the same should be forwarded to the concerned Regional Office of this Ministry.
- (xiv). A copy of the clearance letter shall be sent by the proponent to the concerned Panchayat, Zilla Parisad / Municipal Corporation, Urban Local Body and the Local NGO, if any, from whom suggestions / representations, if any, were received while processing the proposal.
- (xv). The proponent shall upload the status of compliance of the stipulated conditions, including results of monitored data on their website and shall update the same periodically. It shall simultaneously be sent to the Regional Office of MoEF&CC, the respective Zonal Office of CPCB and the SPCB.
- (xvi). The environmental statement for each financial year ending 31st March in Form-V is mandated to be submitted by the project proponent to the concerned State Pollution Control Board as prescribed under the Environment (Protection) Rules, 1986, as amended subsequently, shall also be put on the website of the project proponent along with the status of compliance of clearance conditions and shall also be sent to the respective Regional Office of the Ministry by e-mail.

6. This Clearance is subject to the final order of the Hon'ble Supreme Court of India in the matter of Goa Foundation Vs Union of India in Writ Petition (Civil) No.460 of 2004 as may be applicable to this project.

hunnel

Page 5 of 6

7. The Ministry reserves the right to stipulate additional conditions if found necessary at subsequent stages and the project proponent shall implement all the said conditions in a time-bound manner. The Ministry may revoke or suspend the CRZ clearance if the implementation of any of the above conditions is not found satisfactory.

 Concealing factual data or submission of false / fabricated data and failure to comply with any of the conditions mentioned above may result in withdrawal of this clearance and attract action under the provisions of the Environment (Protection) Act, 1986.

 Any appeal against this CRZ clearance shall lie with the National Green Tribunal, if preferred, within a period of 30 days as prescribed under Section 16 of the National Green Tribunal Act, 2010.

10. The above conditions shall be enforced, *inter-alia* under the provisions of the Water (Prevention & Control of Pollution) Act, 1974, the Air (Prevention & Control of Pollution) Act, 1981, the Environment (Protection) Act, 1986, Hazardous and Other Wastes (Management and Transboundary Movement) Rules, 2016 and the Public Liability Insurance Act, 1991 along with their amendments and Rules and any other orders passed by the Hon'ble Supreme Court of India / High Courts and any other Court of Law relating to the subject matter.

This issues with the approval of the Competent Authority.

HENDLON

(Dr H. Kharkwal) Scientist 'E' (CRZ)

Copy to:

- The Principal Secretary, Environment & Forest Department (EC-3), Government of Tamil Nadu, Secretariat, Chennai-600009, Tamil Nadu.
- The DDG of Forests (C), Ministry of Environment, Forest, & Climate Change, Regional Office (SEZ), I & II Floor, Handloom Export Promotion Council, 34, Cathedral Garden Road, Nungambakkam, Chennai-600034, Tamil Nadu
- The Member Secretary, Tamil Nadu Coastal Zone Management Authority, Department of Environment, No. 1, Jeenis Road, Panagal Building, Ground Floor, Saidapet, Chennai-600015, Tamil Nadu
- The Member Secretary, Central Pollution Control Board, Parivesh Bhavan, CBD cum Office Complex, East Arjun Nagar, Delhi - 110032
- The Member Secretary, Tamil Nadu Pollution Control Board, No. 76, Anna Salai, Guindy Industrial Estate, Race View Colony, Guindy, Chennai-600032, Tamil Nadu
- 6. Guard File / Record File / Notice Board.
- 7. Monitoring Cell.

HENILL

(Dr H. Kharkwal) Scientist 'E' (CRZ)